中考数学考点过关专题训练:考点试题分类汇编(二)

更新时间:2024-07-06 02:30:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

中考数学考点过关专题训练:考点试题分类汇编(二)

(含详细解析)

目录

中考数学考点过关专题训练:考点21 全等三角形(含解析) 中考数学考点过关专题训练:考点22 勾股定理(含解析) 中考数学考点过关专题训练:考点23 多边形(含解析) 中考数学考点过关专题训练:考点24 平行四边形(含解析) 中考数学考点过关专题训练:考点25 矩形(含解析) 中考数学考点过关专题训练:考点26 正方形(含解析) 中考数学考点过关专题训练:考点27 菱形(含解析) 中考数学考点过关专题训练:考点28 圆的有关概念(含解析) 中考数学考点过关专题训练:考点29 与园有关的位置关系(含解析) 中考数学考点过关专题训练:考点30 切线的性质和判定(含解析) 中考数学考点过关专题训练:考点31 弧长和扇形面积(含解析) 中考数学考点过关专题训练:考点32 尺规作图(含解析) 中考数学考点过关专题训练:考点33 命题与证明(含解析) 中考数学考点过关专题训练:考点34 图形的对称(含解析) 中考数学考点过关专题训练:考点35 图形的平移和旋转(含解析) 中考数学考点过关专题训练:考点36 相似三角形(含解析)

中考数学考点过关专题训练:考点37 锐角三角函数和解直角三角形(含解析) 中考数学考点过关专题训练:考点38 投影与视图(含解析) 中考数学考点过关专题训练:考点39 统计初步(含解析) 中考数学考点过关专题训练:考点40 概率初步(含解析) 中考数学考点过关专题训练:考点41 数据的搜集与处理(含解析)

考点21 全等三角形

一.选择题(共9小题)

1.(安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )

A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD

【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.

【解答】解:∵AB=AC,∠A为公共角,

A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD; B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;

C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;

D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件. 故选:D.

2.(黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )

A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙

【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等. 【解答】解:乙和△ABC全等;理由如下:

在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS, 所以乙和△ABC全等;

在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS, 所以丙和△ABC全等;

不能判定甲与△ABC全等; 故选:B.

3.(河北)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )

A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BC C.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C

【分析】利用判断三角形全等的方法判断即可得出结论.

【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;

C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;

D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意, B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意; 故选:B.

4.(南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )

A.a+c B.b+c C.a﹣b+c D.a+b﹣c

【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c; 【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,

∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°, ∴∠A=∠C,∵AB=CD, ∴△ABF≌△CDE, ∴AF=CE=a,BF=DE=b, ∵EF=c,

∴AD=AF+DF=a+(b﹣c)=a+b﹣c, 故选:D.

5.(临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )

A. B.2 C.2 D.

【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.

【解答】解:∵BE⊥CE,AD⊥CE, ∴∠E=∠ADC=90°, ∴∠EBC+∠BCE=90°. ∵∠BCE+∠ACD=90°, ∴∠EBC=∠DCA. 在△CEB和△ADC中,

∴△CEB≌△ADC(AAS), ∴BE=DC=1,CE=AD=3. ∴DE=EC﹣CD=3﹣1=2 故选:B.

6.(台湾)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?( )

A.115 B.120 C.125 D.130

【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.

【解答】解:∵正三角形ACD, ∴AC=AD,∠ACD=∠ADC=∠CAD=60°, ∵AB=DE,BC=AE, ∴△ABC≌△AED,

∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE, ∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°, ∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°, 故选:C.

7.(成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )

A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC

【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.

【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;

B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误; C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;

D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误; 故选:C.

8.(黑龙江)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为( )

A.15 B.12.5 C.14.5 D.17

【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=

×5×5=12.5,即可得出结论.

【解答】解:如图,过A作AE⊥AC,交CB的延长线于E, ∵∠DAB=∠DCB=90°,

∴∠D+∠ABC=180°=∠ABE+∠ABC, ∴∠D=∠ABE,

又∵∠DAB=∠CAE=90°, ∴∠CAD=∠EAB, 又∵AD=AB, ∴△ACD≌△AEB,

∴AC=AE,即△ACE是等腰直角三角形, ∴四边形ABCD的面积与△ACE的面积相等, ∵S△ACE=

×5×5=12.5,

∴四边形ABCD的面积为12.5, 故选:B.

