Fault Sensitivity Analysis and Reliability Enhancement of Analog-to-Digital Converters

更新时间:2023-07-24 11:33:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

1

FaultSensitivityAnalysisandReliabilityEnhancementofAnalog-to-DigitalConverters

MandeepSingh,Member,IEEE,andIsraelKoren,Fellow,IEEE

Abstract—Reliabilityofsystemsusedinspace,avionicandbiomedicalapplicationsishighlycritical.Suchsystemsconsistofananalogfront-endtocollectdata,anAnalog-to-DigitalCon-verter(ADC)toconvertthecollecteddatatodigitalformandadigitalunittoprocessit.Thoughconsiderableamountofresearchhasbeenperformedtoincreasethereliabilityofdigitalblocks,thesamecannotbeclaimedformixedsignalblocks.Thereliabilityenhancementwhichweemploystartswithfaultsensitivityanalysisfollowedbyredesign.Thedataobtainedfromthesensitivityanal-ysisisusedtogradeblocksbasedontheirsensitivitytofaults.Thehighlysensitiveblockscanthenbereplacedbymorereliablealter-natives.Theimprovementgainedbyoptingformorerobustim-plementationsmightbelimitedduetothenumberofpossibleim-plementations.Inthesecasesalternativereliabilityenhancementtechniquessuchasaddingredundancymayprovidefurtherim-provements.ThestepsinvolvedinthereliabilityenhancementofADCsareillustratedinthispaperby rstproposingasensitivityanalysismethodologyforα-particleinducedtransientsandthensuggestingredesigntechniquestoimprovethereliabilityoftheADC.Anovelconceptofnodeweightsspeci ctoα-particletran-sientsisintroducedwhichimprovestheaccuracyofthesensitivityanalysis.Thefaultsimulationsshowthat,usingtechniquessuchasalternativerobustimplementations,addingredundancy,patterndetectionandtransistorsizing,considerableimprovementsinre-liabilitycanbeattained.

IndexTerms—FaultTolerance,FaultSensitivity,Analog-to-DigitalConverters,Alphaparticles,Reliability,TransientFaults

I.INTRODUCTION

Criticalsystemsusedinspace,avionicsandbiomedicalap-plicationshavetobehighlyreliablesincetheeffectofafaultinthesesystemscanbecatastrophic.Thereliabilityofthesesys-temscanbeincreasedbyredesigningthemforimprovedfaulttolerance.Thesystemunderredesignundergoesafaultsensi-tivityanalysisbeforeandaftertheredesigntogaugethereliabil-ityimprovement.Faultsensitivityanalysisinvolvesinjectionoffaultseitherintheactualhardwareorinsoftwarethroughsimu-lation.Thelattermethodispreferablesincetheformerrequiresaprototypewhichisexpensive.Thelatteralsoenablesanearlyanalysisinthedesignphasethuseliminatingcostlyredesign.Twotypesoffaultshavebeenknowntoaffecttheproperworkingofacircuit:permanentandtransient.Whereasper-manentfaultscanbeintroducedduringthefabricationstageandinthe eld,transientfaultsarecausedinthe eldduetoElectroMagneticInterference(EMI)suchaspowertransients,

M.SinghiswithAdvancedMicroDevicesintheComputationProductsGroup,Austin,TX78704USA.

I.KoreniswiththeDepartmentofElectricalandComputerEngineering,Uni-versityofMassachusetts,Amherst,MA01003,USA.

ThisworkhasbeensupportedinpartbyNSFundercontractMIP-9710130andbyJPLundercontract961294.

crosstalkandvariousparticlehitsinradiationintenseenviron-mentslikespace.Theeffectoftransientfaultsistotemporarilychangethebehaviorofthecircuitoftenresultinginerroneousoutputs.Thistypeoffaultshasbeenknowntoaccountfor85%ormorefailuresindigitalsystems[1],[2].Sincethismightbecatastrophicincriticalapplications,thesecircuitsusuallyincor-poratesomemeasurestoincreasetheirfaulttolerance.

Thereliabilityofasystemisdeterminedbythefaulttoler-anceofitsconstituentblocks.Systemsinspace,biomedicalandavionicsapplicationsconsistofananalogfront-endtocol-lectdataforcontrolandobservationpurposesandadigitalunitwhichprocessesthecollecteddata.Digitalcircuitshavebeenstudiedextensivelyfortheirsensitivitytotransientfaults[3],[4]andmanytechniqueshavebeensuggestedtoimprovetheirfaulttolerance[4],[5].Incontrast,verylittlehasbeendonetoaddresstheissueoffaulttoleranceinanalogcircuitsandADCswhichareintegralpartsofalmostallmixed-signalcir-cuits.Hence,itisnecessarytoexploretechniquestoincreasethefaulttoleranceofADCs.Theprocessofincreasingthetol-eranceofacircuittotransientfaultscanbedividedintotwosteps:

(i)Gradingblocksofthecircuitbasedontheirsensitivities

totransientfaultsandidentifyingcritical(i.e.,mostsensi-tive)blocks.

