沪科版八年级数学下册全册综合检测卷

更新时间:2023-06-11 01:20:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

沪科版八年级数学下册全册综合检测卷

一、选择题(每题4分,共40分)

1.下列运算正确的是( )

A.√3+√3=√6

B.√

3-√2=1 C.2+√3=2√3 D.√2÷√1

2

=2

2.把方程x2-4x-1=0化成(x+m)2=n的形式,则( )

A.m=2,n=-5

B.m=-2,n=5

C.m=2,n=5

D.m=-2,n=-5

3.下列二次根式中,能与√3合并的是( )

A.√18

B.√8

C.-√12

D.√24

4. 已知一个多边形的内角和是1 080°,则这个多边形的边数是( )

A.8

B.7

C.6

D.5

5.八(1)班45名同学一天的生活费统计如下表:

生活费/元1015202530

学生人数3915126

则这45名同学一天的生活费的平均数是( )

A.15元

B.20元

C.21元

D.25元

6.若x=2 是关于x的方程x2-(m-1)x+m+2=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两边长,则△ABC的周长是( )

A.7或10

B.9或12

C.12

D.7

7.如图,已知菱形ABCD的周长为24,对角线AC,BD交于点O,且AC+BD=16,则该菱形的面积等于( )

A.6

B.8

C.14

D.28

1

2 8.如图,一个由传感器控制的灯,装在门上方离地面高4.5 m 的墙上(门的厚度忽略不计),任何东西只要移至该灯5 m 及5 m 以内,灯就会自动发光.请问一名身高1.5 m 的学生要走到离门多远的地方灯刚好发光?

( )

A.4 m

B.3 m

C.5 m

D.7 m

9. 已知四边形ABCD 是平行四边形,下列条件中,能证得四边形BFDE 是平行四边形的条件的个数是 ( ) ①如图1,DE ⊥AC,BF ⊥AC;②如图2,DE 平分∠ADC,BF 平分∠ABC;③如图3,E 是AB 的中点,F 是CD 的中点;④如图4,E 是AB 上一点,EF ⊥AB.

A.1

B.2

C.3

D.4

10.如图,AD 为△ABC 的高,∠B=2∠C,M 为BC 的中点,若AB=8,则DM 的长为 ( )

A.8

B.4

C.2

D.1

二、填空题(每题5分,共20分)

11.

若1

2x -1在实数范围内有意义,则x 的取值范围是 .

12.有一组数据如下:3,a,4,6,7.如果它们的平均数是5,那么这组数据的方差是 .

3 13.我国古代数学著作《增删算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池,丈量田地待耕犁,恰好三分在记,池面至周有数,每边三步无疑,内方圆径若能知,堪作算中第一.”其大意:有一块圆形的田,正中间有一块正方形水池,测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远.若设正方形的边长是x 步,则可列方程为 .

14.直线l 1∥l 2∥l 3,正方形ABCD 的三个顶点A,B,C 分别在l 1,l 2,l 3上,l 1与l 2之间的距离是2,l 2与l 3之间的距离是4,则正方形ABCD 的面积是 .

三、解答题(共90分)

15.(8分)计算:

(1)√48-4√18-(√273-5√0.5); (2)(√54-2√18)×√2+(3-√3)2+√(-3)2.

16.(8分)解下列方程:

(1)2(x-3)2=x 2

-9; (2)(x+1)(x-1)+2(x-3)=0.

4 17.(8分)如图,在矩形纸片ABCD 中,AB=8 cm.把矩形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F,AF=254

cm,求AD 的长.

18.(8分)如图,在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB,ED.

(1)判断EB 与ED 的关系?并证明.

(2)延长BE 交AD 于F,当∠BED=120°时,求∠EFD 的度数.

19.(10分)已知关于x 的一元二次方程x 2-(2m-2)x+(m 2

-2m)=0.

(1)求证:方程有两个不相等的实数根.

(2)如果方程的两实数根为x 1,x 2,且x 12+x 22=10,求m 的值

.

20.(10分)阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集20株西红柿秧上小西红柿的个数:

32,39,45,55,60,54,60,28,56,41,

51,36,44,46,40,53,37,47,45,46.