9.(绵阳)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE=

,AD=

,则两个三角形重叠部分的面积为( )

A. B.3 C. D.3

【分析】如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.想办法求出△AOB的面积.再求出OA与OB的比值即可解决问题;

【解答】解:如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.

∵∠ECD=∠ACB=90°, ∴∠ECA=∠DCB, ∵CE=CD,CA=CB, ∴△ECA≌△DCB, ∴∠E=∠CDB=45°,AE=BD=∵∠EDC=45°,

∴∠ADB=∠ADC+∠CDB=90°, 在Rt△ADB中,AB=∴AC=BC=2, ∴S△ABC=

×2×2=2,

=2

∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N, ∴OM=ON,

∵====,

∴S△AOC=2×故选:D.

=3﹣,

二.填空题(共4小题)

10.(金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是 AC=BC .

【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC. 【解答】解:添加AC=BC, ∵△ABC的两条高AD,BE, ∴∠ADC=∠BEC=90°,

∴∠DAC+∠C=90°,∠EBC+∠C=90°, ∴∠EBC=∠DAC, 在△ADC和△BEC中∴△ADC≌△BEC(AAS), 故答案为:AC=BC.

11.(衢州)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是 AB=ED (只需写一个,不添加辅助线).

【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF. 【解答】解:添加AB=ED, ∵BF=CE, ∴BF+FC=CE+FC, 即BC=EF, ∵AB∥DE, ∴∠B=∠E, 在△ABC和△DEF中∴△ABC≌△DEF(SAS), 故答案为:AB=ED.

12.(绍兴)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为 30°或110° .

【分析】分两种情形,利用全等三角形的性质即可解决问题; 【解答】解:如图,当点P在直线AB的右侧时.连接AP. ∵AB=AC,∠BAC=40°, ∴∠ABC=∠C=70°, ∵AB=AB,AC=PB,BC=PA, ∴△ABC≌△BAP, ∴∠ABP=∠BAC=40°, ∴∠PBC=∠ABC﹣∠ABP=30°,

当点P′在AB的左侧时,同法可得∠ABP′=40°, ∴∠P′BC=40°+70°=110°, 故答案为30°或110°.

13.(随州)如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断: ①AC垂直平分BD;

②四边形ABCD的面积S=AC?BD;

③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形; ④当A,B,C,D四点在同一个圆上时,该圆的半径为

⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为

其中正确的是 ①③④ .(写出所有正确判断的序号)

【分析】依据AB=AD=5,BC=CD,可得AC是线段BD的垂直平分线,故①正确;依据四边形ABCD的面积S=

,故②错误;依据AC=BD,可得顺次连接四边形ABCD的四边中点得到的四边形是正

方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=

,故④正确;连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,

×BD×OE=

×BE×DF,可得DF=

,进而得出EF=

AB=BE=5=AD=GD,BO=DO=4,依据S△BDE=再根据S△ABF=S梯形ABFD﹣S△ADF,即可得到h=

,故⑤错误.

【解答】解:∵在四边形ABCD中,AB=AD=5,BC=CD,

∴AC是线段BD的垂直平分线,故①正确; 四边形ABCD的面积S=

,故②错误;

当AC=BD时,顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确; 当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则 r2=(r﹣3)2+42, 得r=

,故④正确;

将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示, 连接AF,设点F到直线AB的距离为h,

由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4, ∴AO=EO=3, ∵S△BDE=∴DF=

×BD×OE=

=

×BE×DF,

∵BF⊥CD,BF∥AD, ∴AD⊥CD,EF=

∵S△ABF=S梯形ABFD﹣S△ADF, ∴

×5h=

(5+5+

)×

×5×

=

解得h=,故⑤错误;

故答案为:①③④.

三.解答题(共23小题)

14.(柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.

【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断. 【解答】证明:∵在△ABC和△EDC中,

∴△ABC≌△EDC(ASA).

15.(云南)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.

【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可. 【解答】证明:∵AC平分∠BAD, ∴∠BAC=∠DAC, 在△ABC和△ADC中,

∴△ABC≌△ADC.

16.(泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.

【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可; 【解答】证明:∵DA=BE,

∴DE=AB,

在△ABC和△DEF中,

∴△ABC≌△DEF(SSS), ∴∠C=∠F.

17.(衡阳)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE. (1)求证:△ABE≌△DCE; (2)当AB=5时,求CD的长.

