Re-Entrant Quantum Phase Transitions in Antiferromagnetic Spin-1 Ladders
更新时间:2023-06-06 13:28:01 阅读量: 实用文档 文档下载
- re-entrant推荐度:
- 相关推荐
In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha
Re-EntrantQuantumPhaseTransitionsinAntiferromagneticSpin-1Ladders
ShojiYamamoto
DepartmentofPhysics,OkayamaUniversity,Tsushima,Okayama700-8530,Japan
T oruSakai
DepartmentofElectronics,TokyoMetropolitanInstituteofTechnology,Hino,Tokyo191-0065,Japan
arXiv:cond-ma
t/0
2
6553v1 [
cond-mat.str-el] 27 Jun 2002
AkihisaKoga
DepartmentofAppliedPhysics,OsakaUniversity,Suita,Osaka565-0871,Japan
(Received31December2001)
Inresponsetorecentchemicalattemptstoconstructhigher-spinladdermaterialsfromorganicpolyradicals,westudytheground-statepropertiesofawideclassofantiferromagneticspin-1lad-ders.Employingvariousnumericaltools,werevealtherichphasediagramandcorrectaprecedingnonlinear-sigma-modelprediction.Avariationalanalysiswellinterpretsthephasecompetitionwithparticularemphasisonthere-entrantphaseboundaryasafunctionoftherunginteraction.PACSnumbers:75.10.Jm,75.40.Mg,75.40.Cx
In1983Haldaneawokerenewedinterestinquan-tumspinchainspredictingastrikingcontrastbetweeninteger-andhalf-odd-integer-spinHeisenbergantiferro-magnets.Hisargumentwasindeedveri edinaspin-1materialNi(C2H8N2)2NO2(ClO4)andwasgivenananalyticsupport[3]aswell.Sincethentheenergygapsinmagneticexcitationspectra,thatis,spingaps,havebeenacentralissueinmaterialsscience.Inthelastdecademoreandmoreresearchersmadeawidevarietyofexplorationsintothespin-gapproblem,suchasthespin-Peierlstransitionininorganiccompounds[4],quantizedplateauxinmagnetizationcurvesandantiferromag-neticgapsintheferromagneticbackground[6].AmongothersDagottoetal.[7]pointedoutthatanothermecha-nismofthegapformationshouldlieinaladder twocou-pledchains.Aspingapwasindeedobservedinatypicaltwo-legladdermaterialSrCu2O3[8].Moreover,super-conductivitywasbroughtaboutinitshole-dopedversion(SrCa)14Cu24O41LaddersystemscausedusfurthersurpriseexhibitingexcitationspectravaryingwiththenumberoftheirlegsSofarmetaloxideshavebeenrepresentativeofladdermaterials.Thoughmolecule-basedoneshavebeensynthesizedinanattempttoreducethespingapsandobtainexperimentalaccesstothem,thesituationofcop-perionssupplyingtherelevantspinsremainsunchanged.Thereforetheyareallspin-1
ladderan-tiferromagnetsThetechniquewasfurtherdevel-opedforspatiallyinhomogeneousladdersMixed-spinladderswerealsoinvestigatedwithpartic-ularemphasisonthecompetitionbetweenmassiveandmasslessphases.
Incomparisonwithextensivecalculationsonspin-1
2
andthatofe ectivelyspin-1,respectively.Their
polyradicalstrategyhasyieldedfurtherharvestsuchasane ectivespin-1antiferromagnetonahoneycomblat-tice[14]andaladderferrimagnetofmixedspins1and
2
1
two-legladders.Theobtainedphasediagramisreminiscentoftheprecedingsigma-modelpredictionbutcon-tainsare-entrantphaseboundary,whichcanneverbeextractedfromany eld-theoreticalargument.