(ii)Increasingthefaulttoleranceoftheidenti edcritical

blocks.Thisworkaddressesbothofthesestepsby rstproposingamethodologytoanalyzethesensitivityofanADCandthenbysuggestingtechniquestoincreasethereliabilityoftheADC.Thefaultinjectionexperiments,forgaugingthesensitivityofthedesignsaddressedinthiswork,wereperformedforα-particleinducedtransients.Thisisbecauseα-particleshavebeenidenti edasoneoftheenergeticnuclearparticlesthatcancauseatransientfault.However,thetechniquesdevelopedforthesefaultscanbeextendedtotransientfaultscausedbyothersources.α-particlesarefoundinspace[6]andintraceamountsinICsonthegroundduetodecayofradioactiveele-mentspresentinthepackagingmaterialorsolder[7].Thus,theapplicabilityofthisworkisnotrestrictedtosystemsinouterspacebutalsotoothergroundbasedcriticalsystems.

Thispaperisorganizedasfollows,SectionIIpresentsatax-onomyforADCsandprovidesabrieffunctionaldescriptionoftheADCsaddressedinthiswork.SectionIIIdescribesthesen-sitivityanalysismethodologyused.InSectionIVtheprocessofincreasingreliabilitybyoptingforrobustimplementationsandbyintroducingredundancyisdiscussed.SectionVsummarizesthe ndingsofthisworkandSectionVIdiscussesfuturework.

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

Fig.3.SuccessiveApproximationarchitecture

Fig.1.A ash

ADC

ENC EncoderCLK Clock

INT Interpolator

SHA Sample & Hold AmpliflierREF Reference Voltage Generator

FA* Folding AmpliflierC* ComparatorL* Latch

Fig.4.SuccessiveApproximationADC

Fig.2.A4-bitFoldingandInterpolatingADC

II.ANALOG-TO-DIGITALCONVERTERS

AnalogtoDigitalConvertersareintegralpartsofdataacqui-sitionsystemsandactasaninterfacebetweenanalogblocksthatacquirethedataanddigitalblocksthatprocessthedata.ADCscanbebroadlyclassi edintohigh-speedandhigh-accuracyarchitectures.High-speedarchitecturesinclude ash,foldingandinterpolating,pipelined,multi-stepandinterleavedADCs[8].High-accuracyarchitecturesincludesuccessiveap-proximation,delta-sigmaandintegratingADCs[8].Thesetwocategoriestradeoffspeedvsaccuracy.Basedonthedemandsoftheapplication,oneoftheseADCscanbechosenaftercarefullyweighingthetradeoffs.Thefollowingsectionsbrie ydescribetheworkingoftheADCswhichhavebeenaddressedinthiswork.

A.FlashADC

Thisarchitectureisconceptuallythesimplestandpotentiallythefastest.Itemploys“parallelism”and“distributed”samplingtoachievehighconversionspeeds.Figure1showsablockdi-agramofanm-bit ashADC.Thecircuitconsistsof2mcom-parators,aresistorladdercomprising2mequalsegmentsandadecoder.Theladdersubdividesthemainreferenceinto2mequallyspacedvoltages,andthecomparatorscomparethein-putsignalwiththesevoltages.Forexample,iftheanaloginputisbetweenVjandVj+1,comparatorsA1throughAjproduce1sattheir

outputswhiletherestgenerate0s.Consequently,thecomparatoroutputsconstituteathermometercodewhichisconvertedtobinarybythedecoder.

B.FoldingandInterpolatingADC

Thelargeinputcapacitanceposedbythecomparatorsattheinputof ashADCsledtotheadventoffoldingandinterpolat-ing(FI)ADCs[9].FIADCsfoldtheinformationrepresentedbythereferencevoltageswhichcharacterizethequantizationlevels.Figure2showstheblockdiagramofa4-bitfoldingandinterpolatingADC.TheFAblocksinFigure2arefoldingam-pli ers,eachoneofwhichisaseriesofcross-coupleddifferen-tialstages[9].Thesampleandholdampli er(SHA)samplestheinputandfeedsittotwofoldingampli ers(FA1andFA2)andacomparator(CM)whichgeneratesthemostsigni cantbit.TheINTblockinterpolatesbetweenthefoldingampli eroutputs.TheINTblockoutputisfedtotheencoder(ENC)whichgeneratesthethreeleastsigni cantbitsofthe naldigi-taloutput.

C.SuccessiveApproximationADC

TheSuccessiveApproximation(SA)ADCsprogresslikeabinarysearchalgorithmtoarriveatthe naldigitaloutputwithanerrorofnomorethanhalftheleastsigni cantbit.Figure3illustratesthesuccessiveapproximationarchitecture,whichconsistsofafront-endSHA,acomparator,aregister(shift)andaDigital-to-AnalogConverter(DAC).The(shift)registerholdsthebitsthathavebeenconvertedstartingfromthemostsigni cantbit(MSB).ThisdigitalpatternisthenconvertedbytheDACtoanalogandthisvalueiscomparedagainsttheheldinput.Theoutputofthecomparatordecidesthevalueofthenextbit.Thus,the nalm-bitdigitalpatternisgeneratedinsuchamannerstartingfromtheMSBtotheleastsigni cantbittakingmcyclestogenerateanm-bitoutput.SuccessiveapproximationconvertersthatincorporatecapacitorDACsareusuallybasedonthechargeredistributionprinciple.Figure4showstheblockdiagramofachargeredistributionimplemen-tationofthesuccessiveapproximation(SA)[10]ADC.Forthiswork,anSAADCbasedonchargeredistributionwasimple-mented.TheprinciplecanbeillustratedusingFigure4,wheretheDACconsistsofbinary-weightedcapacitorsC1···Cn 1

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

x(n 6)DFF

x(n 7)

(Z)

x(n 1)

x(n)

DFF(Z)

1 1

x(n 5)DFF(Z)

x(n 2)DFF(Z)

1 1

x(n 4)DFF(Z)

DFF

x(n 3)DFF(Z)

1 1

Digital Decimation

Modulator

(Z)

1

Filter

h(0)h(1)h(2)h(3)

Fig.5. -ΣADC

y(n)

Fig.7.ADigitalDecimationFilter

aroundthemainlobe,andtherefore,onlyfourcoef cients(h(0)

toh(3))arerequired.

