03 LO - BT1002 - C01 - 0 LTE OFDM 基本原理-30

更新时间:2023-09-24 18:38:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

OFDM基本原理介绍

课程目标:

? 了解OFDM的基本概念 ? 了解OFDM的基本原理 ? 了解OFDM技术的优缺点 ? 理解OFDM的关键技术

? 了解OFDM在上下行链路中的应用

目 录

第1章 系统概述 ........................................................................................................................................... 1 1.1 无线信道传播特性 ............................................................................................................................ 1

1.1.1 无线信道的大尺度衰落 .......................................................................................................... 2 1.1.2 阴影衰落 .................................................................................................................................. 3 1.1.3 无线信道的多径衰落 .............................................................................................................. 3 1.1.4 无线信道的时变性以及多普勒频移 ...................................................................................... 5 1.2 OFDM的基本概念 ............................................................................................................................. 7 1.3 OFDM的优缺点 ................................................................................................................................. 8 第2章 OFDM的关键技术 ....................................................................................................................... 11 2.1 保护间隔和循环前缀 ...................................................................................................................... 11 2.2 同步技术 .......................................................................................................................................... 13

2.2.1 载波同步 ................................................................................................................................ 14 2.2.2 符号定时同步 ........................................................................................................................ 15 2.3 信道估计 .......................................................................................................................................... 17 2.4 降峰均比技术 .................................................................................................................................. 17

2.4.1 限幅方法 ................................................................................................................................ 17 2.4.2 压缩扩张方法 ........................................................................................................................ 18

第3章 OFDM的应用 ............................................................................................................................... 21 3.1 OFDM在下行链路中的应用 ........................................................................................................... 21 3.2 OFDM在上行链路中的应用 ........................................................................................................... 23

3.2.1 DFT-spread OFDM多址接入技术 ......................................................................................... 23 3.2.2 SC-FDMA多址接入技术 ....................................................................................................... 25

i

第1章 系统概述

? 知识点 无线信道传播特性 OFDM的基本概念 OFDM的优缺点

1.1 无线信道传播特性

与其他通信信道相比,移动信道是最为复杂的一种。电波传播的主要方式是空间波,即直射波、折射波、散射波以及它们的合成波。再加之移动台本身的运动,使得移动台与基站之间的无线信道多变并且难以控制。信号通过无线信道时,会遭受各种衰落的影响,一般来说接收信号的功率可以表达为:

P(d) = |d|-n S(d)R(d)

其中d表示移动台与基站的距离向量,|d|表示移动台与基站的距离。根据上式,无线信道对信号的影响可以分为三种:

(1) 电波中自由空间内的传播损耗|d|-n ,也被称作大尺度衰落,其中n一般为

3~4;

(2) 阴影衰落S(d)表示由于传播环境的地形起伏,建筑物和其他障碍物对地波

的阻塞或遮蔽而引起的衰落,被称作中等尺度衰落;

(3) 多径衰落R(d)表示由于无线电波中空间传播会存在反射、绕射、衍射等,

因此造成信号可以经过多条路径到达接收端,而每个信号分量的时延、衰落和相位都不相同,因此在接收端对多个信号的分量叠加时会造成同相增加,异相减小的现象,这也被称作小尺度衰落。

下图可以清晰的说明三种衰落情况。

1

图 1.1-1 信号在无线信道中的传播特性

此外,由于移动台的运动,还会使得无线信道呈现出时变性,其中一种具体表现就是会出现多普勒频移。自由空间的传播损耗和阴影衰落主要影响到无线区域的覆盖,通过合理的设计就可以消除这种不利影响。

1.1.1 无线信道的大尺度衰落

无线电波在自由空间内传播,其信号功率会随着传播距离的增加而减小,这会对数据速率以及系统的性能带来不利影响。最简单的大尺度路径损耗模型可以表示为:

其中Pi表示本地平均发射信号功率,Pr表示接收功率,d是发射机与接收机之间的距离。对于典型环境来说,路径损耗指数γ一般在2~4中选择。由此可以得到平均的信号噪声比(SNR)为:

其中N0是单边噪声功率谱密度,B是信号带宽,K是独立于距离、功率和带宽的常数,如果为保证可靠接收,要求SNR ≥ SNR0,其中SNR0表示信噪比门限,则路径损耗会为比特速率带来限制:

2

以及对信号的覆盖范围带来限制:

可见,如果不采用其它特殊技术,则数据的符号速率以及电波的传播范围都会受到很大的限制,但是在一般的蜂窝系统中,由于小区的规模相对较小,所以这种大尺度衰落对移动通信系统的影响并不需要单独加以考虑。