Consideringthatanadvantageofassemblingorganicopen-shellmoleculesintoamagneticmaterialistheisotropicintermolecularexchangecouplings,whilethepolyradicalstrategyisaccompaniedbyspatialvariationsinmagneticinteractionwetreatawideclassofspin-1antiferromagneticladders
2
H=1
2L
j=1
i=1
J γi,jSi,j·Si,j+1+J⊥S1,j·S2,j
,(1)
In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha
OPFIG.1.Phasediagramsfortheantiferromagneticspin-1ladderwithtwoout-of-phaselegs.(a)A eld-theoreticalpre-diction[19].Thetwocriticallines(dashedlines)derivedfromthee ectivesigmamodelforladdersareinconsistentwiththesigma-modelanalysisonisolatedchains( ).Theyre-mainfarapartfromeachothereveninthedecoupled-chainlimitr=0.Thereforequalitativelypatched-upphasebound-aries(solidlines)werepredicted.(b)Ournumerical ndings.Theseries-expansionestimatesareshownby×,whilethelevel-spectroscopyanalysesby2(L=6)and (L=8).
-10-20-30-40-50
L= 8
-60-70
L= 8
L= 4
L= 4
L= 6
L= 6
(a)δOP= 0.6
(b)δOP= 0.8r
FIG.2.Demonstrationofthelevelspectroscopy.Thelow-est-lyingtwoeigenvaluesinthesubspaceofzeromagnetiza-tionasfunctionsofrcrossattransitionpointsprovidedthetwistedboundaryconditionisimposedontheHamiltonian.
wherethebond-alternationparameterγi,jisde nedintwowaysas
1+( 1)i+jδOP(out-of-phaselegs),
γi,j=(2)
1+( 1)jδIP(in-phaselegs).Wecalculatetheregionof0≤δOP(δIP)≤1andhere-aftersetJ⊥/J tor(≥0).Martin-Delgado,Shankar,
andSierra[19]studiedthecasesofout-of-phaselegsde-rivingalow-energy-relevantsigmamodel.Forthespin-Sladderswithtwoout-of-phaselegs,thetopologicalangleinthee ectivesigmamodelturnsout8πSδOP/(r+2)andreadsasthecriticallines8SδOP=(2n+1)(r+2)
2
(n=0,±1,···).However,these ndingsdonotsmoothlymergewiththewell-establishedcriticalbehaviorinonedimension,2S(1 δ)=2n+1[17],asisshowninFig.1(a).Thus,itisnecessarytoverifythetruescenarioallthemoreinhigherdimensions.
Oneofthemostreliablesolutionmaybeanumericalanalysis[28]onthephenomenologicalrenormalization-groupequation[29].However,thescaledgapsareill-naturedduetotheclosecriticalpoints,soastomakethe xedpointshardtoextractfromavailablenumer-icaldata.Thenweswitchourstrategytothelevelspectroscopy[30],thecoreideaofwhichissummarizedasdetectingtransitionpointsbycrossingoftworel-evantenergylevels.Althoughthemethodisgeneri-callyapplicabletotheGaussiancriticalpoints[31],noexplicitchangeofsymmetryaccompaniesthepresentphasetransitionsandthereforeanylevelsdonotcrossnaively.Inordertoovercomethedi cultyofthiskind,Kitazawa[32]proposedtheideaofapplyingthetwistedboundarycondition,thatistosayinthepresentcase,exchangecouplingsequalto 2settingthexboundaryyyxzz i=1J γi,L(Si,LSi,1+Si,LSi,1 Si,LSi,1).Thentheen-ergystructureoftheHamiltonianischangedandthelow-esttwolevelsareledtocrossattransitionpoints,whichisdemonstratedinFig.2.Duetothelimitoftimeandmemorywellspent,wehaverestrictedourcalculationsuptoL=8.WeplotinFig.1(b)bare ndingsforthecross-ingpointsatL=6andL=8ratherthanextrapolatethemtrickily.Wearesurethatthedatauncertaintystillleftiswithinthesymbolsize.Aseries-expansiontech-nique[33,34]guaranteesthelevelspectroscopytoworkwell.Startingwithdecoupledsingletdimersonlegsorrungsandexpandingtheenergygapasapowerseriesinarelevantperturbationparameter,wecanobtainapartialknowledgeofphasetransitions.Herewehavecalculatedthegapuptotheninthorderandfurtherap-pliedtheDlogPad´eapproximants[35]tothem.Thethus-obtainedphaseboundaries,whicharealsoshowninFig.1(b),elucidatethenatureofthephasecompe-tition,thatis,theA eck-Kennedy-Lieb-Tasaki(AKLT)valence-bond-solid(VBS)[3]onasnakelikepathversusdecoupleddimers.