III.FAULTSENSITIVITYANALYSIS

Therearedifferentapproachestoinvestigatetheeffectsoftransientfaults.Hardwareprototypinghasbeenused[11]butistootimeconsumingandexpensive.Simulationbasedap-proachesincludeexhaustiveandMonte-Carlomethods.Ex-haustivesimulationsareaccuratebutbecomeintractableforlargedesigns.Monte-Carlomethods,thoughtractableforlargedesigns,arenotasaccurate.SincetheADCswhichhavebeenanalyzedinthisworkarerelativelysmall,wepreferredthemoreaccurateexhaustivesimulationapproachandusedHspice[12]forthispurpose.Thefollowingsectiondiscussesthetheo-reticalbasisforthefaultsensitivityanalysismethodologyusedforthiswork.Wepresentthetransientfaultmodelusedfortheanalysisandthetheoreticalbasisforthefaultsensitivityanal-ysismethodologyused.Wealsoillustratethevariouskindsofanalysisthatcanbeperformedwiththedataobtainedfromafaultsimulationrun.A.TransientFaultModel

Severaltransientfaultmodelshavebeenproposedin[13],[14].Sincethisworkconcentratesonα-particleinducedtran-sients,thedoubleexponentialα-particletransientmodelfortheinjectioncurrentproposedin[13]isused.Theinjectioncurrentduetoanα-particlestrikeonanode,denotedbyIinj,isgivenby

Iinj(t)=I0(e t/τ1 e t/τ2)(1)whereI0isthemaximumcurrent,τ1isthecollectiontimecon-stantforajunctionandτ2istheiontrackestablishmenttime

constant.Thetimeconstantsdependonseveralprocessrelatedfactors,andinthiswork,thetimeconstantsgivenin[15]areused:τ1=1.63×10 10secandτ2=0.5×10 10sec.I0canbecalculatedby

Qinj

I0=(2)

τ1 τ2whereQinjisthechargeinjectionlevelinCoulombs.Chargeinjectionlevelisafunctionoftheangleatwhichtheα-particlehits.I0canbepositiveornegativedependingonwhethertheα-particlehitsanNMOSdrainoraPMOSdrain[15].FigureFig.6. -ΣModulator

(Cj=2·Cj 1,j=2,···,n 1andC1=C0).Inthesam-plingmodethebottom-plateisgrounded(inCLinFigure4) 1toVrefaccordingtoabinarysearchalgorithm,suchthatthetopplateeventuallybecomes0.TheobjectiveduringtheconversionistodrivetozerothedifferencebetweentheDAC(convertlatch)outputandthesam-pledinput.Onebitisconvertedineachcycle,startingwiththemostsigni cantbit.Aprecisecapacitormatchingisrequiredforthisconversion.Currentfabricationtechnologiescatertothisrequirementquiteeffectively.D. -ΣADC

The -ΣADCfallsunderthecategoryofoversamplingconverterswhichhavebecomepopularforhigh-resolution,medium-to-lowspeedapplicationssuchashigh-qualitydigitalaudio.Figure5showstheblockdiagramofa -ΣADC.The -Σmodulatorisananalogcomponentandthedigitaldecimation lterisadigitalcomponent.Themostcommonimplementationofthe -Σmodulator(showninFigure6)pro-videsanoversampledserialoutputwhichisadigitalrepresen-tationoftheinputsignal.Thisserialoutputthusobtainedhashighfrequencynoiseinadditiontothesignalinformation.Thedigitaldecimation lterstage,followingthemodulator, ltersoutthisnoiseandprovidesahighresolutionoutput.Adigitallowpass lterrealizationinvolvesamultiplicationoftheserialbitpatternwithcoef cientswhichrepresentthesincfunction.Sinceanidealsincfunctionwouldneedanin nitenumberofcoef cients,practicalcasesimplementawindowedsincfunc-tion.Figure7showsablockdiagramofan8-pointdigital-decimation lter.DFFisadelayelementandx(i)istheserialinputattheithtimeinstance.Thecoef cientsaresymmetrical

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

Fig.8.(a)α-particlehitonthedrainofaPMOStransistor(b)Theα-particlehitmodeledasacurrentsource

0.020.0180.0160.014

1pC2pC3pC4pC5pC

Fig.10.Thesensitiveandinsensitivepartsofanode

0.0120.010.0080.0060.0040.002

00

1

2

3

4

5

6

Time (ns)

