物理化学核心教程第二版(沉文霞 南京大学)最全课后习题答案

更新时间:2024-03-22 03:14:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章 气体 一.基本要求

1.了解低压下气体的几个经验定律;

2.掌握理想气体的微观模型,能熟练使用理想气体的状态方程;

3.掌握理想气体混合物组成的几种表示方法,注意Dalton分压定律和Amagat分体积定律的使用前提;

4.了解真实气体p?Vm图的一般形状,了解临界状态的特点及超临界流体的应用;

5.了解van der Waals气体方程中两个修正项的意义,并能作简单计算。 二.把握学习要点的建议

本章是为今后用到气体时作铺垫的,几个经验定律在先行课中已有介绍,这里仅是复习一下而已。重要的是要理解理想气体的微观模型,掌握理想气体的状态方程。因为了解了理想气体的微观模型,就可以知道在什么情况下,可以把实际气体作为理想气体处理而不致带来太大的误差。通过例题和习题,能熟练地使用理想气体的状态方程,掌握p,V,T和物质的量n几个物理量之间的运算。物理量的运算既要进行数字运算,也要进行单位运算,一开始就要规范解题方法,为今后能准确、规范地解物理化学习题打下基础。

掌握Dalton分压定律和Amagat分体积定律的使用前提,以免今后在不符合这种前提下使用而导致计算错误。

在教师使用与“物理化学核心教程”配套的多媒体讲课软件讲课时,要认真听讲,注意在Power Point动画中真实气体的p?Vm图,掌握实际气体在什么条件下才能液化,临界点是什么含义等,为以后学习相平衡打下基础。 三.思考题参考答案

1.如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理? 答:将打瘪的乒乓球浸泡在热水中,使球的壁变软,球中空气受热膨胀,可使其恢复球状。采用的是气体热胀冷缩的原理。

2.在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。试问,这两容器中气体的温度是否相等?

答:不一定相等。根据理想气体状态方程,若物质的量相同,则温度才会相等。

3. 两个容积相同的玻璃球内充满氮气,两球中间用一根玻管相通,管中间有一汞滴将两边的气体分开。当左边球的温度为273 K,右边球的温度为293 K时,汞滴处在中间达成平衡。试问:

(1) 若将左边球的温度升高10 K,中间汞滴向哪边移动? (2) 若将两个球的温度同时都升高10 K,中间汞滴向哪边移动?

答:(1)左边球的温度升高,气体体积膨胀,推动汞滴向右边移动。 (2)两个球的温度同时都升高10 K,汞滴仍向右边移动。因为左边球的起始温度低,升高10 K所占的比例比右边的大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边的比右边的大。

4.在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。请估计会发生什么现象?

答:软木塞会崩出。这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。如果软木塞盖得太紧,甚至会使保温瓶爆炸。防止的方法是,在灌开水时不要灌得太快,且要将保温瓶灌满。

5.当某个纯的物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?

答:升高平衡温度,纯物质的饱和蒸汽压也升高。但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。当气体的摩尔体积与液体的摩尔体积相等时,这时的温度就是临界温度。

6.Dalton分压定律的适用条件是什么?Amagat分体积定律的使用前提是什么?

答:这两个定律原则上只适用于理想气体。Dalton分压定律要在混合气体的温度和体积不变的前提下,某个组分的分压等于在该温度和体积下单独存在时的压力。Amagat分体积定律要在混合气体的温度和总压不变的前提下,某个组分的分体积等于在该温度和压力下单独存在时所占有的体积。

7.有一种气体的状态方程为 pVm?RT?bp (b为大于零的常数),试分析这种气体与理想气体有何不同?将这种气体进行真空膨胀,气体的温度会不会下降?

答:将气体的状态方程改写为 p(Vm?b)?RT,与理想气体的状态方程相比,这个状态方程只校正了体积项,未校正压力项。说明这种气体分子自身的体积不能忽略,而分子之间的相互作用力仍可以忽略不计。所以,将这种气体进行真空膨胀时,气体的温度不会下降,这一点与理想气体相同。

8.如何定义气体的临界温度和临界压力?

答:在真实气体的p?Vm图上,当气-液两相共存的线段缩成一个点时,称这点为临界点。这时的温度为临界温度,这时的压力为临界压力。在临界温度以上,无论加多大压力都不能使气体液化。

9.van der Waals气体的内压力与体积成反比,这样说是否正确?