Themostimpressive ndingsarere-entrantquantumphasetransitionswithincreasingr.Theprecedingsigma-modelanalysis[19]isindeedenlighteningbutneverabletorevealthisnovelquantumbehavior.Inordertochar-acterizeeachphase,letusconsideravariationalap-proach.Weknowthatsingletdimersonrungs[Fig.3(h)]arestabilizedforr→∞,whereaseitherdimersonlegs[Figs.3(d)and3(e)]orthedoubleAKLTVBS[Fig.3(c)]forr→0.TwomoreinterchainVBSstates[Figs.3(f)and3(g)]maybeadoptedasvariationalcomponentsfortheintermediate-rregion.ThusthelinearcombinationofFigs.3(c)to3(h)canbeanapproximateground-statewavefunctionforspin-1ladders.Sincethepresentvari-ationalcomponentsareallasymptoticallyorthogonaltoeachother,thevariationalgroundstateturnsoutanyofthemitself[36].Thethus-obtainedphasediagramis
E
r
In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha
presentedinFig.
4.Thesigni cant
stabilizationoftheintermediatephase,which
isnowcharacterizedasSH,andtheresultantre-entrantphaseboundaryaresuccess-fullyreproduced.Consideringthatacoupleofcriticalchainsimmediatelyturnmassivewiththeirrunginter-actionswitchedon[7],thepointCshouldcoincidewiththepointAundermorere ned(andthusinevitablynu-merical)variationalinvestigation.
Thepresentvariationalcalculationimpliespossiblephasetransitionsforin-phase-legladdersaswell,butthisistotallyduetothenaivewavefunction.Numericalob-servationoftheenergystructureendsupwithnogapless
pointinthisregion.Thesigma-modelapproachalsoconcludesnocriticalpoint,givingthetopologicalan-gle4πSindependentofbothrandδP.Thekeytotheground-statenatureofin-phase-legladdersisthefour-spincorrelation[25].LetusconsiderinteractingfourspinsofS=1
2(a
=a b b);S
1
(a)
Plaquette Singlet
Solid (PSS)
(b)Double PlaquetteSinglet (DPS)(c)
Double Haldane
(DH)
(d)Out-of-Phase Leg
Dimer (OPLD)(e)(f)
In-Phase LegDimer (IPLD)Snake Haldane
(SH)
θmovesfrom0to
π
1 r+r2.Asrvariesfrom0to∞,
(g)Decoupled Plaquette
(DP)(h)
Rung Dimer(RD)
FIG.3.Plaquette-singlet-solidandvalence-bond-solidstatesrelevanttothetwo-legantiferromagneticspin-1lad-ders. denotesaspin1
2
’sinside.
4.0
atsite(i,j)intoaspin1.Nowthatθ(r)
isacontinuousfunctionofrandmayheredeviatefromthatinEq.(3),anaiveoptimization[36]ofEq.(4)isnomorefeasible.However,there nedvariationalschemeshowsusmore.Forbetterunderstandingofthewavefunction(4),wevisualizeinFig.3itsspecialformsforφ=π
4,
2’s
Rung Dimer
3.0
andθ=
π
Plaquette Singlet Formation
Decoupled Plaquette
2.0
r
Snake Haldane
1.0
0.01.0
In-Phase Leg Dimer
B
Double HaldaneC
Leg Dimer
δOP
δIP
0.5A0.0A0.51.0
FIG.4.Variationalphasediagramsforthetwo-legan-tiferromagneticspin-1ladders.Thethicksolidlinesde-scribephasetransitions,whereasthethinonesrepresentthecrossoveroftheground-statenaturewithinthepresentvari-ationalscheme.Thedottedlineisonlyaguideforeyes.
3
Heisenberg
chain[31].Weareallthemoreconvincedoftheimme-diategapformationwithrmovingawayfrom0.Ontheotherhand,neitherPSSnorDPSincludesbothOPLDandSHandthereforethetwocriticallinesintheout-of-phase-legregionsurviveagainsttheplaquettesingletformation.
