2007,2008自贡数学中考(含答案)
更新时间:2023-05-09 22:51:01 阅读量: 实用文档 文档下载
- 2022自贡数学中考答案推荐度:
- 相关推荐
07年的自贡中考题
绝密★启用前 [考试时间:2007年6月12日 下上午9∶00—11∶00]
四川省自贡市2007年初中毕业暨升学考试
数 学 试 卷
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至12页.满分120分.考试时间120分钟.考试结束后,将试卷Ⅰ、试卷Ⅱ和答题卡一并交回.装订时将试卷Ⅱ单独装订.
第Ⅰ卷(选择题 共33分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号,考试科目涂写在答题卡上
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号,不能答在试卷Ⅰ上.
一、选择题:本大题共11小题,每小题3分,共33分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.
1.下列各式中,p,q互为相反数的是( ) A.pq=1 C.p+q=0
相信自己一定成功!
B.pq=-1 D.p-q=0
2.下列计算正确的是( ) A.C.
18xx2y
18y
18(x y) 12y
B.D.
yx
1
yz
2yxz1
x 12y
x y
y x
0
3.a是实数,且x>y,则下列不等式中,正确的是( ) A.ax>ay
B. a2x≤a2y
C.a2x>a2y
D. a2x≥a2y
4.矩形、菱形、正方形都具有的性质是( ) A.每一条对角线平分一组对角 C.对角线互相平分
B.对角线相等 D.对角线互相垂直
5.用配方法解关于x的方程x2+mx+n=0,此方程可变形为( )
1 页 共 10 页
07年的自贡中考题
A.(x C.
m2
)
2
2
4n m
4 m
2
2
B.(x D.(x
m2m2
)
2
m
2
4n4
2
(x
m2
)
4n2
)
2
4n m
2
6.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为( )
A.y=2a(x-1)
B.y=2a(1-x)
C.y=a(1-x)
2
D.y=a(1-x)
2
7.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为( ) A.32.5°
B.57.5°
C.65°或57.5° D.32.5°或57.5°
8.随机抛掷一枚均匀的硬币两次,则出现两面不一样的概率是( ) A.
14
B.
12
C.
34
D.1
9.两圆的半径分别为7和1,圆心距为10,则其内公切线长和外公切线长分别为( ) A.6,8
B.6,10
C.8,2
D.8,6
10.我市某风景区,在“五一“长假期间,接待游人情况如下图所示,则这七天游览该风景区的平均人数为( )
A.2800人
B.3000人
C.3200人
D.3500人
11.小洋用彩色纸制做了一个圆锥型的生日帽,其底面半径为6cm,母线长为12cm,不考虑接缝,这个生日帽的侧面积为( )
A.36πcm2
B.72πcm2
C.100πcm2
D.144πcm2
2 页 共 10 页
07年的自贡中考题
绝密★启用前 [考试时间:2007年6月12日 下上午9∶00—11∶00]
四川省自贡市2007年初中毕业暨升学考试
数 学 试 卷
第Ⅱ卷(非选择题 共87分)
注意事项:1.第Ⅱ卷共10页(3至12页),用钢笔或蓝色圆珠笔将答案直接答在试题卷上.
2.答题前请将密封线内的项目填写清楚. 3.监考人员将第Ⅱ卷密封装订.
二、填空题:本大题共5小题,每小题4分,共20分
12、一生物教师在显微镜下发现,某种植物的细胞直径约为0.00012mm,用科学记数法表示这个数为____________mm.
13.请写出一个值k=___________,使一元二次方程x2-7x+k=0 有两个不相等的非0实数根.(答案不唯一)
14.有4条长度分别为1,3,5,7的线段,现从中任取三条能构成三角形的概率是__________.
15.如图是中国共产主义青年团团旗上的图案(图案本身没有字母),5个角的顶点A,B,C,D,E把外面的圆5等分,则∠A+∠B+∠C+∠D+∠E=__________________.
16.一个叫巴尔末的中学教师成功地从光谱数据
95
你可要小心点哦!
,
1612
,
2521
,
3632
, 中得到巴尔末公式,从而打开了
光谱奥秘的大门,请你按照这种规律,写出第n(n≥1)个数据是___________.
3 页 共 10 页
07年的自贡中考题
三、解答题:本大题共4个小题,每小题6分,共24分.
17.解方程组:
18.解方程:
1
19
.计算:
3
2
2x y 4 0 3x y 6 0
① ②
1x 2
1x
2
( 1)
01001
·tan30°
20.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记-4分.九年级一班代表队的得分目标为不低于88分.问这个队至少要答对多少道题才能达到目标要求?
四、解答题:本大题共3个小题,每小题7分,共21分.
4 页 共 10 页
07年的自贡中考题
21.按规定尺寸作出下面图形的三视图.
