Re-Entrant Quantum Phase Transitions in Antiferromagnetic Spin-1 Ladders

更新时间:2023-06-06 13:28:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha

Re-EntrantQuantumPhaseTransitionsinAntiferromagneticSpin-1Ladders

ShojiYamamoto

DepartmentofPhysics,OkayamaUniversity,Tsushima,Okayama700-8530,Japan

T oruSakai

DepartmentofElectronics,TokyoMetropolitanInstituteofTechnology,Hino,Tokyo191-0065,Japan

arXiv:cond-ma

t/0

2

6553v1 [

cond-mat.str-el] 27 Jun 2002

AkihisaKoga

DepartmentofAppliedPhysics,OsakaUniversity,Suita,Osaka565-0871,Japan

(Received31December2001)

Inresponsetorecentchemicalattemptstoconstructhigher-spinladdermaterialsfromorganicpolyradicals,westudytheground-statepropertiesofawideclassofantiferromagneticspin-1lad-ders.Employingvariousnumericaltools,werevealtherichphasediagramandcorrectaprecedingnonlinear-sigma-modelprediction.Avariationalanalysiswellinterpretsthephasecompetitionwithparticularemphasisonthere-entrantphaseboundaryasafunctionoftherunginteraction.PACSnumbers:75.10.Jm,75.40.Mg,75.40.Cx

In1983Haldaneawokerenewedinterestinquan-tumspinchainspredictingastrikingcontrastbetweeninteger-andhalf-odd-integer-spinHeisenbergantiferro-magnets.Hisargumentwasindeedveri edinaspin-1materialNi(C2H8N2)2NO2(ClO4)andwasgivenananalyticsupport[3]aswell.Sincethentheenergygapsinmagneticexcitationspectra,thatis,spingaps,havebeenacentralissueinmaterialsscience.Inthelastdecademoreandmoreresearchersmadeawidevarietyofexplorationsintothespin-gapproblem,suchasthespin-Peierlstransitionininorganiccompounds[4],quantizedplateauxinmagnetizationcurvesandantiferromag-neticgapsintheferromagneticbackground[6].AmongothersDagottoetal.[7]pointedoutthatanothermecha-nismofthegapformationshouldlieinaladder twocou-pledchains.Aspingapwasindeedobservedinatypicaltwo-legladdermaterialSrCu2O3[8].Moreover,super-conductivitywasbroughtaboutinitshole-dopedversion(SrCa)14Cu24O41LaddersystemscausedusfurthersurpriseexhibitingexcitationspectravaryingwiththenumberoftheirlegsSofarmetaloxideshavebeenrepresentativeofladdermaterials.Thoughmolecule-basedoneshavebeensynthesizedinanattempttoreducethespingapsandobtainexperimentalaccesstothem,thesituationofcop-perionssupplyingtherelevantspinsremainsunchanged.Thereforetheyareallspin-1

ladderan-tiferromagnetsThetechniquewasfurtherdevel-opedforspatiallyinhomogeneousladdersMixed-spinladderswerealsoinvestigatedwithpartic-ularemphasisonthecompetitionbetweenmassiveandmasslessphases.

Incomparisonwithextensivecalculationsonspin-1

2

andthatofe ectivelyspin-1,respectively.Their

polyradicalstrategyhasyieldedfurtherharvestsuchasane ectivespin-1antiferromagnetonahoneycomblat-tice[14]andaladderferrimagnetofmixedspins1and

2

1

two-legladders.Theobtainedphasediagramisreminiscentoftheprecedingsigma-modelpredictionbutcon-tainsare-entrantphaseboundary,whichcanneverbeextractedfromany eld-theoreticalargument.

Consideringthatanadvantageofassemblingorganicopen-shellmoleculesintoamagneticmaterialistheisotropicintermolecularexchangecouplings,whilethepolyradicalstrategyisaccompaniedbyspatialvariationsinmagneticinteractionwetreatawideclassofspin-1antiferromagneticladders

2

H=1

2L

j=1

i=1

J γi,jSi,j·Si,j+1+J⊥S1,j·S2,j

,(1)

In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha

OPFIG.1.Phasediagramsfortheantiferromagneticspin-1ladderwithtwoout-of-phaselegs.(a)A eld-theoreticalpre-diction[19].Thetwocriticallines(dashedlines)derivedfromthee ectivesigmamodelforladdersareinconsistentwiththesigma-modelanalysisonisolatedchains( ).Theyre-mainfarapartfromeachothereveninthedecoupled-chainlimitr=0.Thereforequalitativelypatched-upphasebound-aries(solidlines)werepredicted.(b)Ournumerical ndings.Theseries-expansionestimatesareshownby×,whilethelevel-spectroscopyanalysesby2(L=6)and (L=8).