Thegeneralizedstringorderparameter[37]O(θ)=
j 1
zzz
lim|i j|→∞ Sil=iexp[iθSl]Sj isalsousefulinchar-2
In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha
acterizingthegroundstate.O(θ)distinguishesbetweenone-dimensionalVBSstates
by
itsθdependence[36].Hence,measuringitonthelinear-chainandsnakepaths,wecandetectthetransitionsbetweenDH,OPLD,SH,andRD,asisshowninFig.5.Ifwespecifythetransitionthroughachangeoftheθdependenceinthevicinityofθ=π,thatis,thechangefromthecon-vexcurvetotheconcaveone,weobtainthetransi-tionpoints(δOP,r)=(0.245,0)and(0.6,2.125),whichareingoodagreementwiththenumerical ndingsinFig.1(b).WhateverpathwetakeforO(θ),itspeakneversitsonθ=πinthein-phase-legregion,sug-gestingthatwecannotobservetheHaldanestateofanykindthere.TheplaquettesingletformationcaninsteadbevisualizedbyextendingO(θ)toladdersas
j 1
zzzzzz
lim|i j|→∞ S1S,i2,il=iexp[iθ(S1,l+S2,l)]S1,jS2,j [25].
0.5
[2]
[3]
[4][5][6][7][8][9]
r= 0.00.4δ=OP0.30.20.10.00.27
δOP= 0.6
r =2.62.4
[10][11][12][13]
0.250.262.152.2
(a)O θ ) ( (b)O ( ) θ
FIG.5.QuantumMonteCarloestimatesofthegeneralized
stringorderparameterde nedonthelinear-chain(a)andsnake(b)paths.Thedashedlinesrepresenttheanalyticcal-culationsfortheAKLTVBS(4)anddecoupleddimers24(
[14]
[15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31]
[1]F.D.M.Haldane:Phys.Lett.93A(1983)464;Phys.
[32]
Rev.Lett.50(1983)1153.
J.P.Renard,M.Verdaguer,L.P.Regnault,W.A.C.Erkelens,J.Rossat-MignodandW.G.Stirling:Euro-phys.Lett.3(1987)945.
I.A eck,T.Kennedy,E.H.LiebandH.Tasaki:Phys.Rev.Lett.59(1987)799;Commun.Math.Phys.115(1988)477.
M.Hase,I.TerasakiandK.Uchinokura:Phys.Rev.Lett.70(1993)3651.
M.Oshikawa,M.YamanakaandI.A eck:Phys.Rev.Lett.78(1997)1984.
S.YamamotoandT.Fukui:Phys.Rev.B57(1998)R14008.
E.Dagotto,J.RieraandD.Scalapino:Phys.Rev.B45(1992)R5744.
M.Azuma,Z.Hiroi,M.Takano,K.IshidaandY.Ki-taoka:Phys.Rev.Lett.73(1994)3463.
M.Uehara,T.Nagata,J.Akimitsu,H.Takahashi,N.M oriandK.Kinoshita:J.Phys.Soc.Jpn.65(1996)2764.
E.DagottoandT.M.Rice:Science271(1996)618.C.A.Hayward,D.PoilblancandL.P.L´evy:Phys.Rev.B54(1996)R12649.
ndee,M.M.Turnbull,C.Galeriu,J.GiantsidisandF.M.Woodward:Phys.Rev.B63(2001)R100402.K.Katoh,Y.Hosokoshi,K.InoueandT.Goto:J.Phys.Soc.Jpn.69(2000)1008.
Y.Hosokoshi,Y.Nakazawa,K.Inoue,K.Takizawa,H.Nakano,M.TakahashiandT.Goto:Phys.Rev.B60(1999)12924.
Y.Hosokoshi,K.Katoh,Y.Nakazawa,H.NakanoandK.Inoue:tobepublishedinJ.Am.Chem.Soc..G.Sierra:J.Phys.A:Math.Gen.29(1996)3299.
I.A eck:Nucl.Phys.B257(1985)397;B265(1986)409.
R.S.Eccleston,T.Barnes,J.BrodyandJ.W.Johnson:Phys.Rev.Lett.73(1994)2626.
M.A.Martin-Delgado,R.ShankarandG.Sierra:Phys.Rev.Lett.77(1996)3443.
