Synthesis of ZnO nanoparticles from microemulsions in a flow type microreactor

更新时间:2023-05-14 04:46:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

SynthesisofZnOnanoparticlesfrommicroemulsionsina owtype

microreactor

articleinfoabstract

Zincoxide(ZnO)nanoparticlesweresynthesizedfrommicroemulsionsinamicrochannelreactorsystem.Themicroemulsionsprovidecon nedspaceforthereactants,whichisfavorableforcontrollablereactionandnucleation,thusavoidingtheformationoflargeparticles.Inaddition,themicroemulsionspreventthedepositionofZnOparticlesonthewallofthemicrochannelsofthereactor.ThreeZn2+sources(Zn(NO3)2,ZnSO4,andZnCl2)weretestedinthesynthesisofZnOnanoparticles.Amongthem,Zn(NO3)2showedbestperformance,yieldingZnOparticleswiththesmallestaveragegrainsize.TheeffectsofZn2+concentration,reactiontemperature,andfeed owrateontheaverageparticlesizeofZnOnanoparticleswereinvestigated.Atoptimalconditions,ZnOnanoparticleswithaveragesizeof16nmwereobtained.ThesynthesizedZnOnanoparticleswerecharacterizedbyscanningelectronmicroscope(SEM),X-raydif-fraction(XRD),UV–visabsorptionspectroscopy,andalaserparticlesizeanalyzer.

Ó2013ElsevierB.V.Allrightsreserved.

Articlehistory:

Received26April2013

Receivedinrevisedform27August2013Accepted4September2013

Availableonline12September2013Keywords:

MicrochannelreactorMicroemulsionZincoxideNanoparticle

1.Introduction

ZnOisanimportantsemiconductormaterialwithextensiveapplicationsinelectronics,photoelectronics,sensors,andopticaldevices[1–4].ThephysicalpropertiesofZnOnanoparticlesarestronglydependentontheparticledimensions,includingmorphol-ogyandgrainsizedistribution.Twotypesofsyntheticapproaches,vapor-phasesynthesisandsolution-phasesynthesis,havebeendevelopedtofabricateZnOnanoparticles.Thevapor-phaseap-proaches,suchasvapor–liquid–solidgrowth[5],chemicalvapordeposition[6],thermaldecomposition[7],andthermalevapora-tion[8],havetheadvantageofsimpleoperationandhigh-qualityproducts,butgenerallyrequirehightemperaturesandexpensiveCorrespondingauthor.Address:SchoolofChemicalEngineering,Dalian

UniversityofTechnology,Dalian116024,PRChina.Tel.:+8641184986121.

E-mailaddress:wangyao@(Y.Wang).1385-8947/$-seefrontmatterÓ2013ElsevierB.V.Allrightsreserved./10.1016/j.cej.2013.09.020

equipments.Solution-phaseapproachesaremorepromisingduetothelowreactiontemperature,lowcost,andhighef ciency.However,inthelaterapproach,ZnO owersandwhiskerswithlargesize(>100nm)areoftenobtained,andthesubsequentsedi-mentationorcalcinationleadstotheaggregationofZnOparticles.Inaddition,thesynthesisinabatchreactorisnoteffectiveinalargescaleproduction.Therefore,newmethodswhichfacilitatethenucleation,growth,andparticlesizedistributionin

thesynthe-sisofZnOnanoparticlesarehighlydesirable[9].

Themicroemulsionhasfoundgreatapplicationsinthesynthe-sisofnanomaterials[10–12].Inthemicroemulsionapproach,thereactantsinaqueoussolutionarecon nedintheextremelysmalldroplets,inwhichauniformnucleationoccurs.Additionally,the

microemulsionhelpstocontrolthesizeandshapeoftheparticles,preventingthenanoparticlesfromaggregation.Nevertheless,themicroemulsionmethodsuffersfromlowyieldofnanoparticlesandthedif cultyofde-emulsi cation.Asaconsequence,the

reactorperformanceisgenerallylowwhenthesynthesistakesplaceinabatchreactor.