1.1.2 阴影衰落

当电磁波在空间传播受到地形起伏、高大建筑物的阻挡,在这些障碍物后面会产生电磁场的阴影,造成场强中值的变化,从而引起衰落,被称作阴影衰落。与多径衰落相比,阴影衰落是一种宏观衰落,是以较大的空间尺度来衡量的,其中衰落特性符合对数正态分布,其中接收信号的局部场强中值变化的幅度取决于信号频率和障碍物状况。频率较高的信号比低频信号更加容易穿透障碍物,而低频信号比较高频率的信号具备更强的绕射能力。

1.1.3 无线信道的多径衰落

无线移动信道的主要特征就是多径传播,即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机,如下图所示。

图 1.1-2 无线信号的多径传播

由于电波通过各个路径的距离不同,因而各条路径中发射波的到达时间、相位都不相同。不同相位的多个信号在接收端叠加,如果同相叠加则会使信号幅度增强,而反相叠加则会削弱信号幅度。这样,接收信号的幅度将会发生急剧变化,就会产生衰落。

3

例如,发射端发生一个窄脉冲信号,则在接收端可以收到多个窄脉冲,每一个窄脉冲的衰落和时延以及窄脉冲的个数都是不同的,对应一个发送脉冲信号,下图给出接收端所接收到的信号情况。这样就造成了信道的时间弥散性(time dispersion),其中τ

max被定义为最大时延扩展。

图 1.1-3 多径接收信号

在传输过程中,由于时延扩展,接收信号中的一个符号的波形会扩展到其他符号当中,造成符号间干扰(InterSymbol Interference,ISI)。为了避免产生ISI,应该令符号速率要先于最大时延扩展的倒数,由于移动环境十分复杂,不同地理位置,不同时间所测量到的时延扩展都可能是不同的,因此需要采用大量测量数据的统计平均值。

下表给出不同信道环境下的时延扩展值。

表 1.1-1 不同信道环境下的时延扩展值

环境 室内 室外 最大时延扩展 40ns~200ns 1μs~20μs 最大到达路径差 12m~16m 300m~5000m 在频域内,与时延扩展相关的另一个重要概念是相干带宽,是应用中通常用最大时延扩展的倒数来定义相干带宽,即:

从频域角度观察,多径信号的时延扩展可以导致频率选择性衰落(frequency-selective fading),即针对信号中不同的频率成分,无线传输信道会呈现不同的随机响应,由于信号中不同频率分量的衰落是不一致的,所以经过衰落之后,信号波形就会发生畸变。由此可以看到,当信号的频率较高,信号带宽超

4

过无线信道的相干带宽时,信号通过无线信道后各频率分量的变化是不一样的,引起信号波形的失真,造成符号间干扰,此时就认为发生了频率选择性衰落;反之,当信号的传输速率较低,信道带宽小于相干带宽时,信号通过无线信道后各频率分量都受到相同的衰落,因而衰落波形不会失真,没有符号间干扰,则认为信号只是经历了平衰落,即非频率选择性衰落。相干带宽是无线信道的一个特性,至于信号通过无线信道时,是出现频率选择性衰落还是平衰落,这要取决于信号本身的带宽。

1.1.4 无线信道的时变性以及多普勒频移

当移动台在运动中进行通信时,接收信号的频率会发生变化,成为多普勒效应,这是任何波动过程都具有的特性。以可见光为例,假设一个发光物体在远处以固定的频率发出光波,我们可以接收到的频率应该是与物体发出的频率相同。现在假定该物体开始向我们运动,但光影发出第二个波峰时,它距我们的距离应该要比发出第一个波峰到达我们的时间,因此两个波峰到达我们的时间间隔变小了,与此相应我们接收到的频率就会增加,相反,当发光物体远离我们而去的时候,我们就受到的频率就要减小,这就是多普勒效应的原理。在天体物理学中,天文学家利用多普勒效应可以判断出其他星系的恒星都在远离我们而去,从而得出宇宙是在不断膨胀的结论。这种称为多普勒效应的频率和速率的关系是我们日常熟悉的,例如我们在路边听汽车汽笛的声音:当汽车接近我们时,其汽笛音调变高(对应频率增加);而当它驶离我们时,汽笛音调又会变地(对应频率减小)。 信道的时变性是指信道的传递函数是随时间而变化的,即在不同的时刻发送相同的信号,在接收端收到的信号是不相同的,如下图所示。