T.FukuiandN.Kawakami:Phys.Rev.B57(1998)ngari,M.AbolfathandM.A.Martin-Delgado:Phys.Rev.B61(2000)343.
A.ParolaandS.SorellaandQ.F.Zhong:Phys.Rev.Lett.71(1993)4393.
S.R.White,R.M.NoackandD.J.Scalapino:Phys.Rev.Lett.73(1994)886.
B.Frischmuth,B.AmmonandM.Troyer:Phys.Rev.B54(1996)R3714.
S.Todo,M.Matsumoto,C.YasudaandH.Takayama:cond-mat/0107115.
P.W.Anderson:Science235(1987)1196.
T.M.Rice,S.GopalanandM.Sigrist:Europhys.Lett.23(1993)445.
T.SakaiandS.Yamamoto:Phys.Rev.B60(1999)4053.M.P.Nightingale:PhysicaA83(1976)561.
K.NomuraandK.Okamoto:J.Phys.A:Math.Gen.27(1994)5773.
S.Yamamoto:Phys.Rev.B51(1995)16128;52(1995)10170.
A.Kitazawa:J.Phys.A:Math.Gen.30(1997)L285.
4
In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha
[33]R.R.P.Singh,M.P.GelfandandD.A.Huse:Phys.
Rev.Lett.61(1988)2484.
[34]A.KogaandN.Kawakami:Phys.Rev.61(2000)6133.[35]A.J.Guttmann:PhaseTransitionsandCriticalPhe-nomena,ed.C.DombandJ.L.Lebowitz(Academic,NewYork,1989)Vol.13.
[36]S.Yamamoto:Phys.Rev.B55(1997)3603.
[37]M.Oshikawa:J.Phys.:Condens.Matter4(1992)7469.[38]M.Hagiwara,Y.Narumi,K.Kindo,H.Nakano,R.Sato
andM.Takahashi:Phys.Rev.Lett.80(1998)1312.
5
正在阅读:
Re-Entrant Quantum Phase Transitions in Antiferromagnetic Spin-1 Ladders06-06
《诗经》全文鉴赏大辞典05-02
不平凡的爱作文600字06-16
专技人员职业道德与创新能力考试题库(完整版,能考90分以上)07-04
2019年禁毒工作总结12-13
教师党员剖析材料(多篇)03-08
马航失联事件中的中国媒体06-28
云南省2014年中考语文试题(word版,含答案)06-08
2018.1怀柔区初三化学期末试卷及答案03-11
- 1Spin-Spin Asymmetries in Large Transverse Momentum Higgs Bos
- 2SPIN销售法
- 3相位误差phase error question
- 4quantum-espresso安装
- 5Incompressible Quantum Hall Fluid
- 6教案Unit1 We’re going to visit Hainan.教学设计
- 7re6333_re9124_第三第四课复习
- 8Comment on Magnetic Relaxations of Antiferromagnetic Nanoparticles in Magnetic Fields
- 9Quark Pair Production in the Chiral Phase Transition
- 10Quark Pair Production in the Chiral Phase Transition
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Antiferromagneti
- Transitions
- Entrant
- Quantum
- Ladders
- Phase
- Spin
- Re
- 智能车距离控制系统设计
- 现浇钢筋混凝土楼板裂缝成因及控制分析
- 2015年1月时政热点(事业编考试)
- 27.2.1相似三角形的判定(2)
- 建筑施工员实习报告
- 湖南美术出版社美术五年级下册教学设计
- 网页制作期末试题
- 古今名人八字点评之诸葛亮
- 煤矿PLC控制系统的应用前景
- 2011年评选先进方案
- β-二酮和5-壬基水杨醛肟从氨性溶液萃取铜的研究
- 常见金融词汇中英文对照
- 基于效用理论的网络购物模式下的顾客感知风险研究
- 四年品德上册家乡水的故事教学设计
- 长江之歌诗歌 关注诗歌结构,引导自主探究——《长江之歌》片断赏析
- 2010财政工作总结
- 第一次学会做饭的四年级作文
- 新目标人教版七年级英语上册第二单元测试卷及答案
- 3.1用树状图或表格求概率(三)
- 无机材料物理化学课后习题及答案