-10-20-30-40-50

L= 8

-60-70

L= 8

L= 4

L= 4

L= 6

L= 6

(a)δOP= 0.6

(b)δOP= 0.8r

FIG.2.Demonstrationofthelevelspectroscopy.Thelow-est-lyingtwoeigenvaluesinthesubspaceofzeromagnetiza-tionasfunctionsofrcrossattransitionpointsprovidedthetwistedboundaryconditionisimposedontheHamiltonian.

wherethebond-alternationparameterγi,jisde nedintwowaysas

1+( 1)i+jδOP(out-of-phaselegs),

γi,j=(2)

1+( 1)jδIP(in-phaselegs).Wecalculatetheregionof0≤δOP(δIP)≤1andhere-aftersetJ⊥/J tor(≥0).Martin-Delgado,Shankar,

andSierra[19]studiedthecasesofout-of-phaselegsde-rivingalow-energy-relevantsigmamodel.Forthespin-Sladderswithtwoout-of-phaselegs,thetopologicalangleinthee ectivesigmamodelturnsout8πSδOP/(r+2)andreadsasthecriticallines8SδOP=(2n+1)(r+2)

2

(n=0,±1,···).However,these ndingsdonotsmoothlymergewiththewell-establishedcriticalbehaviorinonedimension,2S(1 δ)=2n+1[17],asisshowninFig.1(a).Thus,itisnecessarytoverifythetruescenarioallthemoreinhigherdimensions.

Oneofthemostreliablesolutionmaybeanumericalanalysis[28]onthephenomenologicalrenormalization-groupequation[29].However,thescaledgapsareill-naturedduetotheclosecriticalpoints,soastomakethe xedpointshardtoextractfromavailablenumer-icaldata.Thenweswitchourstrategytothelevelspectroscopy[30],thecoreideaofwhichissummarizedasdetectingtransitionpointsbycrossingoftworel-evantenergylevels.Althoughthemethodisgeneri-callyapplicabletotheGaussiancriticalpoints[31],noexplicitchangeofsymmetryaccompaniesthepresentphasetransitionsandthereforeanylevelsdonotcrossnaively.Inordertoovercomethedi cultyofthiskind,Kitazawa[32]proposedtheideaofapplyingthetwistedboundarycondition,thatistosayinthepresentcase,exchangecouplingsequalto 2settingthexboundaryyyxzz i=1J γi,L(Si,LSi,1+Si,LSi,1 Si,LSi,1).Thentheen-ergystructureoftheHamiltonianischangedandthelow-esttwolevelsareledtocrossattransitionpoints,whichisdemonstratedinFig.2.Duetothelimitoftimeandmemorywellspent,wehaverestrictedourcalculationsuptoL=8.WeplotinFig.1(b)bare ndingsforthecross-ingpointsatL=6andL=8ratherthanextrapolatethemtrickily.Wearesurethatthedatauncertaintystillleftiswithinthesymbolsize.Aseries-expansiontech-nique[33,34]guaranteesthelevelspectroscopytoworkwell.Startingwithdecoupledsingletdimersonlegsorrungsandexpandingtheenergygapasapowerseriesinarelevantperturbationparameter,wecanobtainapartialknowledgeofphasetransitions.Herewehavecalculatedthegapuptotheninthorderandfurtherap-pliedtheDlogPad´eapproximants[35]tothem.Thethus-obtainedphaseboundaries,whicharealsoshowninFig.1(b),elucidatethenatureofthephasecompe-tition,thatis,theA eck-Kennedy-Lieb-Tasaki(AKLT)valence-bond-solid(VBS)[3]onasnakelikepathversusdecoupleddimers.

Themostimpressive ndingsarere-entrantquantumphasetransitionswithincreasingr.Theprecedingsigma-modelanalysis[19]isindeedenlighteningbutneverabletorevealthisnovelquantumbehavior.Inordertochar-acterizeeachphase,letusconsideravariationalap-proach.Weknowthatsingletdimersonrungs[Fig.3(h)]arestabilizedforr→∞,whereaseitherdimersonlegs[Figs.3(d)and3(e)]orthedoubleAKLTVBS[Fig.3(c)]forr→0.TwomoreinterchainVBSstates[Figs.3(f)and3(g)]maybeadoptedasvariationalcomponentsfortheintermediate-rregion.ThusthelinearcombinationofFigs.3(c)to3(h)canbeanapproximateground-statewavefunctionforspin-1ladders.Sincethepresentvari-ationalcomponentsareallasymptoticallyorthogonaltoeachother,thevariationalgroundstateturnsoutanyofthemitself[36].Thethus-obtainedphasediagramis

E

r

In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha

presentedinFig.