图 1.1-4 多径造成的信道时变性

5

时变性在移动通信系统中的具体体现之一就是多普勒频移(Doppler shift),即单一频率信号经过时变衰落信道之后会呈现为具有一定带宽和频率包络的信号,如下图所示。这又可称为信道的频率弥散性(frequency dispersion)。

图 1.1-5 多普勒频移造成的信道频率弥散性

当移动台向入射波方向移动时,多普勒频移为正,即移动台接收到的信号频率会增加;如果背向入射波方向移动,则多普勒频移为负,即移动台接收到的信号频率会减小。由于存在多普勒频移,所以当单一频率信号(f0)到达接收端的时候,其频谱不再是位于频率轴± f0处的单纯δ函数,而是分布在()内的、存在一定宽度的频谱。下表给出两种载波情况下不同移动速度时的最大多普勒频移数值。

表1.1-2 最大多普勒频偏(Hz)

速度 载波 900MHz 2GHz 83 185 62 139 42 93 21 46 100km/h 75 km/h 50 km/h 25 km/h 从时域来看,与多普勒频移相关的另一个概念就是相干时间,即:

相干时间是信道冲击响应维持不变的时间间隔的统计平均值。换句话说,相干时间就是指一段时间间隔,在此间隔内,两个到达信号有很强的幅度相关性。如果基带信号带宽的倒数,一般指符号宽度大于无线信道的相干时间,那么信号的波形就可能会发生变化,造成信号的畸变,产生时间选择性衰落,也称为快衰落;反之,如果符号的宽度小于相干时间,则认为是非时间选择性衰落,即慢衰落。 自由空间的传播损耗和阴影衰落主要影响到无线区域的覆盖,通过合理的设计就可以消除这种不利影响。在无线通信系统中,重点要解决时间选择性衰落和频率选择性衰落。采用OFDM技术可以很好的解决这两种衰落对无线信道传输造成的不利影响。

6

1.2 OFDM的基本概念

在传统的并行数据传输系统中,整个信号频段被划分为N个相互不重叠的频率子信道。每个子信道传输独立的调制符号,然后再将N个子信道进行频率复用。这种避免信道频谱重叠看起来有利于消除信道间的干扰,但是这样又不能有效利用频谱资源。OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用,是一种能够充分利用频谱资源的多载波传输方式。常规频分复用与OFDM的信道分配情况如下图所示。可以看出OFDM至少能够节约二分之一的频谱资源。

频频频频频频频频频频频频频频频频频频频频频频(OFDM)频频频频频图 1.2-1 常规频分复用与OFDM的信道分配

OFDM的主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输,如下图所示。

图 1.2-2 OFDM基本原理

OFDM利用快速傅立叶反变换(IFFT)和快速傅立叶变换(FFT)来实现调制和解调,如下图所示。

7

ej2?f0td0d1e?j2?f0t串/并?e?j2?f1te?j2?f1t??积分积分~d0~d1+信道并/串ej2?fN?1tdN?1?e?j2?fN?1t?图 1.2-3 调制解调过程

积分~dN?1

OFDM的调制解调流程如下:

1. 发射机在发射数据时,将高速串行数据转为低速并行,利用正交的多个子载

波进行数据传输;

2. 各个子载波使用独立的调制器和解调器;

3. 各个子载波之间要求完全正交、各个子载波收发完全同步; 4. 发射机和接收机要精确同频、同步,准确进行位采样;

5. 接收机在解调器的后端进行同步采样,获得数据,然后转为高速串行。

在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高系统性能。 20世纪50年代OFDM的概念就已经被提出,但是受限于上面的步骤2、3,传统的模拟技术很难实现正交的子载波,因此早期没有得到广泛的应用。随着数字信号处理技术的发展,S.B.Weinstein和P.M.Ebert等人提出采用FFT实现正交载波调制的方法,为OFDM的广泛应用奠定了基础。此后,为了克服通道多径效应和定时误差引起的ISI符号间干扰,A.Peled和A.Ruizt提出了添加循环前缀的思想。

1.3 OFDM的优缺点

OFDM系统越来越受到人们的广泛关注,其原因在于OFDM系统存在如下主要优点:

? 把高速数据流通过串并转换,使得每个子载波上的数据符号持续长度相对增

加,从而可以有效地减小无线信道的时间弥散所带爱的ISI,这样就减小了接收机内均衡的复杂度,有时甚至可以不采用均衡器,仅通过采用插入循环前缀的方法消除ISI的不利影响。