【分析】(1)根据AE=DE,BE=CE,∠AEB和∠DEC是对顶角,利用SAS证明△AEB≌△DEC即可. (2)根据全等三角形的性质即可解决问题. 【解答】(1)证明:在△AEB和△DEC中,

∴△AEB≌△DEC(SAS).

(2)解:∵△AEB≌△DEC, ∴AB=CD, ∵AB=5, ∴CD=5.

18.(通辽)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF. (1)求证:△AEF≌△DEB;

(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.

【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等; (2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案. 【解答】证明:(1)∵E是AD的中点, ∴AE=DE, ∵AF∥BC,

∴∠AFE=∠DBE,∠EAF=∠EDB, ∴△AEF≌△DEB(AAS);

(2)连接DF,

∵AF∥CD,AF=CD,

∴四边形ADCF是平行四边形, ∵△AEF≌△DEB, ∴BE=FE, ∵AE=DE,

∴四边形ABDF是平行四边形, ∴DF=AB, ∵AB=AC, ∴DF=AC,

∴四边形ADCF是矩形.

19.(泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.

【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO与△CDO全等,所以有OB=OC.

【解答】证明:在Rt△ABC和Rt△DCB中

∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB, ∴BO=CO.

20.(南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC. 求证:∠C=∠E.

【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E. 【解答】解:∵∠BAE=∠DAC,

∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE, 在△ABC和△ADE中, ∵

∴△ABC≌△ADE(SAS), ∴∠C=∠E.

21.(恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O. 求证:AD与BE互相平分.

【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分. 【解答】证明:如图,连接BD,AE, ∵FB=CE, ∴BC=EF,

又∵AB∥ED,AC∥FD, ∴∠ABC=∠DEF,∠ACB=∠DFE, 在△ABC和△DEF中,

∴△ABC≌△DEF(ASA), ∴AB=DE, 又∵AB∥DE,

∴四边形ABDE是平行四边形, ∴AD与BE互相平分.

22.(哈尔滨)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE. (1)如图1,求证:AD=CD;

(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.

【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;

(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案. 【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF, ∴∠ADE=∠CGF, ∵AC⊥BD、BF⊥CD,

∴∠ADE+∠DAE=∠CGF+∠GCF, ∴∠DAE=∠GCF, ∴AD=CD;

(2)设DE=a,

则AE=2DE=2a,EG=DE=a, ∴S△ADE=

AE?DE=

?2a?a=a,

2

∵BH是△ABE的中线, ∴AH=HE=a, ∵AD=CD、AC⊥BD, ∴CE=AE=2a, 则S△ADC=

AC?DE=

?(2a+2a)?a=2a2=2S△ADE;

在△ADE和△BGE中, ∵

∴△ADE≌△BGE(ASA), ∴BE=AE=2a, ∴S△ABE=

AE?BE=

?(2a)?2a=2a2,

S△ACE=S△BHG=

CE?BE=HG?BE=

?(2a)?2a=2a, ?(a+a)?2a=2a,

2

2

综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.

23.(武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.

【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论. 【解答】证明:∵BE=CF, ∴BE+EF=CF+EF, ∴BF=CE, 在△ABF和△DCE中

∴△ABF≌△DCE(SAS), ∴∠GEF=∠GFE, ∴EG=FG.

24.(咸宁)已知:∠AOB. 求作:∠A'O'B',使∠A'O′B'=∠AOB

(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;

(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′; (3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′; (4)过点D′画射线O′B',则∠A'O'B'=∠AOB. 根据以上作图步骤,请你证明∠A'O'B′=∠AOB.

【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB. 【解答】证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′, 在△OCD和△O′C′D′中

∴△OCD≌△O′C′D′, ∴∠COD=∠C′O′D′, 即∠A'O'B′=∠AOB.

25.(安顺)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF. (1)求证:AF=DC;

(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.

【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;

(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可; 【解答】(1)证明:连接DF, ∵E为AD的中点, ∴AE=DE, ∵AF∥BC, ∴∠AFE=∠DBE, 在△AFE和△DBE中,

∴△AFE≌△DBE(AAS), ∴EF=BE, ∵AE=DE,

∴四边形AFDB是平行四边形, ∴BD=AF, ∵AD为中线, ∴DC=BD, ∴AF=DC;

(2)四边形ADCF的形状是菱形,理由如下: ∵AF=DC,AF∥BC,

∴四边形ADCF是平行四边形, ∵AC⊥AB, ∴∠CAB=90°, ∵AD为中线, ∴AD=

BC=DC,

∴平行四边形ADCF是菱形;

26.(广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.