?a?答:不正确。根据van der Waals气体的方程式,?p?2??Vm?b??RT,其

Vm??中

a被称为是内压力,而a是常数,所以内压力应该与气体体积的平方成反比。 2Vm10.当各种物质都处于临界点时,它们有哪些共同特性?

答:在临界点时,物质的气-液界面消失,液体和气体的摩尔体积相等,成为一种既不同于液相、又不同于气相的特殊流体,称为超流体。高于临界点温度时,无论用多大压力都无法使气体液化,这时的气体就是超临界流体。

四.概念题参考答案

1.在温度、容积恒定的容器中,含有A和B两种理想气体,这时A的分压和分体积分别是pA和VA。若在容器中再加入一定量的理想气体C,问pA和VA的变化为 ( )

(A) pA和VA都变大 (B) pA和VA都变小 (C) pA不变,VA变小 (D) pA变小,VA不变

答:(C)。这种情况符合Dalton分压定律,而不符合Amagat分体积定律。 2.在温度T、容积V都恒定的容器中,含有A和B两种理想气体,它们的物质的量、分压和分体积分别为nA,pA,VA和nB,pB,VB,容器中的总压为p。试

判断下列公式中哪个是正确的? ( )

(A) pAV?nART (B) pVB?(nA?nB)RT

(C) pAVA?nART (D) pBVB?nBRT

答:(A)。题目所给的等温、等容的条件是Dalton分压定律的适用条件,所以只有(A)的计算式是正确的。其余的n,p,V,T之间的关系不匹配。

3. 已知氢气的临界温度和临界压力分别为TC?33.3 K , pC?1.297?106 Pa。有一氢气钢瓶,在298 K时瓶内压力为98.0?106 Pa,这时氢气的状态为 ( )

(A) 液态 (B) 气态 (C)气-液两相平衡 (D) 无法确定

答:(B)。仍处在气态。因为温度和压力都高于临界值,所以是处在超临界区域,这时仍为气相,或称为超临界流体。在这样高的温度下,无论加多大压力,都不能使氢气液化。

4.在一个绝热的真空容器中,灌满373 K和压力为101.325 kPa的纯水,不留一点空隙,这时水的饱和蒸汽压 ( )

(A)等于零 (B)大于101.325 kPa (C)小于101.325 kPa (D)等于101.325 kPa 答:(D)。饱和蒸气压是物质的本性,与是否留有空间无关,只要温度定了,其饱和蒸气压就有定值,查化学数据表就能得到,与水所处的环境没有关系。

5.真实气体在如下哪个条件下,可以近似作为理想气体处理?( )

(A)高温、高压 (B)低温、低压 (C)高温、低压 (D)低温、高压

答:(C)。这时分子之间的距离很大,体积很大,分子间的作用力和分子自身所占的体积都可以忽略不计。

6.在298 K时,地面上有一个直径为1 m的充了空气的球,其中压力为100 kPa。将球带至高空,温度降为253 K,球的直径胀大到3m,此时球内的压力为 ( )

(A)33.3 kPa (B)9.43 kPa (C)3.14 kPa (D)28.3 kPa

答:(C)。升高过程中,球内气体的物质的量没有改变,利用理想气体的状态方程,可以计算在高空中球内的压力。

n?p1V1pV?2 2 RT1RT2pVT100kP?a p2?112?V2T1298K?r253K?1????3.14 k Par?2?37.使真实气体液化的必要条件是 ( )

(A)压力大于pC (B)温度低于TC (C)体积等于Vm,C (D)同时升高温度和压力

答:(B)。TC是能使气体液化的最高温度,若高于临界温度,无论加多大压力都无法使气体液化。

8.在一个恒温、容积为2 dm3的真空容器中,依次充入温度相同、始态为100 kPa,2 dm3的N2(g)和200 kPa,1dm3的Ar(g),设两者形成理想气体混合物,则容器中的总压力为 ( ) (A)100 kPa (B)150 kPa (C)200 kPa (D)300 kPa