4.Thesigni cant

stabilizationoftheintermediatephase,which

isnowcharacterizedasSH,andtheresultantre-entrantphaseboundaryaresuccess-fullyreproduced.Consideringthatacoupleofcriticalchainsimmediatelyturnmassivewiththeirrunginter-actionswitchedon[7],thepointCshouldcoincidewiththepointAundermorere ned(andthusinevitablynu-merical)variationalinvestigation.

Thepresentvariationalcalculationimpliespossiblephasetransitionsforin-phase-legladdersaswell,butthisistotallyduetothenaivewavefunction.Numericalob-servationoftheenergystructureendsupwithnogapless

pointinthisregion.Thesigma-modelapproachalsoconcludesnocriticalpoint,givingthetopologicalan-gle4πSindependentofbothrandδP.Thekeytotheground-statenatureofin-phase-legladdersisthefour-spincorrelation[25].LetusconsiderinteractingfourspinsofS=1

2(a

=a b b);S

1

(a)

Plaquette Singlet

Solid (PSS)

(b)Double PlaquetteSinglet (DPS)(c)

Double Haldane

(DH)

(d)Out-of-Phase Leg

Dimer (OPLD)(e)(f)

In-Phase LegDimer (IPLD)Snake Haldane

(SH)

θmovesfrom0to

π

1 r+r2.Asrvariesfrom0to∞,

(g)Decoupled Plaquette

(DP)(h)

Rung Dimer(RD)

FIG.3.Plaquette-singlet-solidandvalence-bond-solidstatesrelevanttothetwo-legantiferromagneticspin-1lad-ders. denotesaspin1

2

’sinside.

4.0

atsite(i,j)intoaspin1.Nowthatθ(r)

isacontinuousfunctionofrandmayheredeviatefromthatinEq.(3),anaiveoptimization[36]ofEq.(4)isnomorefeasible.However,there nedvariationalschemeshowsusmore.Forbetterunderstandingofthewavefunction(4),wevisualizeinFig.3itsspecialformsforφ=π

4,

2’s

Rung Dimer

3.0

andθ=

π

Plaquette Singlet Formation

Decoupled Plaquette

2.0

r

Snake Haldane

1.0

0.01.0

In-Phase Leg Dimer

B

Double HaldaneC

Leg Dimer

δOP

δIP

0.5A0.0A0.51.0

FIG.4.Variationalphasediagramsforthetwo-legan-tiferromagneticspin-1ladders.Thethicksolidlinesde-scribephasetransitions,whereasthethinonesrepresentthecrossoveroftheground-statenaturewithinthepresentvari-ationalscheme.Thedottedlineisonlyaguideforeyes.

3

Heisenberg

chain[31].Weareallthemoreconvincedoftheimme-diategapformationwithrmovingawayfrom0.Ontheotherhand,neitherPSSnorDPSincludesbothOPLDandSHandthereforethetwocriticallinesintheout-of-phase-legregionsurviveagainsttheplaquettesingletformation.

Thegeneralizedstringorderparameter[37]O(θ)=

j 1

zzz

lim|i j|→∞ Sil=iexp[iθSl]Sj isalsousefulinchar-2

In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha

acterizingthegroundstate.O(θ)distinguishesbetweenone-dimensionalVBSstates

by

itsθdependence[36].Hence,measuringitonthelinear-chainandsnakepaths,wecandetectthetransitionsbetweenDH,OPLD,SH,andRD,asisshowninFig.5.Ifwespecifythetransitionthroughachangeoftheθdependenceinthevicinityofθ=π,thatis,thechangefromthecon-vexcurvetotheconcaveone,weobtainthetransi-tionpoints(δOP,r)=(0.245,0)and(0.6,2.125),whichareingoodagreementwiththenumerical ndingsinFig.1(b).WhateverpathwetakeforO(θ),itspeakneversitsonθ=πinthein-phase-legregion,sug-gestingthatwecannotobservetheHaldanestateofanykindthere.TheplaquettesingletformationcaninsteadbevisualizedbyextendingO(θ)toladdersas

j 1

zzzzzz

lim|i j|→∞ S1S,i2,il=iexp[iθ(S1,l+S2,l)]S1,jS2,j [25].

0.5

[2]

[3]

[4][5][6][7][8][9]

r= 0.00.4δ=OP0.30.20.10.00.27

δOP= 0.6

r =2.62.4

[10][11][12][13]

0.250.262.152.2

(a)O θ ) ( (b)O ( ) θ

FIG.5.QuantumMonteCarloestimatesofthegeneralized

stringorderparameterde nedonthelinear-chain(a)andsnake(b)paths.Thedashedlinesrepresenttheanalyticcal-culationsfortheAKLTVBS(4)anddecoupleddimers24(

[14]

[15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31]

[1]F.D.M.Haldane:Phys.Lett.93A(1983)464;Phys.