【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE≌△CBE即可. 【解答】证明:在△AED和△CEB中,

∴△AED≌△CEB(SAS),

∴∠A=∠C(全等三角形对应角相等).

27.(宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.

【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等. 【解答】证明:如图,∵∠1=∠2, ∴∠ACB=∠ACD. 在△ABC与△ADC中,

∴△ABC≌△ADC(AAS), ∴CB=CD.

28.(铜仁市)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.

【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF; 【解答】证明:∵AD=BC,∴AC=BD, 在△ACE和△BDF中,∴△ACE≌△BDF(SSS) ∴∠A=∠B, ∴AE∥BF;

29.(温州)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B. (1)求证:△AED≌△EBC. (2)当AB=6时,求CD的长.

【分析】(1)利用ASA即可证明;

(2)首先证明四边形AECD是平行四边形,推出CD=AE=【解答】(1)证明:∵AD∥EC, ∴∠A=∠BEC, ∵E是AB中点, ∴AE=EB, ∵∠AED=∠B, ∴△AED≌△EBC.

(2)解:∵△AED≌△EBC, ∴AD=EC, ∵AD∥EC,

AB即可解决问题;

∴四边形AECD是平行四边形, ∴CD=AE, ∵AB=6, ∴CD=

30.(菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.

AB=3.

【分析】结论:DF=AE.只要证明△CDF≌△BAE即可; 【解答】解:结论:DF=AE. 理由:∵AB∥CD, ∴∠C=∠B, ∵CE=BF,

∴CF=BE,∵CD=AB, ∴△CDF≌△BAE, ∴DF=AE.

31.(苏州)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.

【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论. 【解答】证明:∵AB∥DE, ∴∠A=∠D, ∵AF=DC, ∴AC=DF.

∴在△ABC与△DEF中,

∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴BC∥EF.

32.(嘉兴)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.

【分析】只要证明Rt△ADE≌Rt△CDF,推出∠A=∠C,推出BA=BC,又AB=AC,即可推出AB=BC=AC; 【解答】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F, ∴∠AED=∠CFD=90°, ∵D为AC的中点, ∴AD=DC,

在Rt△ADE和Rt△CDF中,

∴Rt△ADE≌Rt△CDF, ∴∠A=∠C, ∴BA=BC,∵AB=AC, ∴AB=BC=AC,

∴△ABC是等边三角形.

33.(滨州)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点. (1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;

(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.

【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF; (2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.

【解答】(1)证明:连接AD,如图①所示. ∵∠A=90°,AB=AC,

∴△ABC为等腰直角三角形,∠EBD=45°. ∵点D为BC的中点, ∴AD=

BC=BD,∠FAD=45°.

∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°, ∴∠BDE=∠ADF. 在△BDE和△ADF中,∴△BDE≌△ADF(ASA), ∴BE=AF;

(2)BE=AF,证明如下: 连接AD,如图②所示. ∵∠ABD=∠BAD=45°, ∴∠EBD=∠FAD=135°.

∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°, ∴∠EDB=∠FDA. 在△EDB和△FDA中,∴△EDB≌△FDA(ASA), ∴BE=AF.

, ,

34.(怀化)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D. (1)求证:△ABE≌△CDF;

(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.

【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可; (2)利用全等三角形的性质和中点的性质解答即可. 【解答】证明:(1)∵AB∥DC, ∴∠A=∠C, 在△ABE与△CDF中∴△ABE≌△CDF(ASA);

(2)∵点E,G分别为线段FC,FD的中点, ∴ED=

CD,

∵EG=5, ∴CD=10, ∵△ABE≌△CDF, ∴AB=CD=10.

35.(娄底)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F. (1)求证:△AOE≌△COF;

(2)判断四边形BEDF的形状,并说明理由.

【分析】(1)首先证明四边形ABCD是平行四边形,再利用ASA证明△AOE≌△COF; (2)结论:四边形BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明; 【解答】(1)证明:∵OA=OC,OB=OD, ∴四边形ABCD是平行四边形, ∴AD∥BC, ∴∠EAO=∠FCO, 在△AOE和△COF中,

∴△AOE≌△COF.