8

? OFDM系统由于各个子载波之间存在正交性,允许子信道的频谱相互重叠,

因此与常规的频分复用系统相比,OFDM系统可以最大限度地利用频谱资源。 ? 各个子信道中这种正交调制和解调可以采用快速傅立叶变换(FFT)和快速

傅立叶反变换(IFF)来实现。

? 无线数据业务一般都存在非对称性,即下行链路中传输的数据量要远大于上

行链路中的数据传输量,如Internet业务中的网页浏览、FTP下载等。另一方面,移动终端功率一般小于1W,在大蜂窝环境下传输速率低于10kbit/s~100kbit/s;而基站发送功率可以较大,有可能提供1Mbit/s以上的传输速率。因此无论从用户数据业务的使用需求,还是从移动通信系统自身的要求考虑,都希望物理层支持非对称高速数据传输,而OFDM系统可以很容易地通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率。

? 由于无线信道存在频率选择性,不可能所有的子载波都同时处于比较深的衰

落情况中,因此可以通过动态比特分配以及动态子信道的分配方法,充分利用信噪比较高的子信道,从而提高系统的性能。

? OFDM系统可以容易与其他多种接入方法相结合使用,构成OFDMA系统,

其中包括多载波码分多址MC-CDMA、跳频OFDM以及OFDM-TDMA等等,使得多个用户可以同时利用OFDM技术进行信息的传递。

? 因为窄带干扰只能影响一小部分的子载波,因此OFDM系统可以在某种程度

上抵抗这种窄带干扰。

但是OFDM系统内由于存在多个正交子载波,而去其输出信号是多个子信道的叠加,因此与单载波系统相比,存在如下主要缺点:

? 易受频率偏差的影响:由于子信道的频谱相互覆盖,这就对它们之间的正交

性提出了严格的要求,然而由于无线信道存在时变性,在传输过程中会出现无线信号的频率偏移,例如多普勒频移,或者由于发射机载波频率与接收机本地振荡器之间存在的频率偏差,都会使得OFDM系统子载波之间的正交性遭到破坏,从而导致子信道间的信号相互干扰,这种对频率偏差敏感是OFDM系统的主要缺点之一。

? 存在较高的峰值平均功率比:与单载波系统相比,由于多载波调制系统的输

出是多个子信道信号的叠加,因此如果多个信号的香味一致时,所得到的叠加信号的瞬时功率就会远远大于信号的平均功率,导致出现较大的峰值平均功率比(PAPR)。这就对发射机内放大器的线性提出了很高的要求,如果放大器的动态范围不能满足信号的变化,则会为信号带来畸变,使叠加信号的

9

频谱发生变化,从而导致各个子信道信号之间的正交性遭到破坏,产生相互干扰,使系统性能恶化。

10

第2章 OFDM的关键技术

? 知识点

保护间隔和循环前缀 同步技术 信道估计 降峰均比技术

2.1 保护间隔和循环前缀

采用OFDM的一个主要原因是它可以有效地对抗多径时延扩展。通过把输入的数据流串并变换到N个并行的子信道中,使得每个用于调制子载波的数据符号周期可以扩大为原始数据符号周期的N倍,因此时延扩展与符号周期的比值也同样降低N倍。为了最大限度地消除符号间干扰,还可以在每个OFDM符号之间插入保护间隔(guard interval),而且该保护间隔长度Tg一般要大于无线信道的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。在这段保护间隔内,可以不插入任何信号,即是一段空闲的传输时段。然而在这种情况中,由于多径传播的影响,则会产生信道间干扰(ICI),即子载波之间的正交性遭到破坏,不同的子载波之间产生干扰,如下图所示。

图 2.1-1 空闲保护间隔引起ICI

由于每个OFDM符号中都包括所有的非零子载波信号,而且也同时会出现该OFDM符号的时延信号,因此上图中给出了第一个子载波和第二个子载波的延时

11

2.3 信道估计

加入循环前周后的OFDM系统可以等效为N个独立的并行子信道。如果不考虑信道噪声,N个子信道上的接收信号等于各自子信道上的发送信号与信道的频谱特性的乘积。如果通过估计方法预先获知信道的频谱特性,将各子信道上的接收信号与信道的频谱特性相除,即可实现接收信号的正确解调。

常见的信道估计方法有基于导频信道和基于导频符号(参考信号)这两种,多载波系统具有时频二维结构,因此采用导频符号的辅助信道估计更灵活。导频符号辅助方法是在发送端的信号中某些固定位置插入一些已知的符号和序列,在接收端利用这些导频符号和导频序列按照某些算大进行信道估计。在单载波系统中,导频符号和导频序列只能在时间轴方向插入,在接收端提取导频符号估计信道脉冲响应。在多载波系统中,可以同时在时间轴和频率轴两个方向插入导频符号,在接收端提取导频符号估计信道传输函数。只要导频符号在时间和频率方向上的间隔相对于信道带宽足够小,就可以采用二维内插如滤波的方法来估计信道传输函数。