Recently,microchannelreactorshavebeenutilizedforproduc-ingnano-sizedparticles,includingmetalsandalloys[13–18],me-talsalts[19,20],metaloxides[21],polymers[22],mesoporousmaterials[23],andzeolites[24].The owtypemicrochannelreac-torsareabletointensifythemassandheattransfersaswellasthemixing.Thehighsurface-to-volumeratiointhemicrochannelreactorsisfavorabletoenhancetheresponsetimeandmaintainisothermalconditions.Becausetheconcentrationsofreactantsandtemperaturearehomogeneousinthereactionzone,theob-tainedparticlesareuniformandreproducible.

Whenasinglephaseisinvolved,thevelocitydistributioninamicrochannelissubstantiallybroadenedalongthe owdirection.Guntheretal.[25]comparedthewellmixingef ciencychaoticmixerwithaliquid–liquidtwophasemixer,andfoundthat,whenthe uidwasmixedcompletely(P95%),thelengthofthechannelrequiredforthetwo-phase owwas2–3timesshorterthanforthesingle-phase ow.Thecomputational uiddynamics(CFD)simula-tionsindicatethattheenhancementofmasstransfercanbeinter-pretedintermsofaninternalcirculation owwithintheplugs.Asaconsequence,narrowparticlesizedistributioncouldbeobtainedinthesynthesisofnanoparticlesduetotheenhancedmixingandthenarrowresidencetimedistributioninthesegmentedliquid–li-quid ow[26].Anotherimportantissueinthesynthesisofsolidmaterialsinamicrochannelisthattheformedparticlesmaynucle-ateanddepositonthemicrochannelwalls,leadingtorunaway

Inthepresentpaper,ZnOnanoparticlesweresynthesizedbymixingtheZn2+-containingwater-in-oilmicroemulsionwiththeNaOH-containingoneinamicromixerfollowedbysubsequentreactionintherelaytube(Fig.1).Thesynthesisconditionswereoptimized,andtheobtainedZnOnanoparticleswerecharacterized.2.Experimental2.1.Synthesis

Allofthechemicalswereofanalyticalgrade,andusedwithoutfurtherpuri cation(TianjinKermelChemicalReagentCo.Ltd.).De-ionizedwaterwasobtainedfromawaterpuri cationsystem.Themicroemulsionswerepreparedinthefollowingway.N-butanol,cetyltrimethylammoniumbromide(CTAB),andn-octaneweremixedatamassratioof1.0:1.2:4.4toformanorganicphase.CTABservedasthesurfactant,whereasn-butanolastheco-surfac-tant.AnaqueoussolutionofZn2+(Zn(NO3)2,ZnSO4,andZnCl2)werepreparedbydissolvingthesaltinwaterunderstirring.ThesolutionofNaOHwaspreparedinasimilarway.Themicroemul-sionofZn2+(denotedasM(Zn2+))wereobtainedbyaddingtheaqueoussolutionofZn2+intotheaboveorganicphaseundervigor-ousstirringwithanaqueousmassfractionof15%,andthemixturewasstirreduntilitbecametransparent.ThemicroemulsionofNaOH(denotedasM(NaOH))waspreparedbythesameprocedurewiththesameaqueousmassfraction.

nedspace.Therefore,thesynthesisreactionwillterminatewhennoZn2+sourceisavailable,thusmakingthefastreactioncontrolla-bleandpreventingtheformationofsubstantiallylargerparticles.Anotherfavorableadvantageofthisapproachisthattheresultantprecipitatesareentrappedinthedroplet,whichisdispersedintheorganicphase,thusavoidingthedepositionofsolidproductonthemicrochannelwalls.