22.如图所示,我市某中学数学课外活动小组的同学,利用所学知识去测量沱江流经我市某段的河宽. 小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是多少?(精确到0.01m)
23.某商店按图(Ⅰ)给出的比例,从甲、乙、丙三个厂家共购回饮水机150台,商店质检员对购进的这批饮水机进行检测,并绘制了如图所示的统计图(Ⅱ).请根据图中提供的信息回答下列问题.
(Ⅰ) (Ⅱ)
(1)求该商店从乙厂购买的饮水机台数? (2)求所购买的饮水机中,非优等品的台数?
(3)从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?
5 页 共 10 页
07年的自贡中考题
五、解答题:本大题共2个小题,每小题7分,共14分.
24.如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过E作⊙O的切线ME交AC于点D.试判断△AED的形状,并说明理由.
25.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点, (1)如图,E,F分别是AB,AC上的点,且BE=AF,
求证:△DEF为等腰直角三角形.
(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等
腰直角三角形?证明你的结论.
六、解答题:本大题8分.
26.△ABC中,∠A,∠B,∠C的对边分别为a,b,c,抛物线y=x-2ax+b交x轴于两点M,N,交y轴于点P,其中M的坐标是(a+c,0).
(1)求证:△ABC是直角三角形.
(2)若S△MNP=3S△NOP,①求cosC的值;②判断△ABC的三边长能否取一组适当的值,使三角形MND(D为抛物线的顶点)是等腰直角三角形?如能,请求出这组值;如不能,请说明理由.
6 页 共 10 页
2
2
07年的自贡中考题
四川省自贡市2007年初中毕业暨升学考试
数学参考答案及评分标准
说明:
一.如果考生的解法与下面提供的参考解法不同,只要正确一律给满分,若某一步出现错误,可参照该题的评分意见进行评分.
二.评阅试卷时,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步以后的解答未改变这一道题的内容和难度,后来发生第二次错误前,出现错误的那一步不给分,后面部分只给应给分数之半;明显笔误,可酌情少扣;如有严重概念性错误,则不给分;在同一解答中,对发生第二次错误起的部分不给分.
三.涉及计算过程,允许合理省略非关键性步骤.
四.在几何题中,考生若使用符号“ ”进行推理,其每一步应得分数,可参照该题的评分意见进行评分. 一.选择题:本大题共11个小题,每小题3分,共33分. 1.C 2.D 3.D 4.C 5.B 6.D 7.D 8.B 9.A 10.B 11.B
二.填空题:(每小题4分,共计20分)
12.1.2×10-4 13.10(答案不唯一) 14.
(n 2)
2
14
15.180° 16.
n(n 4)
或
(n 2)
2
2
(只填一个均可)
(n 2) 4
三.解答题:(每小题6分,共计24分) 17.解:由①+②得 5x=10······················································································ 2分 x=2 ························································································· 3分 将x=2代入①得 y=0 ······························································································ 5分 ∴原方程组的解为
x 2 y 0
······························································································· 6分
18.解:x+(x+2)=2x(x+2) ························································································ 2分 整理得:x2+x-1=0 ···································································································· 3分 ∴x=
1
2
5
··············································································································· 4分
5
经检验x=
1
2
均为原方程的解 ··············································································· 5发
1
2
5
∴原方程的解为x= ························································································· 6分
33
19.解:原式=9+1-1+(23-33)·=9+(-3)·
33
····························································· 2.5分
····································································································· 4.5分
=9-1 ·························································································································· 5分 =8 ······························································································································· 6分 20.解:设九年级一班代表队至少要答对x道题才能达到目标要求. ···························· 1分 由题意得:10x-4(20-x)≥88 ······················································································· 4分 10x-80+4x≥88 ·················································································································· 14x≥168
7 页 共 10 页
07年的自贡中考题
x≥12 ···························································································································· 5分 答:这个队至少要答对12道题才能达到目标要求. ······················································ 6分 四.解答题:(每小题7分,共计21分) 21.解:
主视图 左视图
俯视图
(三个视图各2分,位置正确给1分,共7分.) 22.解:如图,过C作CE⊥AB于E···················· 1分 则CE为河宽
设CE=x(米),于是BE=x+60(米) ············· 2分 在Rt△BCE中 tan30°=
CEEB
················································································································ 3分
∴3x=x+60 ·············································································································· 4分 ∴x=30(3+1) ·········································································································· 5分 ≈81.96(米) ············································································································· 6分 答:河宽约为81.96米. ······························································································· 7分 23.解:(1)150×40%=60(台) ··············································································· 2分 ∴设商店从乙厂购买的饮水机台数为60台 (2)由图(II)知优等品的台数为 50+51+26=127(台)
∴非优等品的台数为150-127=23(台)····································································· 4分 (3)由题意知: 甲厂的优等品率为乙厂的优等品率为丙厂的优等品率为又
2630
50150 40%
51150 40%
26150 20%
506051602630
················································································ 4.5人 ·················································································· 5分 ················································································ 5.5分
>
5160
>
5060
·········································································································· 6分
∴丙厂的产品质量较好. ······························································································ 7分 五.解答题:(每小题7分,共计14分)
8 页 共 10 页
07年的自贡中考题
24.解△AED为直角三角形 ····································· 1分 理由:连结BE ·························································· 2分 ∵AB是直径 ∴∠BEA=90°························································· 3分 ∴∠B+∠BAE=90°················································ 4分 又∵AE平分∠BAC
∴∠BAE=∠EAD ·················································· 4.5分
∵ME切 O于点E ∴∠AED=∠B·············································································································· 5分 ∴∠AED+∠EAD=90° ······························································································ 6分 ∴△AED是直角三角形 ································································································ 7分 25.证明:①连结AD ································································································ 0.5分 ∵AB AC ∠BAC=90° D为BC的中点 ∴AD⊥BC BD=AD ·············································· 1分 ∴∠B=∠DAC=45° ···············································1.5分 又BE=AF
∴△BDE≌△ADF (S.A.S) ···································· 2分
∴ED=FD ∠BDE=∠ADF ····················································································· 2.5分 ∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°
∴△DEF为等腰直角三角形 ·························································································· 3分 ②若E,F分别是AB,CA延长线上的点,如图所示.