Fig.9.Currentpulsegeneratedasaresultofanα-particlestrike

8(a)showsthedrainofaPMOStransistorandtheeffectoftheinjectedcharge.Anα-particlehitgenerateselectron-holepairsalongitstrajectory.Thesechargecarriersdriftunderthein u-enceoftheelectric eldacrossthejunctiongivingrisetoaninjectioncurrent(Iinj)thatcanbemodeledbyequation(1).Vistheinitialvoltageonthenode(drainofthePMOS),dVisthevoltagechangeduetotheα-particlehitandisdependentonIinjandtheloadconnectedtothenode.Figure8(b)showsthecurrentsourceequivalentmodelofthetransientfaultcausedbyanα-particlehit.Figure9showsthecurrentpulsesthataregen-eratedasaresultofanα-particlehitfordifferentvaluesoftheinjectioncharge.Thus,anα-particlehitonacircuitnodecanbesimulatedbyconnectingacurrentsourceinjectingacurrentpulseofIinjatthesaidnode.B.TheoreticalBasis

Traditionally,faultconditionsinsimulationstrategieshavebeenvariedalongthreedimensions:space,timeandinjectionlevel.Itisimportanttoconsidervaryingtheinputstothecircuitaswell,sincethiscanhaveabearingonselectingcriticalblocksforredesign.Thisisduetothefactthatablockidenti edasacriticalblockforoneinputmaynotbeassensitiveforanotherinput.Hence,criticalblocksshouldbeidenti edbasedonthedistributionoftheinputvalues.Thecircuitshouldbeoptimizedforinputvalueswhicharethemostprobable.

Thedesign owofADCscanbebroadlyclassi edintothreesteps:1)Choosingthearchitecturebasedontherequirementsandspeci cations

oftheapplication.2)Schematicentryoftheselectedarchitectureandfunctionalveri cation.3)Finallayoutdesignofthecircuitandare-veri cationwithparasitics.Sincefaultconditionshavetobevariedspatially,thephysicaldesignstep(3)isthemostsuitablepointtocarryoutthefaultsensi-tivityanalysis.However,thecomplexityofthedesigneffort

fori=1,2,···,nwherenisthenumberofcircuitnodesinablock.ThePOFisnowde nedas

n1

Ei(4)POF=

ni=1

neededtocreatethelayoutemphasizestheneedtomovetheanalysistoanearlierstage.Whenmovingthefaultsensitivityanalysisupinthedesigncycleweexpecttoreducethenumberoftimeconsumingdesigniterations,butshouldalsoexpecttopayapenaltyintermsofaccuracyoftheresults.

Faultsensitivityanalysisatthetransistorlevelschematiccanbedonebyselectingnodesinthecircuitandinjectingα-particletransientsatthesenodes.Wede nethefaultsensitivityofablockastheprobabilitythatanα-particlehittingtheblockwillresultinacircuitfailureandwedenoteitbyPOF(ProbabilityofFailure).Foragiveninputvoltage,POFiscalculatedasfollows.Anα-particletransientisinjectedintoeachnodeoftheblockandwedenotetheoutcomeoftheexperimentbyEi:

1iftheinjectionintonodeiresultsin

afailureEi=(3)

0otherwise

Current (A)

Thiscalculationassignsequalweightstoallnodes,whichmaycauseinaccuraciessincetheareasofdifferentnodesmayvaryconsiderably.Ahigheraccuracycanbeachievedbyas-signingtoeachnodeaweightwhichisproportionaltotheareathatitconsumes[16].However,acircuitnodemaymapontotwotypesofareainthelayout:fault-insensitivearea(inter-connect)andfault-sensitivearea(terminalsoftransistorscon-nectedtothenode)(seeFigure10).Itisknownthatanα-particlehithasapotentialofresultinginanerroronlyifithitstheactivearea(fault-sensitivearea)ofatransistor[4].Ahitattheinterconnect(fault-insensitivearea)willnotcauseatran-sientfaultbecauseofthelackofasigni cantelectric eldinthatarea.Wetherefore,assigntonodeiaweight,denotedbywi,givenby

As,i

(5)wi=i=1As,iwhereAs,iistheareaofthefault-sensitiveportionofnodei.ThesizesofthetransistorsintheschematicscanserveasagoodestimateforAs,i.WenowcalculatethePOFas

POF=

n i=1

wiEi(6)

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

TABLEI

POF

OVERALLARECOMPARISONFORREPRESENTATIVE(1.25V,1.85V,2.35V)VSCOMPLETE(1.05VTO2.55VINSTEPSOF0.1V)INPUTSFOR

THE4-BITFLASHADC

Fig.11.WeightedvsNon-weighted(logscale)approachfortheFIADC(averagedoverallinputs)

Fig.12.WeightedvsNon-weightedapproachfortheSAADC(averagedover

allinputs)

Figures11and12showtheblocksensitivitiesfortheFIandSAADCs,respectively,withthenon-weightedandtheweightedapproach.These guresshowthatthelessaccuratenon-weightedanalysismayleadtoincorrectconclusions.Forexam-ple,SHAinFigure11hasthehighestblocksensitivityaccord-ingtothenon-weightedanalysisbuthasaconsiderablylowersensitivitythanFA1andFA2accordingtotheweightedanal-ysis.Eventhemoreaccuratesensitivitymetricpresentedin(6)treatsallfaultsuniformly.However,somefaultsmayre-sultinlargererrorsattheADCoutputthanotherfaults.Hence,anothermetric,namely,therelativeerrordenotedbyErel,isproposed.Erelisgivenby