3.1.EffectofZn2+source

ThreeZn2+sourceswereusedintheinvestigationandthesyn-thesiswasconductedunderthefollowingconditions:50°C,2.0MPa,feed owrate2.0mL/min,respectively,NaOH

Journal235(2014)191–197

concentration1.0mol/L,Zn2+concentration0.5mol/L.Fig.5showstheXRDpatternsoftheZnOnanoparticlessynthesizedfromZnSO4,Zn(NO3)2,andZnCl2,respectively.Onlythediffractionpeakschar-acteristicofhexagonalZnOstructurewereobserved,indicatingthatpureZnOcrystalswereobtainedfromthedifferentZn2+sources.Theparticlediameter(D)wascalculatedaccordingtotheDebye–Scherrerequation(D=0.89k/bcosh).Itisfoundthatthecrystallitesizeswere13.0,27.0,and10.4nmforZnCl2,ZnSO4,andZn(NO3)2,respectively.ItsuggeststhattheZn2+sourcemark-edlyaffectstheformationandcrystallizationofZn(OH)2inthemicroreactorsystem.Amongthem,Zn(NO3)2wasthemostsuitable

2+3.2.EffectofZn2+concentration

IntheprecipitationofZn(OH)2,thereactionratedependsonboththeZn2+concentrationandreactiontemperaturefromtheviewpointofreactionkinetics.TheeffectsofZn2+concentrationwereinvestigatedinthesynthesisofZnOnanoparticlesfromZnSO4andZn(NO3)2.Thereactionconditionswereasfollows:feed owratesofM(Zn2+)andM(NaOH),2.0mL/min,respectively;tem-perature,50°C;NaOH/Zn2+molarratio,2.0;pressure,2.0MPa.TheZn2+concentrationwasvariedintherangeof0.3–0.8mol/L.Fig.6illustratestheXRDpatternsofZnOnanoparticlessynthesizedatvariousconcentrationsofZnSO4andZn(NO3)2.Onlyhexagonalcrystallinephasewasdetectableineachsample,regardlessoftheZn2+sourcesandtheirconcentrations.Thedependenceoftheaver-ageparticlesizeontheZn2+sourceandconcentrationisillustratedinFig.7.AsshowninFig.5,theZn2+sourcesigni cantlyaffectedtheparticlesizeoftheobtainedZnOnanoparticles.TheaveragesizesofZnOnanoparticlessynthesizedfromZnSO4were1.2–1.3timesthoseofthenanoparticlesfromZn(NO3)2atthesameZn2+concentrations.Thedifferencemayrelatetothedifferentratecon-stantsofZnSO4andZn(NO3)2withNaOH.Becausetheanionva-lenceofSO2À

ishigherthanthatofNOÀ43,theionicstrengthof

SO2À4

islarger,resultinginadeclineinZn2+activityofZnSO4.ItisindicatedthattheaveragesizeofZnOnanoparticlesalsodependedontheZn2+concentration,decreasingwithincreasingtheZn2+con-centrationforbothZnSO4andZn(NO3)2.Accordingtothecrystalli-zationkinetics[29],thecrystalaveragesize(D)andnucleationrate(B)aredeterminedby:

4EsVmRTlnS

ð1Þ

"

B¼ZÀ16p

E32

#

cexp

sVmNað2Þ

Y. Wang et al./ Chemical Engineering Journal 235 (2014) 191–197

195

more quickly established and the supersaturation degree is higher, leading to faster nucleation and smaller particle size. 3.3. Effect of temperature Zn(NO3)2 was used as the Zn2+ source, and the concentrations of Zn(NO3)2 and NaOH were 0.5 and 1.0 mol/L, respectively. The synthesis was conducted at a ow rate of 2.0 mL/min and various temperatures (40, 50, 60, and 70°C). It is known that high temperature may lead to de-emulsi cation. To ensure that no de-emulsi cation occurred in the temperature range, M(NaOH) and M(Zn(NO3)2) were fed separately into the microreactor system at the same owrate as in the synthesis runs. No de-emulsi cation of either M(NaOH) and M(Zn(NO3)2) was observed, indicating that both microemulsions were stable under the synthesis conditions. The XRD patterns of ZnO nanoparticles synthesized at different temperatures are shown in Fig. 8. Pure ZnO nanocrystals were obtained in the temperature range investigated. Fig. 9 displays the variation of the average particle size with reaction temperature. A minimum average particle size (10.4 nm) was observed at 50°C when increasing the reaction temperature from 40 to 70°C. At low temperatures, the formation rate of the precipitated precursor was low, and thus the supersaturation degree was low, which was unfavorable to the nucleation but favorable to the growth of the