(1)前10株西红柿秧上小西红柿个数的平均数是,中位数是,众数是;

(2)若将这20个数据按组距为8进行分组,请补全频数分布表及频数直方图;

(3)通过频数直方图试分析此大棚中西红柿的长势.

分组28≤x<3636≤x<4444≤x<5252≤x<6060≤x<68

频数22

5

6

21.(12分)某数学兴趣小组课外活动时,发现特殊四边形的边长与对角线存在一定的关系.

如图1,在正方形ABCD 中,对角线AC,BD 交于点O,则AB 2+BC 2=AC 2

.

如图2,在矩形ABCD 中,对角线AC,BD 交于点O,则AB 2+BC 2=AC 2.

(1)如图3,在菱形ABCD 中,对角线AC,BD 交于点O,则AB 2+BC 2= AC 2+ BD 2;

(2)小华通过几何画板度量计算,发现在平行四边形ABCD 中,如图4,对角线AC,BD 交于点O,得到的结论和

(1)的结论一样,小伟和小红通过添加如图4的辅助线BE 证明了这个结论的正确性,请利用图形完成证明.

图1 图2 图3 图4

22.(12分)HW 公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.

(1)求2018年甲类芯片的产量

;

(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年HW公司的手机产量比2018年全年的手机产量多10%.求2020年丙类芯片的产量及m的值.

23.(14分)如图,在?ABCD中,G,H分别是AD,BC的中点,E,O,F分别是对角线BD上的四等分点,顺次连接G,E,H,F.

(1)求证:四边形GEHF是平行四边形.

(2)当?ABCD满足什么条件时,四边形GEHF是菱形?请说明理由.

(3)若BD=2AB.

①探究四边形GEHF的形状,并说明理由;

②当AB=2,∠ABD=120°时,求四边形GEHF的面积.

7

答案

题号 1 2 3 4 5 6 7 8 9 10

答案 D B C A C C D A C B

11.x>1

212.2 13.π(x

2

+3)2-x2=72

14.20

15. (1)√48-4√1

8-(√27

3

-5√0.5)

=4√3-√2-√3+5√2

2

=3√3+3√2

2

.

(2)(√54-2√18)×√2+(3-√3)2+√(-3)2

=(3√6-6√2)×√2+9-6√3+3+3

=6√3-12-6√3+15

=3.

16.(1)将原方程化为一般方程,得x2-12x+27=0, 把方程左边分解因式,得(x-3)(x-9)=0,

∴x-3=0或x-9=0,

解得x1=3,x2=9.

(2)将原方程化为一般方程,得x2+2x-7=0,

b2-4ac=22-4×(-7)=32>0,

代入求根公式,得x=-2±√32

2×1=-2±4√2

2

=-1±2√2.

8

9 ∴x 1=-1+2√2,x 2=-1-2√2.

17.由题意知∠EAC=∠BAC=∠FCA,所以AF=CF,

所以DF=CD-CF=CD-AF=AB-AF=8-254=74

(cm). 在Rt △ADF 中,由勾股定理,得AD 2=AF 2-DF 2=36,

所以AD=6 cm.

18.(1)EB=ED.证明如下:

在正方形ABCD 中,AB=AD,∠BAC=∠DAC=45°,

在△ABE 和△ADE 中,{AB =AD,

∠BAE =∠DAE,AE =AE,

∴△ABE ≌△ADE(SAS),∴EB=ED.

(2)由(1)知△ABE ≌△ADE,∴∠AEB=∠AED,∴∠BEC=∠DEC, ∵∠BED=120°,∴∠BEC=∠DEC=60°,

∵∠AEF=∠BEC=60°,∠EAD=45°,

∴∠EFD=60°+45°=105°.

19.(1)∵Δ=[-(2m-2)]2-4(m 2

-2m)=4>0,

∴该方程有两个不相等的实数根.

(2)由一元二次方程根与系数的关系,

得x 1+x 2=2m-2,x 1x 2=m 2-2m.

∵x 12+x 22=10,∴(x 1+x 2)2-2x 1x 2=10, 即(2m-2)2-2(m 2

-2m)=10,

化简,得m 2-2m-3=0,

10 解得m 1=3,m 2=-1,

∴m 的值为3或-1.