Erel= V/Vexp,

V=|Verr Vexp|

(7)

wherepisthenumberofinputvaluesforwhichthesimulationwasperformed,qisthenumberofinjectionlevelsconsideredandristhenumberoftimeinstancesatwhichfaultswerein-jected.Erel,iiscalculatedusing(7)andwiiscalculatedusing(5).TheMaximumRelativeError(MRE)canbeusedasanad-ditionalmetricwhichprovidestheworstcasemagnitudeoftheerror.ThechoiceofametricforsensitivityanalysisisbasedonthedesignobjectivesandnotontheADCarchitecture.Ourearlierworkin[17]hasshownthattheuseoftheAREmetricmaysometimesmasksensitivityimprovements.Therefore,thechoiceofametric(POF,ARE)togaugethesensitivityshouldbebasedonwhetherthecandidateapplicationrequiresareduc-tioninthefrequencyoferrorsorthemagnitudeoferror.Basedontherequirementsofthesystem,anappropriatemetriccanbechosenforthefaultsensitivityanalysis.FollowingarethestepsinvolvedinthefaultsensitivityanalysisofanADC:(i)Calculateweightsofthenodes(wi).

(ii)Performtransientfaultsimulationsonallnodes.

(iii)Basedonthedesignobjectives,useequation(6)or(8)to

calculatethesensitivityoftheconstituentblocks.

Inthiswork,thereductionoffrequencyoferrorsfortheFIandSAADCs,andreductionofrelativesizeoferrorsforthe ashand -ΣADCsweretheassumeddesignobjectives.Therefore,POFhasbeenusedasthesensitivitymeasurefortheFIandSAADCs,andAREhasbeenusedforthe ashand -ΣADCs.C.ADCSensitivityAnalysis

Transientfaultinjectionexperimentswereperformedon4-bittransistorlevelimplementationsofsuccessiveapproxima-tion,foldingandinterpolating, ashand -ΣADCs.There-sultsobtainedfromthesimulationshavebeenusedtogradethefaultsensitivitiesoftheblocksintheADC.Itisessentialtovarytheinputsinthesensitivityanalysisasitcanhaveabearingonselectingcriticalblocksforredesign.However,per-forminganexhaustivesimulationforallpossibleinputsispro-hibitivelyexpensive.Therefore,aschemeofselectingthreerepresentativeinputs,oneeachinthelower,middleandup-perinputrangesandperformingexhaustivesimulationonlyforthoseinputs,wasstudied.Thisstudywasperformedontheanaloganddigitalblocksofa4-bit ashADC.Thesimula-tionswereperformedforeightinjectionlevelsandfourtimeinstancesforeachnode.TheAREandPOFobtainedwiththerepresentativeinputsandwiththecompleterangeofinputs(ataquantizationstepof0.1v)werecompared.TablesIandIIshowthattheAREandPOFforbothcasesarereasonablyclose.Therefore,thesimulationsintheremainingpartsofthisworkwhereVexpistheexpectedcorrectoutputandVerristheerro-neousoutput.

Basedonthede nitionofrelativeerror,auni edmetriccalledtheAverageRelativeError(ARE)whichincludesthemagnitudeoferror,isproposed.IncontrasttothePOFwherealltheerrorsaretreateduniformly,AREgivesmoreweighttoα-particlehitswhichcauselargerrelativeerrorsattheADCoutput.Thesensitivity,characterizedbytheARE,isgivenby

ARE=

n i=1

¯rel,iwiE

(8)

¯rel,iistheaveragerelativeerrorduetoaninjectionatwhereE

nodeiandiscalculatedusing

¯rel,iE

k

1

Erel,i,=

ki=1

k=p·q·r(9)

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

TABLEII

POF

1

0.1

OVERALLPOFCOMPARISONFORREPRESENTATIVEVSCOMPLETE

INPUTSFORTHE4-BITFLASHADC

0.01

0.001

TABLEIII

FLASHADC

BLOCKSENSITIVITY,

0.0001

Fig.14.

Blocksensitivity(logscale)variationwithinjectionlevels(FI),p=3,r=4

0.1

SHAFA1

q=8,r=4

POF

0.01

1

0.1

0.001

012345678

Charge Injected (in pC)

POF

0.01

Fig.15.Blocksensitivities(logscale)variationwithinjections(FI),p=3,r=4

0.001

1Maximum Relative Error

0.0001

0.8

Fig.13.Blocksensitivity(logscale)variationwithinputsfortheFIADC,q=14,r=4

0.6

0.4

havebeenperformedforonerepresentativeinputinthelower,middleandupperinputranges.

1)FlashADC:TheAREmetric(8)wasusedforevaluatingthesensitivityoftheblocksina ashADC.TableIIIshowsthattheanalogblockofthe ashADCwhichcomprisesofcompara-torsismoresensitivethanthedigitalblock.Itisalsoseenthattheanalogblockremainsmoresensitivethanthedigitalblockforalltheinputsubrangesconsidered.Thus,forthe ashADCtheanalogblockisidenti edasthecriticalblock.