particles. Although the formation rate of the precipitates was accelerated at high temperatures, the nucleation rate might not be signi cantly increased due to the reduced saturation degree. On the other hand, the growth of the particles might

be enhanced at high temperatures, leading to larger Zn(OH)2 nanoparticles.

Fig. 10. The average size of ZnO particles as a function of feed ow rate in the synthesis from Zn(NO3)2 at 50°C.

Fig. 8. XRD patterns of ZnO nanoparticles synthesized at different temperatures.

Fig. 9. The average size of ZnO particles synthesized at different temperatures.

Fig. 11. SEM images of ZnO particles synthesized in the microreactor (a) and in the batch reactor (b).

3.4.Effectoffeed owrate

Zn(NO3)2wasusedastheZn2+source,andtheconcentrationsofZn(NO3)2andNaOHwere0.5and1.0mol/L,respectively.Thesyn-thesisreactionwasconductedat50°Cand2.0MPa,andthefeed owratewasvariedfrom2.0to6.0mL/min.ThevariationoftheaveragesizeofZnOnanoparticleswiththefeed owrateisshowninFig.10.TheaverageparticlesizeofZnOdidnotchangemarkedlywithfeed owrate.Atlow owrates(2.0–4.0mL/min),theaver-ageparticlesizewasreducedslightlywiththefeed owrate.Atlow owrates,theincreasedresidencetimeallowedforthecom-pletionofbothsynthesisreactionandcrystallizationinthereac-tionsystem.Athigh owrates,theresidencetimewasprobablylongenoughforthecompletionofsynthesisreaction,because

theobtainedZnOnanoparticleswascomparedwiththoseoftheparticlessynthesizedinthemicroreatorandinthebatchreactor(Fig.12).Itisapparentthatthemicromixersigni cantlyreducedtheparticlesizeandimprovedthesizedistributionofZnOnanoparticles.4.Conclusions

ZnOnanoparticlessynthesizedfrommicroemulsionsinacon-tinuousmicroreactorweresmalleringrainsizeandmorenarrowlydistributedthanthoseinabatchreactor.Themicroemulsionspro-videcon nedspaceforthereactants,whichisfavorableforcon-trollablereactionandnucleation,avoidingtheformationoflargeparticles.Inaddition,themicroemulsionspreventthedepositionofZnOparticlesonthewallofthemicrochannelsofthereactor,

Y.Wangetal./ChemicalEngineeringJournal235(2014)191–197197

andnocloggingofthemicrochannelsoccurredintheinvestigation.ThreeZn2+sources(Zn(NO3)2,ZnSO4,andZnCl2)weretestedinthesynthesisofZnOnanoparticles.ItisfoundthatZn(NO3)2showedbestperformanceinthesynthesis.BothZn2+concentrationandreactiontemperaturesigni cantlyaffectedtheaverageparticlesizesofthesynthesizedZnOnanoparticles,probablyduetotheireffectsonthekineticsofthesynthesisreactionandnucleation.TheaverageparticlesizewasreducedwithincreasingtheZn2+concentration,whereasaminimumaverageparticlesizewasob-served50°Cwhenthereactiontemperaturewasincreasedfrom40to70°C.Thefeed owratedidnotaffectconsiderablytheaver-ageparticlesizeofZnOnanoparticles.However,athigh owrates,largerparticleswereobtained,probablybecausethecrystallizationmightcontinueafterthedropletshadleftthereactionsystem.Thismayimplythatthecrystallizationstepwasslowerthatthesynthe-sisreaction.Acknowledgments