答:(C)。等温条件下,200 kPa,1dm3气体等于100 kPa,2dm3气体,总压为p?pA?pB=100 kPa+100 kPa=200 kPa 。

9.在298 K时,往容积都等于2 dm3并预先抽空的容器A、B中,分别灌入100 g和200 g水,当达到平衡时,两容器中的压力分别为pA和pB,两者的关系为 ( )

(A)pApB (C)pA=pB (D)无法确定

答:(C)。饱和蒸气压是物质的特性,只与温度有关。在这样的容器中,水不可能全部蒸发为气体,在气-液两相共存时,只要温度相同,它们的饱和蒸气压也应该相等。

*(2)用数学的方法来证明。藉助于Maxwell方程(见第三章),可以导出一个重要关系式

??U???p??T?????p ?V?T??T??V??p?对已知方程p(Vm?b)?RT,求??,

?T??V??U???p??T ?????p ?V?T??T??V ?TR?p?p?p?0

(Vm?b)??V???U???p??T?p或者,在公式?的双方,都乘以?????,得 ?V?T??T??V??p?T??V???U???V???p???V? ??T?p???? ??????V?p?T?p?p??T???V??T?T??T??p???T???V?等式左边消去相同项,并因为????1,所以得 ??????T?V??V?p??p?T??U???V???V? ???T?p??? ???p?T?p??p??T??T ??TRR?T?0 pp这说明了,在温度不变时,改变体积或压力,热力学能保持不变,所以只有(B)

是正确的。 五.习题解析

1.(1)一个系统的热力学能增加了100 kJ,从环境吸收了40 kJ的热,计算系统与环境的功的交换量。

(2)如果该系统在膨胀过程中对环境做了20 kJ的功,同时吸收了20 kJ的热,计算系统的热力学能变化值。

解:(1)根据热力学第一定律的数学表达式?U?Q?W

W??U?Q1?00 kJ?40 k?J 6 即系统从环境得到了60 kJ的功。

(2)根据热力学第一定律的数学表达式?U?Q?W

?U?Q?W? J20 kJ?20 k?系统吸收的热等于对环境做的功,保持系统本身的热力学能不变。 2.在300 K时,有10 mol理想气体,始态的压力为1 000 kPa。计算在等温下,下列三个过程所做的膨胀功。

(1)在100 kPa压力下体积胀大1 dm3 ;

(2)在100 kPa压力下,气体膨胀到终态压力也等于100 kPa ; (3)等温可逆膨胀到气体的压力等于100 kPa 。 解:(1)这是等外压膨胀

W??pe?V??100 kPa?10?3m3??100 J

(2)这也是等外压膨胀,只是始终态的体积不知道,要通过理想气体的状态方程得到。

?nRT(V?V)??p W??p?e212?p2nR?T??p1??2p??nR??T1 ?p?1???100?? ??10?8.314?300???1?? J??22.45 kJ

?1000???(3)对于理想气体的等温可逆膨胀 W?nRTlnV1p?nRTln2 V2p1 ?(10?8.314?300) J?ln100??57.43 kJ 10003.在373 K的等温条件下,1 mol理想气体从始态体积25 dm3,分别按下列四个过程膨胀到终态体积为100 dm3。

(1)向真空膨胀; (2)等温可逆膨胀;

(3)在外压恒定为气体终态压力下膨胀;

(4)先外压恒定为体积等于50 dm3 时气体的平衡压力下膨胀,当膨胀到50 dm3以后,再在外压等于100 dm3 时气体的平衡压力下膨胀。

分别计算各个过程中所做的膨胀功,这说明了什么问题? 解:(1)向真空膨胀,外压为零,所以 W1?0 (2)理想气体的等温可逆膨胀

W2?nRTlnV1 V2 ?(1?8.314 ?373)J?ln (3)等外压膨胀

25??4.30 kJ 100nRT W3??pe(V2?V)1??p(V?V)??(V2 ?V)1221V2 ??(1?8.3?14373) J?(0.?130.1 m0.0235?)?m 33 kJ2. (4)分两步的等外压膨胀

?V)1?p(e,VV) W4??pe,(1V22?3

??nRTnRT(V2?V1)?(V3?V)2 V2V3?V?V?2550??2? ?nRT?1?1?2?1??nRT??V3??50100??V2 ??nRT?(?1?8.314?373)? J? 3.从计算说明了,功不是状态函数,是与过程有关的量。系统与环境的压力差越小,膨胀的次数越多,所做功的绝对值也越大。理想气体的等温可逆膨胀做功最大(指绝对值)。