2)FoldingandInterpolatingADC:ThevariationsofthesensitivityofthisADCtochangesininputvoltageandlevelofinjectionwereinvestigated.ThePOFmetric(6)wasusedforevaluatingthesensitivityoftheindividualblocks.Theana-logblockinthisADCwasfurtherpartitionedasitcomprisedofmorecomponentsasopposedtothe ashADCwhereintheanalogblockcomprisedofcomparatorsonly.Figure13showsthesensitivitiesoftheblocksforthethreeinputlevels.This g-ureshowsthatthesensitivitiesofsomeblockstoα-particlehitsvaryfromoneinputvaluetoanother(C2andC3inFigure13).Thecomparators(C1throughC4)inFIwerefoundtobemoresusceptiblewhentheiroutputisalogic0.ThiscorrespondstoanADCinputintherangeof1.42-1.52vforthecompara-torC2.Hence,itcanbeconcludedthatC2isrelativelymoresensitiveintheseinputranges(asisshowninthebargraphcor-respondingtoaninputof1.5vinFigure13).Figure14showsthatthesensitivitiesofblocks

donotvaryconsiderablyifthe

0.2

Fig.16.Maximumrelativeerror(FI),p=3,q=14,r=4

injectionlevelismorethan6pico-Coulomb(pC).Thus,thereisnoneedtorepeatthesensitivityanalysisforinjectionslevelsbeyond6pC.

Figure15showsthatforlowerinjectionlevelstheorderingofcriticalblocksmightchange(SHAismoresensitivethanFA1from0pCto0.25pC).This gurealsoshowsthatbeyondacertaininjectionlevelthereisnofurtherincreaseinblocksensi-tivity.Figure16showsthemaximumrelativeerrorduetoeachblock.Theresultsagainshowthataswegettoblocksclosertotheinputthemaximumrelativeerrorincreases,reachingapeakforthesampleandholdampli ers(SHAinFigure16).Thus,theSHAandFAblockshavebeenidenti edascriticalblocksfortheFIADC.

3)SuccessiveApproximationADC:ThePOFmetric(6)wasusedforevaluatingthesensitivityoftheblocksintheSuc-cessiveApproximation(SA)ADC.Figure17showsthesensi-tivitiesoftheblocksforthethreerepresentativeinputs.Itisev-identfromthis gurethatthesensitivitiesofsomeblockstoα-particlehitsvaryfromoneinputvaluetoanother(outputlatch,convertlatchinFigure17).Figure18showsthatforlowerinjec-

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

Fig.17.BlocksensitivityvariationwithinputsfortheSAADC,q=14,r

=32

Fig.20.Maximumrelativeerror(SA),p=3,q=14,r=32

outputlatch

sha

0.1

0.0090.008

0.01

0.0070.006POF

2

0.001

0.0050.004

1e 05

Charge injected (pC)

468

0.0030.002

01

Bit Position

23

Fig.18.

r=32

Blocksensitivities(logscale)variationwithinjections(SA),p=3,

Fig.21.Sensitivityofthefourlatchesinconvertlatch(SA),p=3,q=14,r=32

0.080.070.060.05

-ΣADC

POF

0.040.030.020.0100

TABLEIV

SENSITIVITYANALYSIS,

p=2,q=8,r=16

sampleBit4Bit3Bit2Bit1readout

Injection Time

Fig.19.VariationofPOFwithfaultinjectiontimes(SA),p=3,q=14

tionlevelstheorderingofcriticalblocksmightchange(SHAismoresensitivethantheoutputlatchfrom0pCto0.25pC).This gurealsoshowsthat,asfortheFIADC,beyondacertainin-jectionlevelthereisnofurtherincreaseinthesensitivityoftheblocksintheSAADC.Figure19showsthevariationinsensi-tivitywithfaultsinjectedatdifferenttimeinstancesforasuc-cessiveapproximationADC.TheresultsindicatethattheADCismoresusceptibletoα-particlehitsduringtheearlypartofeachbitconversioncycle.Figure20showsthemaximumrel-ativeerrorduetoeachblock.Ourresultsindicatethataswegettoblocksclosertotheinput,themaximumrelativeerrorin-creases,reachinga

peakforthesampleandholdampli ers(shainFigure20).Anotheranalysisperformedontheconvertlatchrevealedthatoutofthefourlatchesintheconvertlatch,thelatchcontainingthemostsigni cantbitisthemostsensitive(Figure21).Theoutputlatch,convertlatchandshahavebeenthusiden-ti edascriticalblocksthatshouldberedesignedtoimprovethereliabilityofthecircuit.

4) -ΣADC:The -ΣADCliketheSAADCtakessev-eralcyclestogeneratethe nalADCoutput.Thenumberofcyclesrequiredtogeneratethe naloutputisgovernedbytheoversamplingratioofthe -Σconverter.Forthe4-bit -ΣADCimplementedforthiswork,the -Σmodulatorgenerateseightbitsin8clockcycles.Theseeightbitsarethendigitally lteredandthe nal4-bitADCoutputisgeneratedatadeci-matedfrequency.Themiddlebits(bit3to6)amongtheeightbitsgeneratedbythe -Σmodulatorcontributemoretowardsthe nalADCoutputasthelarger ltercoef cientsaremulti-pliedbythesebits.However,thesebitsarenotnecessarilythemostsensitiveones.Therefore,itisofinteresttoanalyzethenumberoferrorsineachoftheeightbitsresultingfrominjec-tionsinthe -Σmodulator.Figure22showsthevariationofthenumberoferrorswithbitsgeneratedinthe rsttotheeighthclockcycles.Itisobservedthatthebitsgeneratedinthelatercyclesaremorepronetofaults.Thiscanbeattributedtothefactthatthebitgeneratedinthenthcycleisdependentontheoffsetstoredintheintegratorinthe(n 1)thcycle.Therefore,thebitgeneratedinthelastcycle(inthiscasethe8thcycle)willbesensitivetofaultsinjectedinallprecedingcyclesinadditiontothoseinjectedinthecurrentcycle.Asensitivityanalysisof