Thisworkwas nanciallysupportedbyNSFC(20773020,20973030,21173033,U1162203),the‘‘863’’Project(2008AA030803),NCET(04-0275),ThePh.D.ProgramsFoundation(MOE,20100041110016),andthe‘‘111’’Project.References

[1]Y.N.Xia,P.D.Yang,Y.G.Sun,Y.Y.Wu,B.Mayers,B.Gates,Y.D.Yin,F.Kim,H.Q.

Yan,One-dimensionalnanostructures:synthesis,characterization,andapplications,Adv.Mater.15(2003)353–389.

[2]P.X.Gao,Z.L.Wang,Mesoporouspolyhedralcagesandshellsformedby

texturedself-assemblyofZnOnanocrystals,J.Am.Chem.Soc.125(2003)11299–11305.

[3]X.D.Wang,C.J.Summers,Z.L.Wang,Large-scalehexagonal-patternedgrowth

ofalignedZnOnanorodsfornano-optoelectronicsandnanosensorarrays,NanoLett.4(2004)423–426.

[4]A.Moezzi,A.M.McDonagh,M.B.Cortie,Zincoxideparticles:synthesis,

propertiesandapplications,Chem.Eng.J.185–186(2012)1–22.

[5]P.Yang,H.Yan,S.Mao,R.Russo,J.Johnson,R.Saykally,N.Morris,H.J.Choi,

ControlledgrowthofZnOnanowiresandtheiropticalproperties,Adv.Funct.Mater.12(2002)323–331.

[6]W.I.Park,D.H.Kim,Metalorganicvapor-phaseepitaxialgrowthofvertically

well-alignedZnOnanorods,Appl.Phys.Lett.80(2002)4232–4234.

[7]C.K.Xu,G.D.Xu,Y.K.Liu,G.H.Wang,Asimpleandnovelrouteforthe

preparationofZnOnanorods,SolidStateCommun.122(2002)175–179.

[8]B.D.Yao,Y.F.Chan,N.Wang,FormationofZnOnanostructuresbyasimpleway

ofthermalevaporation,Appl.Phys.Lett.81(2002)757–759.

[9]P.G.McCormick,T.Tsuzuki,Recentdevelopmentsinmechanochemical

nanoparticlesynthesis,Mater.Sci.Forum.386-388(2002)377–386.

[10]M.Boutonnet,J.Kizling,P.Stenius,G.Maire,Thepreparationofmonodisperse

colloidalmetalparticlesfrommicroemulsions,ColloidsSurf.5(1982)209–225.

[11]J.Eastoe,M.J.Hollamby,L.Hudson,Recentadvancesinnanoparticlessynthesis

withreversedmicelles,Adv.ColloidInterfaceSci.128(2006)5–15.

[12]C.M.Bender,J.M.Burlitch,D.Barber,C.Pollock,Synthesisand uorescenceof

neodymium-dopedbarium uoridenanoparticles,Chem.Mater.12(2000)1969–1976.

[13]D.V.RaviKumar,B.L.V.Prasad,A.A.Kulkarni,Segmented owsynthesisofAg

nanoparticlesinspiralmicroreactor:roleofcontinuousanddispersedphase,Chem.Eng.J.192(2012)357–368.

[14]C.Zeng,C.Wang,F.Wang,Y.Zhang,L.Zhang,Anovelvapor–liquidsegmented

owbasedonsolventpartialvaporizationinmicrostructuredreactorforcontinuoussynthesisofnickelnanoparticles,Chem.Eng.J.204–206(2012)48–53.

[15]J.Baumgard,A.-M.Vogt,U.Kragl,K.Jähnisch,N.Steinfeldt,Applicationof

microstructureddevicesforcontinuoussynthesisoftailoredplatinumnanoparticles,Chem.Eng.J.227(2013)137–144.