4.在一个绝热的保温瓶中,将100 g处于0°C的冰,与100 g处于50°C的水混合在一起。试计算:

(1)系统达平衡时的温度;

(2)混合物中含水的质量。已知:冰的熔化热Qp?333.46 J?g?1,水的平均等压比热容?Cp??4.184 J?K?1?g?1。

解:(1)首先要确定混合后,冰有没有全部融化。如果100 g处于0°C的冰,全部融化需吸收的热量Q1为

g Q1?100 ?1333.4??6 J?g3 3.346 kJ100 g处于50°C的水降低到0°C,所能提供的热量Q2为

Q2?100g?4.184 J?K?1?g?1?(?50K)??20.92 kJ

显然,水降温所能提供的热量,不足以将所有的冰全部融化,所以最后的混合物还是处于0°C。

(2)设到达平衡时,有质量为x的冰融化变为水,所吸的热刚好是100 g处于50°C的水冷却到0°C时所提供的,即

1?g x?333.46? ?J20 . 9 2 k J

解得 x?62.74 g所以混合物中含水的质量为:

(62.74?100) g?162.74 g

5.1 mol理想气体在122 K等温的情况下,反抗恒定外压10.15 kPa,从10 dm3膨胀到终态体积100.0 dm3 ,试计算Q,W,ΔU和ΔH。

解:理想气体等温过程,?U??H?0 W??pe(V2?V)1

??10.15 kPa?(100?10)?10?3 m3??913.5 J

Q??W?913.5 J

6.1 mol单原子分子的理想气体,初始状态为298 K,100 kPa,经历了?U?0的可逆变化过程后,体积为初始状态的2倍。请计算Q,W和ΔH。 解:因为?U?0,对于理想气体的物理变化过程,热力学能不变,则温度也

不变,所以?H?0。

W?nRTlnV11?(1?8.314?298) J?ln??1.72 kJ V22 Q??W?1.72 kJ7.在以下各个过程中,分别判断Q,W,ΔU和ΔH是大于零、小于零,还是等于零。

(1) 理想气体的等温可逆膨胀; (2) 理想气体的节流膨胀;

(3) 理想气体的绝热、反抗等外压膨胀;

(4) 1mol 实际气体的等容、升温过程;

(5) 在绝热刚性的容器中,H2(g)与Cl2(g)生成HCl(g) (设气体都为理想气体)。

解:(1)因为理想气体的热力学能和焓仅是温度的函数,所以在等温的p,V,T过程中,?U?0, ?H?0 。膨胀要对环境做功,所以 W<0 ,要保持温度不变,则必须吸热,所以Q>0。

(2)节流过程是等焓过程,所以 ?H?0。理想气体的焦-汤系数?J-T?0,经过节流膨胀后,气体温度不变,所以?U?0。节流过程是绝热过程,Q?0。因为?U?0,Q?0,所以W?0。

(3)因为是绝热过程,Q?0,?U?W。等外压膨胀,系统对外做功,

W??pe?V<0,所以?U<0。 ?H??U??(pV)??U?nR?T<0。

(4)等容过程,W?0,?U?QV。升温过程,热力学能增加,?U>0,故

QV>0。

温度升高,体积不变,则压力也升高, ?H??U?V?p>0。

(5)绝热刚性的容器,在不考虑非膨胀功时,相当于一个隔离系统,所以

Q?0,W?0,?U?0。这是个气体分子数不变的放热反应,系统的温度和压

力升高

?H??U??(pV)??U?V?p>0

或 ?H??U?(?pV)??U ?nR>?T08.在300 K时,1 mol理想气体作等温可逆膨胀,起始压力为1 500 kPa,终态体积为10 dm3。试计算该过程的Q,W,?U和 ?H 。

解: 该过程是理想气体的等温过程,故?U??H?0。设气体的始态体积为V1,

nRT11 mol?8.314 J?mol?1?K?1?300 K V1???1.66 dm3

p11 500 kPa W?nRTlnV1 V2

本文来源:https://www.bwwdw.com/article/mma8.html

Top