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

TABLEV

AreaSENSITIVITIESOFFOURCOMPARATORSWITHVARYINGINPUTSFOR4-BITFLASHADC,p=3,q=8,r=4

6005004003002001000

Number of Errors

TABLEVI

1

2

3

4

5

6

7

8

Bit Number

SENSITIVITIESOFTHE4-BITFLASHADCWITHDIFFERENT

COMPARATORS,p=3,q=8,r=4

Fig.22.Variationinnumberoferrorswithtimeforthe -ΣADC,p=3,q=8,r=16

Itisessentialtogaugetheimprovementthateachofthesetech-niquesoffersasthiswouldhelpthedesignertodecideonaneffectivefaulttolerancedesignstrategy.Thefollowingsectionsdescribeseveralredesigntechniques[21]andalsoillustratetheamountofsensitivityimprovementthatcanbegainedbyem-ployingthem.

A.AlternativeRobustImplementations

MostoftheADCbuildingblockslikethesampleandholdampli erandcomparatorshaveseveralpossibleimplementa-tionswhichtrade-offarea,speedandsusceptibilitytonoiseandparametricvariations.Theseimplementationsinherentlyhavedifferentsensitivitiestoα-particletransients.WhendecidingonanimplementationfortheADCinquestion,thesensitivityoffeasibleimplementationsshouldbecomparedandanappro-priateimplementationshouldbechosen.

1)FlashADC:Oursensitivityanalysisofthe4-bitFlashADChasidenti edtheanalogblockprimarilycomprisingofcomparatorsasthecriticalblock.Fourcomparatorswerethenconsideredforsensitivityevaluationtoidentifythemostrobustimplementation.

Tabatabaei’sComparator[18]isarecentimplementationofasinglestagecomparator.Suchsinglestagecomparatorsprovidethedesiredgaininmostcasesbuttheirdelaymaybetoohigh.Toalleviatetheproblemofhighdelay,comparatorswithmulti-plepreampli cationstageshavebeenproposed.Onesuchmul-tistagecomparatorimplementation(Hester’scomparator[20])incorporatespositivefeedbacktoachievethedesiredgain.An-othercomparator(Yee’scomparator[19])usesinvertersbiasedinthehighgainregionaspreampli ers.Thesimplicityofthismultistagecomparatorhasmadeitquitepopularintheresolu-tionrangefrom8to10bits.TableVshowstheresultsofsen-sitivityanalysisofthefouralternativecomparatorimplemen-tations.Theinitialversionofthe4-bit ashADC(discussedFig.23.DigitalDecimationFilterinthe -ΣADC

the -ΣADCrevealedthatthedigitaldecimation lter(de-pictedinFigure23)isthecriticalblock(seeTableIV).There-sultsshownaboveillustratethedifferentkindsofanalysisthatcanbeperformedtoaidthedesignerinarrivingatamorereli-ableimplementation.ThismethodologycanbeusedtoanalyzethefaultsensitivitiesoftheconstituentblocksinanyADCar-chitectureatanearlystageinthedesigncycle,thusreducingconcept-to-silicontime.

IV.RELIABILITYIMPROVEMENTTECHNIQUESAsensitivityanalysisidenti escriticalblocksthatthede-signercanconcentrateontoimprovethereliabilityofthesys-tem.Faulttoleranceofablockcanbeimprovedinoneoftwoways:

1.Evaluatingthesensitivitiesofalternativeimplementationsofablockandselectingthemostrobustimplementation.2.Affectingdesignchangesintheexistingimplementation

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

AreaTABLEVII

SENSITIVITIESOFSHASWITHVARYINGINPUTSFOR4-BITFIADC,p=3,q=10,r

=4

Fig.24.ConventionalSampleandHoldAmpli erFig.26.MillerHoldCapacitor

SHA

POF

Fig.25.ClockFeedthroughCancellationSHA

Resistance (in K)

insubsectionII-A)incorporatedthecomparatorproposedbyTabatabaei[18].Eitheroneoftheabovefourimplementationscanbechosenbasedontherequirementsoftheapplication.WehavefoundthatthecomparatorproposedbyHester[20]andthedifferentialone[8]aretheleastsensitiveamongtheimple-mentationsconsidered.Sensitivitygainsofasmuchas89%wereobserved.Thedifferentialimplementationalsoshowedanimprovementof50%intheMRE.Theimprovementinsen-sitivityisachievedwithapenaltyintermsofarea(seeTableV).However,thelesssensitivecomparatorshavealsoalowerdelay.AlesserareaoverheadisobservedinHester’simplemen-tationwithalmostcomparablesensitivityimprovement.TableVIshowstheeffectonthesensitivityofthewholeADC.Sincethecomparatorsarethecriticalblocksinthe ashADC,asim-ilarsensitivityimprovementisobservedforthewholeADC.2)FoldingandInterpolatingADC:Thesensitivityanalysisofthe4-bitFIADChasidenti edthesampleandholdam-pli er(SHA)asacriticalblock.ThreeimplementationswereconsideredtoidentifythemostrobustSHA.Figure24showstheconventionalimplementation[8]oftheSHA.Thisimple-mentationissusceptibletoclockfeedthroughwhichcausesanextrachargeofQch/2(Qchisthechannelcharge)ontheholdcapacitor(Ch)wheneverCk