连结AD ··················································································································· 4分 ∵AB=AC ∠BAC=90° D为BC的中点 ∴AD=BD AD⊥BC ········································· 5分 ∴∠DAC=∠ABD=45° ∴∠DAF=∠DBE=135°··································5.5分 又AF=BE
∴△DAF≌△DBE (S.A.S)······························ 6分 ∴FD=ED ∠FDA=∠EDB ······························ 6.5分
∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°
∴△DEF仍为等腰直角三角形 ······················································································ 7分 六.解答题:(共8分) 26.解:(1)证明:∵抛物线y=x2-2ax+b2 经过点M(a c,0) ∴(a c)2 2a(a c) b2 0 ························································································· 1分 ∴a2 2ac c2 2a2 2ac b2 0
222b c a∴ ·············································································································· 1.5分 由勾股定理的逆定理得:
△ABC为直角三角形 ················································································· 2分 (2)解:①如图所示; ∵S△MNP 3S△NOP
∴MN 3ON 即MO 4ON ························· 2.5分 又M(a c,0) ∴N
a c
4
,0
······················· 3分
∴a c,
a c4
是方程x2-2ax+b2=0的两根
9 页 共 10 页
07年的自贡中考题
∴(a c) ∴c
35a
a c4
2a
··································································································· 3.5分
······················································································································ 4分
由(1)知:在△ABC中,∠A=90° 由勾股定理得b ∴cosC
ba 45
45a
··································································································· 4.5分
············································································································· 5分
②能···························································································································· 5.5分
222
2
由(1)知 y x 2ax b x
ax
2
a
2
c( x )
2
a
c
2
∴顶点D(a,··········································································································· 6分 c)
过D作DE⊥x轴于点E 则NE=EM DN=DM 要使△MND为等腰直角三角形,只须ED=
2∵M(a c, c) 0) D(a,
12
MN=EM ·············································· 6.5分
∴DE c2 EM c
∴c2 c 又c>0,∴c=1·························································································· 7分 由于c=a b=
53
45
a ∴a= b=
3
543
··································································· 7.5分
∴当a=,b=
3
543
,c=1时,△MNP为等腰直角三角形·············································· 8分
10 页 共 10 页
正在阅读:
2007,2008自贡数学中考(含答案)05-09
数电课后题答案(哈工大版)03-16
1.施工组织设计--广元市朝天区人民医院灾后重建门诊综合楼抗震加05-01
2017特色三人篮球赛策划书01-11
双联总结t Word 文档(3)06-18
水库地质勘察报告06-09
火星救援作文600字06-20
软件实训管理说明10-08
《地方政府学》期末考试选择题整理版10-04
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 自贡
- 中考
- 答案
- 数学
- 2007
- 2008
- 叶片加料机优化方法
- 部编版2021-2022学年二年级上册语文课文6第18课《古诗二首》同步练习C卷
- 锂离子电池隔膜材料项目IPO上市咨询(2013年最新细分市场+募投可研+招股书底稿)综合解决方案
- 怎么写英文请假条
- 小升初语文练习题-基础知识(已整)
- 电玩设备维修和保养
- 当前汉语言文学教育中存在的问题中英文对照
- 第一章 阶段复习课
- 中美合作办学协议_中文
- 沈阳水务集团有限公司用户发展工程管理办法(最终稿)
- 进行性肌营养不良症
- 华师大版九年级历史期中考试试卷
- 办公室内勤工作总结
- 《亮剑》经典语录
- 再生障碍性贫血诊断与治疗_冀兆魁
- 产业投资基金管理暂行办法
- 视觉电生理_说明书
- 萤石与重晶石浮选分离试验研究
- 提高企业内部控制有效性的对策思考
- 道路危险货物运输业户查验表