[32]

Rev.Lett.50(1983)1153.

J.P.Renard,M.Verdaguer,L.P.Regnault,W.A.C.Erkelens,J.Rossat-MignodandW.G.Stirling:Euro-phys.Lett.3(1987)945.

I.A eck,T.Kennedy,E.H.LiebandH.Tasaki:Phys.Rev.Lett.59(1987)799;Commun.Math.Phys.115(1988)477.

M.Hase,I.TerasakiandK.Uchinokura:Phys.Rev.Lett.70(1993)3651.

M.Oshikawa,M.YamanakaandI.A eck:Phys.Rev.Lett.78(1997)1984.

S.YamamotoandT.Fukui:Phys.Rev.B57(1998)R14008.

E.Dagotto,J.RieraandD.Scalapino:Phys.Rev.B45(1992)R5744.

M.Azuma,Z.Hiroi,M.Takano,K.IshidaandY.Ki-taoka:Phys.Rev.Lett.73(1994)3463.

M.Uehara,T.Nagata,J.Akimitsu,H.Takahashi,N.M oriandK.Kinoshita:J.Phys.Soc.Jpn.65(1996)2764.

E.DagottoandT.M.Rice:Science271(1996)618.C.A.Hayward,D.PoilblancandL.P.L´evy:Phys.Rev.B54(1996)R12649.

ndee,M.M.Turnbull,C.Galeriu,J.GiantsidisandF.M.Woodward:Phys.Rev.B63(2001)R100402.K.Katoh,Y.Hosokoshi,K.InoueandT.Goto:J.Phys.Soc.Jpn.69(2000)1008.

Y.Hosokoshi,Y.Nakazawa,K.Inoue,K.Takizawa,H.Nakano,M.TakahashiandT.Goto:Phys.Rev.B60(1999)12924.

Y.Hosokoshi,K.Katoh,Y.Nakazawa,H.NakanoandK.Inoue:tobepublishedinJ.Am.Chem.Soc..G.Sierra:J.Phys.A:Math.Gen.29(1996)3299.

I.A eck:Nucl.Phys.B257(1985)397;B265(1986)409.

R.S.Eccleston,T.Barnes,J.BrodyandJ.W.Johnson:Phys.Rev.Lett.73(1994)2626.

M.A.Martin-Delgado,R.ShankarandG.Sierra:Phys.Rev.Lett.77(1996)3443.

T.FukuiandN.Kawakami:Phys.Rev.B57(1998)ngari,M.AbolfathandM.A.Martin-Delgado:Phys.Rev.B61(2000)343.

A.ParolaandS.SorellaandQ.F.Zhong:Phys.Rev.Lett.71(1993)4393.

S.R.White,R.M.NoackandD.J.Scalapino:Phys.Rev.Lett.73(1994)886.

B.Frischmuth,B.AmmonandM.Troyer:Phys.Rev.B54(1996)R3714.

S.Todo,M.Matsumoto,C.YasudaandH.Takayama:cond-mat/0107115.

P.W.Anderson:Science235(1987)1196.

T.M.Rice,S.GopalanandM.Sigrist:Europhys.Lett.23(1993)445.

T.SakaiandS.Yamamoto:Phys.Rev.B60(1999)4053.M.P.Nightingale:PhysicaA83(1976)561.

K.NomuraandK.Okamoto:J.Phys.A:Math.Gen.27(1994)5773.

S.Yamamoto:Phys.Rev.B51(1995)16128;52(1995)10170.

A.Kitazawa:J.Phys.A:Math.Gen.30(1997)L285.

4

In response to recent chemical attempts to construct higher-spin ladder materials from organic polyradicals, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Employing various numerical tools, we reveal the rich pha

[33]R.R.P.Singh,M.P.GelfandandD.A.Huse:Phys.

Rev.Lett.61(1988)2484.

[34]A.KogaandN.Kawakami:Phys.Rev.61(2000)6133.[35]A.J.Guttmann:PhaseTransitionsandCriticalPhe-nomena,ed.C.DombandJ.L.Lebowitz(Academic,NewYork,1989)Vol.13.

[36]S.Yamamoto:Phys.Rev.B55(1997)3603.

[37]M.Oshikawa:J.Phys.:Condens.Matter4(1992)7469.[38]M.Hagiwara,Y.Narumi,K.Kindo,H.Nakano,R.Sato

andM.Takahashi:Phys.Rev.Lett.80(1998)1312.

5

本文来源:https://www.bwwdw.com/article/mxm1.html

Top