(2)解:结论:四边形BEDF是菱形, ∵△AOE≌△COF, ∴AE=CF, ∵AD=BC,

∴DE=BF,∵DE∥BF, ∴四边形BEDF是平行四边形, ∵OB=OD,EF⊥BD, ∴EB=ED,

∴四边形BEDF是菱形.

36.(桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF. (1)求证:△ABC≌DEF;

(2)若∠A=55°,∠B=88°,求∠F的度数.

【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.

(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可. 【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF ∴AC=DF

在△ABC和△DEF中,∴△ABC≌△DEF(SSS) (2)由(1)可知,∠F=∠ACB ∵∠A=55°,∠B=88°

∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37° ∴∠F=∠ACB=37°

考点22 勾股定理

一.选择题(共7小题)

1.(滨州)在直角三角形中,若勾为3,股为4,则弦为( ) A.5

B.6

C.7

D.8

【分析】直接根据勾股定理求解即可.

【解答】解:∵在直角三角形中,勾为3,股为4, ∴弦为故选:A.

=5.

2.(枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )

A. B. C. D.

【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案. 【解答】解:过点F作FG⊥AB于点G, ∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°,

∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°, ∵AF平分∠CAB, ∴∠CAF=∠FAD, ∴∠CFA=∠AED=∠CEF, ∴CE=CF,

∵AF平分∠CAB,∠ACF=∠AGF=90°, ∴FC=FG,

∵∠B=∠B,∠FGB=∠ACB=90°, ∴△BFG∽△BAC, ∴

=

∵AC=3,AB=5,∠ACB=90°, ∴BC=4, ∴

=

∵FC=FG, ∴

=

, ,

解得:FC=

即CE的长为故选:A.

3.(泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )

A.9 B.6 C.4 D.3

【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.

【解答】解:由题意可知:中间小正方形的边长为:a﹣b, ∵每一个直角三角形的面积为:∴4×

ab+(a﹣b)2=25,

ab=

×8=4,

∴(a﹣b)2=25﹣16=9, ∴a﹣b=3, 故选:D.

4.(温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )

A.20 B.24 C. D.

【分析】欲求矩形的面积,则求出小正方形的边长即可,由此可设小正方形的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程求出x的值,进而可求出该矩形的面积. 【解答】解:设小正方形的边长为x, ∵a=3,b=4, ∴AB=3+4=7,

在Rt△ABC中,AC+BC=AB, 即(3+x)2+(x+4)2=72, 整理得,x+7x﹣12=0, 解得x=

或x=

(舍去), +3)(

+4)=24,

2

2

2

2

∴该矩形的面积=(故选:B.

5.(娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=( )

A. B.﹣ C. D.﹣

【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求sinα和cosα的值,进而可求出sinα﹣cosα的值.

【解答】解:∵小正方形面积为49,大正方形面积为169, ∴小正方形的边长是7,大正方形的边长是13, 在Rt△ABC中,AC2+BC2=AB2, 即AC+(7+AC)=13, 整理得,AC+7AC﹣60=0, 解得AC=5,AC=﹣12(舍去), ∴BC=∴sinα=

=

=12, ,cosα=﹣

=﹣

=

, ,

2

2

2

2

∴sinα﹣cosα=故选:D.

6.(长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )

A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米 【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案. 【解答】解:∵52+122=132,

∴三条边长分别为5里,12里,13里,构成了直角三角形, ∴这块沙田面积为:故选:A.

7.(东营)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是( )

×5×500×12×500=7500000(平方米)=7.5(平方千米).

A. B. C. D.

【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.

【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长. 在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π, 所以AC=故选:C.

二.填空题(共8小题)

8.(吉林)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为 (﹣1,0) .

【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可. 【解答】解:∵点A,B的坐标分别为(4,0),(0,3), ∴OA=4,OB=3,

在Rt△AOB中,由勾股定理得:AB=∴AC=AB=5,

=5,

∴OC=5﹣4=1,

∴点C的坐标为(﹣1,0), 故答案为:(﹣1,0),

9.(玉林)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是 2<AD<8 .

【分析】如图,延长BC交AD的延长线于E,作BF⊥AD于F.解直角三角形求出AE、AF即可判断; 【解答】解:如图,延长BC交AD的延长线于E,作BF⊥AD于F.

在Rt△ABE中,∵∠E=30°,AB=4, ∴AE=2AB=8, 在Rt△ABF中,AF=

AB=2,

∴AD的取值范围为2<AD<8, 故答案为2<AD<8.