20.(1)47 49.5 60

前10株秧上小西红柿个数的平均数x =(32+39+45+55+60+54+60+28+56+41)÷10=47;

把这些数据从小到大排列得28,32,39,41,45,54,55,56,60,60,

所以中位数是(45+54)÷2=49.5;

60出现了2次,出现的次数最多,故众数是60.

(2)补全的频数分布表及频数直方图如下:

分组 28≤x<36 36≤x<44 44≤x<52 52≤x<60 60≤x<68

频数 2 5 7 4 2

(3)此大棚中西红柿的长势普遍较好,每株最少有28个小西红柿;西红柿个数最集中的株数在第三组,共7株.(答案不唯一)

21.(1)12 12

∵在菱形ABCD 中,对角线AC,BD 交于点O,

∴AO=CO=12AC,OB=OD=12

BD,AC ⊥BD, ∴AB 2+BC 2=OA 2+OB 2+OB 2+OC 2=(12AC)2+(12BD)2+(12BD)2+(12AC)2=12AC 2+12BD 2

. (2)∵四边形ABCD 是平行四边形

,

∴AO=CO,BO=DO.

在Rt△AEB中,AB2=AE2+BE2,

在Rt△BEC中,BC2=EC2+BE2,

∴AB2+BC2=AE2+EC2+2BE2.

在Rt△OBE中,BE2=BO2-OE2,

∴AB2+BC2=AE2+EC2+2(BO2-OE2)

=AE2-OE2+EC2-OE2+2BO2

=(AE+OE)(AE-OE)+(CE+OE)(CE-OE)+2BO2 =AO(AE+OE)+CO(CE-OE)+2BO2

=AO(AE+OE+CE-OE)+2BO2

=AO·AC+2BO2

=1 2AC2+1

2

BD2.

22.(1)设2018年甲类芯片的产量为x万块,

则x+2x+(x+2x)+400=2 800,

解得x=400.

故2018年甲类芯片的产量为400万块.

(2)2018年丙类芯片的产量为3x+400=1 600(万块).

设丙类芯片的产量每年增加的数量为y万块,

则1 600+1 600+y+1 600+2y=14 400,

解得y=3 200,

故2020年丙类芯片的产量为1 600+2×3 200=8 000(万块).

11

2018年HW公司的手机产量为2 800÷10%=28 000(万部). 400(1+m%)2+2×400(1+m%-1)2+8 000=28 000×(1+10%),

令m%=t,化简得,3t2+2t-56=0,

即(3t+14)(t-4)=0,

(不合题意,舍去)或t=4,

解得t=-14

3

∴m%=4,即m=400.

23.(1)如图1,连接AC.

∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.

∵E,O,F分别是对角线BD上的四等分点,

∴E,F分别为OB,OD的中点,

∵G是AD的中点,

∴GF为△AOD的中位线,

∴GF∥OA,GF=1

OA,

2

OC,

同理EH∥OC,EH=1

2

∴EH∥GF,EH=GF,

∴四边形GEHF是平行四边形.

(2)当?ABCD满足AB⊥BD时,四边形GEHF是菱形.理由如下: 如图2,连接AC,GH,

∵四边形ABCD是平行四边形,G,H分别是AD,BC的中点,

∴AG=BH,AG∥BH,

∴四边形ABHG是平行四边形,∴AB∥GH,

12

∵AB⊥BD,∴GH⊥BD,即GH⊥EF,

又∵四边形GEHF是平行四边形,∴四边形GEHF是菱形.

(3)①四边形GEHF是矩形.理由如下:

由(2)得,四边形ABHG是平行四边形,∴GH=AB,

∵BD=2AB,∴AB=1

2

BD=EF,∴GH=EF,

∴四边形GEHF是矩形.

②如图3,过点A作AM⊥BD,交DB的延长线于M,过点G作GN⊥BD于N, 则AM∥GN.

∵G是AD的中点,

∴GN是△ADM的中位线,∴GN=1

2

AM.

∵∠ABD=120°,∴∠ABM=60°,∴∠BAM=30°,

∴BM=1

2AB=1,∴AM=√3,∴GN=√3

2

.

∵BD=2AB=4,∴EF=1

2

BD=2,

∴△EFG的面积=1

2EF×GN=1

2

×2×√3

2

=√3

2

,

∴四边形GEHF的面积=2△EFG的面积=√3.

13

14

本文来源:https://www.bwwdw.com/article/mwx1.html

Top