[16]J.Wagner,T.Kirner,G.Mayer,J.Albert,J.M.Köhler,Generationofmetal

nanoparticlesinamicrochannelreactor,Chem.Eng.J.101(2004)251–260.[17]L.Sun,W.Luan,Y.Shan,S.Tu,One-stepsynthesisofmonodisperseAu–Ag

alloynanoparticlesinamicroreactionsystem,Chem.Eng.J.189–190(2012)451–455.

[18]A.Knauer,A.Thete,S.Li,H.Romanus,A.Csáki,W.Fritzsche,J.M.Köhler,Au/

Ag/Audoubleshellnanoparticleswithnarrowsizedistributionobtainedbycontinuousmicrosegmented owsynthesis,Chem.Eng.J.166(2011)1164–1169.

[19]D.Jeevarathinam,A.K.Gupta,B.Pitchumani,R.Mohan,Effectofgasandliquid

owratesonthesizedistributionofbariumsulfatenanoparticlesprecipitatedinatwophase owcapillarymicroreactor,Chem.Eng.J.173(2011)607–611.[20]L.Du,Y.J.Wang,Y.C.Lu,G.S.Luo,Preparationofhighlypuri edb-tricalcium

phosphateceramicswithamicrodispersionprocess,Chem.Eng.J.221(2013)55–61.

[21]S.Li,S.Meierott,J.M.Köhler,Effectofwatercontentongrowthandoptical

propertiesofZnOnanoparticlesgeneratedinbinarysolventmixturesbymicro-continuous owsynthesis,Chem.Eng.J.165(2010)958–965.

[22]A.K.Yadav,M.J.Barandiaran,J.C.delaCal,Synthesisofwater-bornepolymer

nanoparticlesinacontinuousmicroreactor,Chem.Eng.J.198–199(2012)191–200.

[23]X.Chen,M.Arruebo,K.L.Yeung,Flow-synthesisofmesoporoussilicasand

theiruseinthepreparationofmagneticcatalystsforKnoevenagelcondensationreactions,Catal.Today204(2013)140–147.

[24]L.Yu,Y.Pan,C.Wang,L.Zhang,Atwo-phasesegmentedmicro uidic

techniqueforone-stepcontinuousversatilepreparationofzeolites,Chem.Eng.J.219(2013)78–85.

[25]A.Günther,M.Jhunjhunwala,M.Thalmann,MartinA.Schmidt,KlavsF.Jensen,

Micromixingofmiscibleliquidsinsegmentedgas-liquid ow,Langmuir21(2005)1547–1555.

[26]N.Harries,J.R.Burns,D.A.Barrow,C.Ramshaw,Anumericalmodelfor

segmented owinamicroreactor,Int.J.HeatMassTransfer46(2003)3313–3322.

[27]N.Jongen,J.Lemairte,P.Bowen,H.Hofmann,Oxalateprecipitationusinga

newtubularplug- owreactor,in:Theproceedingsofthe5thworldcongressof,chemicalengineering,1996,pp.31–36.

[28]C.K.Srikanth,P.Jeevanandam,Effectofaniononthehomogeneous

precipitationofprecursorsandtheirdecompositiontozincoxide,J.AlloysCompd.486(2009)677–684.

[29]Y.T.Qian,IntroductiontoCrystalChemistry,UniversityofScienceand

TechnologyofChinaPress,Hefei,2005.

[30]X.M.Hou,F.Zhou,W.M.Liu,Afacilelow-costsynthesisofZnOnanorodsviaa

solid-statereactionatlowtemperature,Mater.Lett.60(2006)3786–3788.

本文来源:https://www.bwwdw.com/article/mw7e.html

微信扫码分享

《Synthesis of ZnO nanoparticles from microemulsions in a flow type microreactor.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文
范文搜索
下载文档
Top