10.(襄阳)已知CD是△ABC的边AB上的高,若CD=2

,AD=1,AB=2AC,则BC的长为 2

【分析】分两种情况:

①当△ABC是锐角三角形,如图1, ②当△ABC是钝角三角形,如图2, 分别根据勾股定理计算AC和BC即可. 【解答】解:分两种情况: ①当△ABC是锐角三角形,如图1,

∵CD⊥AB, ∴∠CDA=90°, ∵CD=

,AD=1,

∴AC=2, ∵AB=2AC, ∴AB=4, ∴BD=4﹣1=3, ∴BC=

=

=2

②当△ABC是钝角三角形,如图2, 同理得:AC=2,AB=4, ∴BC=

=

或2.

=2.

综上所述,BC的长为2故答案为:2

或2

11.(盐城)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=

【分析】分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;

【解答】解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x, ∵PQ∥AC, ∴△BPQ∽△BCA, ∴∴∴x=∴AQ=

==, . , ,

②当AQ=PQ,∠PQB=90°时,设AQ=PQ=y. ∵△BQP∽△BCA, ∴∴∴y=

=

=

, ,

综上所述,满足条件的AQ的值为

12.(黔南州)如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为 60 .

【分析】首先证明△AEF≌△BEC,推出AF=BC=10,设DF=x.由△ADC∽△BDF,推出方程求出x即可解决问题;

【解答】解:∵AD⊥BC,BE⊥AC,∴∠AEF=∠BEC=∠BDF=90°,

=,构建

∵∠BAC=45°, ∴AE=EB,

∵∠EAF+∠C=90°,∠CBE+∠C=90°, ∴∠EAF=∠CBE, ∴△AEF≌△BEC, ∴AF=BC=10,设DF=x. ∵△ADC∽△BDF, ∴∴

==, ,

整理得x2+10x﹣24=0, 解得x=2或﹣12(舍弃), ∴AD=AF+DF=12, ∴S△ABC=

?BC?AD=

×10×12=60.

故答案为60.

13.(滨州)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=则AF的长为

,∠EAF=45°,

【分析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性

质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.

【解答】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x, ∵四边形ABCD是矩形,

∴∠D=∠BAD=∠B=90°,AD=BC=4, ∴NF=

x,AN=4﹣x,

∵AB=2, ∴AM=BM=1,

∵AE=,AB=2,

∴BE=1, ∴ME=

∵∠EAF=45°, ∴∠MAE+∠NAF=45°, ∵∠MAE+∠AEM=45°, ∴∠MEA=∠NAF, ∴△AME∽△FNA, ∴∴解得:x=∴AF=故答案为:

, , ,

=.

=

14.(湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为 x+3=(10﹣x)2 .

2

2

【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论. 【解答】解:设AC=x, ∵AC+AB=10,

∴AB=10﹣x.

∵在Rt△ABC中,∠ACB=90°, ∴AC2+BC2=AB2,即x2+32=(10﹣x)2. 故答案为:x+3=(10﹣x).

15.(黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为 20 cm(杯壁厚度不计).

2

2

2

【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求. 【解答】解:如图:

将杯子侧面展开,作A关于EF的对称点A′, 连接A′B,则A′B即为最短距离,A′B=故答案为20.

三.解答题(共2小题)

16.(杭州)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD. (1)若∠A=28°,求∠ACD的度数.

=

=20(cm).

(2)设BC=a,AC=b.

①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由. ②若AD=EC,求

的值.

【分析】(1)根据三角形内角和定理求出∠B,根据等腰三角形的性质求出∠BCD,计算即可; (2)①根据勾股定理求出AD,利用求根公式解方程,比较即可; ②根据勾股定理列出算式,计算即可. 【解答】解:(1)∵∠ACB=90°,∠A=28°, ∴∠B=62°, ∵BD=BC,

∴∠BCD=∠BDC=59°, ∴∠ACD=90°﹣∠BCD=31°; (2)①由勾股定理得,AB=∴AD=

﹣a,

=

解方程x2+2ax﹣b2=0得,x==﹣a,

∴线段AD的长是方程x2+2ax﹣b2=0的一个根; ②∵AD=AE, ∴AE=EC=

b+a)2,

由勾股定理得,a2+b2=(整理得,

=

17.(台湾)嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1,R2,R3,其行经位置如图与表所示:

路径 编号 图例 行径位置

本文来源:https://www.bwwdw.com/article/mw4.html

Top