2.4 降峰均比技术

除了对频率偏差敏感之外,OFDM系统的另一个主要缺点就是峰值功率与平均功率比,简称峰均比(PAPR)过高的问题。即与单载波系统相比,由于OFDM符号是由多个独立的经过调制的 信号相加而成的,这样的合成信号就有可能产生比较大的峰值功率,由此会带来较大的峰值平均功率比。

信号预畸变技术是最简单最直接的降低系统内峰均比的方法。在信号被送到放大器之前,首先经过非线性处理,对有较大峰值功率的信号进行预畸变,使其不会超出放大器的动态变化范围,从而避免降低较大的PAPR的出现。最常用的信号预畸变技术包括限幅和压缩扩张方法。

2.4.1 限幅方法

信号经过非线性部件之前进行限幅,就可以使得峰值信号低于所期望的最大电平值。尽管限幅非常简单,但是它也会为OFDM系统带来相关的问题。首先,对OFDM符号幅度进行畸变,会对系统造成自身干扰,从而导致系统的BER性能降低。其次,OFDM信号的非线性畸变会导致带外辐射功率值的增加,其原因在于限幅操作可以被认为是OFDM采样符号与矩形窗函数相乘,如果OFDM信号的幅值小于门限值时,则该矩形窗函数的幅值为1;而如果信号幅值需要被限幅时,则该矩形窗函数的幅值应该小于1。根据时域相乘等效于频域卷积的原理,经过

17

限幅的OFDM符号频谱等于原始OFDM符号频谱与窗函数频谱的卷积,因此其带外频谱特性主要由两者之间频谱带宽较大的信号来决定,也就是矩形窗函数的频谱来决定。

为了克服矩形窗函数所造成的带外辐射过大的问题,可以利用其他的非矩形窗函数,如下图所示。

图 2.4-1 对OFDM符号进行时域加窗

总之,选择窗函数的原则就是:其频谱特性比较好,而且也不能在时域内过长,避免对更多个时域采样信号造成影响。

2.4.2 压缩扩张方法

除了限幅方法之外,还有一种信号预畸变方法就是对信号实施压缩扩张。在传统的扩张方法中,需要把幅度比较小的符号进行放大,而大幅度信号保持不变,一方面增加了系统的平均发射功率,另一方面使得符号的功率值更加接近功率放大器的非线性变化区域,容易造成信号的失真。

18

因此给出一种改进的压缩扩张变换方法。在这种方法中,把大功率发射信号压缩,而把小功率信号进行放大,从而可以使得发射信号的平均功率相对保持不变。这样不但可以减小系统的PAPR,而且还可以使得小功率信号抗干扰的能力有所增强。μ律压缩扩张方法可以用于这种方法中,在发射端对信号实施压缩扩张操作,而在接收端要实施逆操作,恢复原始数据信号。压缩扩张变化的OFDM系统基带简图如下所示。

图 2.4-2 压缩扩张变化的OFDM系统基带简图

19

第3章 OFDM的应用

3.1 OFDM在下行链路中的应用

LTE系统下行链路采用OFDMA,Orthogonal Frequency Division Multiple Access,正交频分多址接入方式,是基于OFDM的应用。

OFDMA将传输带宽划分成相互正交的子载波集,通过将不同的子载波集分配给不同的用户,可用资源被灵活的在不同移动终端之间共享,从而实现不同用户之间的多址接入。这可以看成是一种OFDM+FDMA+TDMA技术相结合的多址接入方式。如下图所示:如果将OFDM本身理解为一种传输方式,图(a)显示出就是将所有的资源—包括时间、频率都分配给了一个用户,OFDM融入FDMA的多址方式后如图(b)所示,就可以将子载波分配给不同的用户进行使用,此时OFDM+FDMA与传统的FDMA多址接入方式最大的不同就是,分配给不同用户的相邻载波之间是部分重叠的。一旦在时间对载波资源加以动态分配就构成了OFDM+FDMA+TDMA的多址方式,如图(c)所示,根据每个用户需求的数据传输速率、当时的信道质量对频率资源进行动态分配。

图 3.1-1 基于OFDM的多址方式

在OFDMA系统中,可以为每个用户分配固定的时间-频率方格图,使每个用户使用特定的部分子载波,而且各个用户之间所用的子载波是不同的,如下图所示。

21

本文来源:https://www.bwwdw.com/article/mvsd.html

Top