turnsthesamplingswitchoff.Animplementation[22]whichalleviatestheproblemofclockfeedthrough(seeFigure25)usesadummyswitch(Q2)with(W/L)Q2=0.5·(W/L)Q1.Thedummyswitchturnsonwhen-Fig.27.Variationinsensitivitywithincreasingresistance(R),p=3,q=8,r=32

everthesamplingswitch(Q1)turnsoffandabsorbsthechannelcharge(Qch/2)releasedbyQ1,leavingtheholdcapacitorun-affected.

Sincetheholdingcapacitorhastoholdthesampledvalueforsometime,itsvalueisusuallylarge.However,alargervalueoftheholdingcapacitoralsoimpliesthattheacquisitiontimeforsamplingtheinputwillincrease.Analternateimplementation(Figure26)[23]changesthecon gurationinthesampleandholdmodessothattheinputseesasmallcapacitanceinthesamplingmodewithoutsacri cingintermsoftheholdtime.Thefollowingexpressionsshowthevaluesoftheacquisition(Cacq)andthehold(Chold)capacitancesinthiscon guration:Cacq=C1+C2,

Chold=(1+A)·

C1C2C1+C2

(10)

whereAisthegainoftheoperationalampli er.

TableVIIshowstheresultsofthesensitivityanalysisoftheabovethreepossibleimplementationsoftheSHA.McCreary’s[22]implementationshowsa19.8%sensitivityimprovementovertheconventional[8]implementation.Inaddition,italsoshowsanimprovementof11%intheMRE.Ithowever,con-sumesmoreareaandincursahigherdelay.AlthoughLim’s[23]implementationshowsahigherimprovementinsensitiv-ity,itconsumesmuchmoreareathanMcCreary’simplemen-

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

9876

Delay (ns)

5432100

2

4

6

8

10

12

14

16

(ARE)(ARE)TABLEIX

-ΣADC(NFTVSFT)

SENSITIVITY,

p=2,q=8,r=16

Resistance (in K)

Fig.28.r=32

Variationinperformancewithincreasingresistance(R),p=3,q=8,

(ARE)(ARE)TABLEVIII

DIGITALDECIMATIONFILTERSENSITIVITYOFTHENONFAULTTOLERANT(NFT)ANDTHEFAULTTOLERANT(FT)VERSIONS,p=2,

q=8,r=4

Fig.29. -Σmodulatorwithredundancy

tationandhencemaynotbeaneffectivereplacementfortheconventionalimplementation.

3)SuccessiveApproximationADC:Thesensitivityanaly-sisofthe4-bitSAADChasidenti edtheconvertlatchandtheoutputlatchascriticalblocks.TheTransientPulseToler-antLatch(TPTL)proposedin[24]wasconsideredforreliabil-ityimprovement.TheresistorsintheTPTL lteroutthetran-sientsarrivingattheinputofthelatchthushardeningitagainsttransients.Withincreasingvaluesoftheresistors,thelatchbe-comesmorefaulttolerantbutatthesametimeaperformancepenaltyisincurred[17](Figure27).Theoverheadcanbere-ducedbyreplacingonlythemostsensitivelatchinconvertlatchbyTPTL.

Figure28showsthatthedelayduetohigherresistancein-creasesexponentially.Therefore,the nalresistancevalueshouldbechosenbytakingtheperformancedegradationintoaccount.

4) -ΣADC:Sincethedigitaldecimation lterinthe -ΣADCuseslatchesextensively,usingtheTPTLdescribedintheprevioussubsectioncanlowerthesensitivityofthedecima-tion lter.Wetherefore,replacedalllatcheswithTPTLandobservedimprovementsinsensitivitiesofasmuchas21%(Ta-blesVIIIandIX).Thisimprovementisachievedhowever,atacostofreducedperformance.Figure28showstheperformancedegradationduetointroductionoftheresistance(R).B.AddingRedundancy

Whereastheprevioustechniquetendstowardsfaultre-silience,thistechniqueattemptstomasktheeffectofafault.Oneofthewaysfaulttolerancecanbeachievedthroughre-dundancyisto rstdetectthefaultandthenrecoverfromthefault.Thisinvolvesduplicationoftheblock,anddesignofan

(ARE)OF

(ARE)TABLEX

SENSITIVITY(×10 4)ANDMRE

-ΣMODULATOR,p=3,q=8,r=16

errordetectionschemewhichcanactivatetheredundantblockwhenafaultisdetected.Thistechniquehasbeenimplementedforthemodulatorinthe -ΣADC.The -Σmodulatorisanidealcandidateforapplyingthistechniquebecausethetech-niqueaddressestheintegratorwhichisauto-zeroedonthedec-imatedclock(T3inFigure29).Iftheerrorisnotcorrecteditwilleffectthesubsequentserialbitstreamgeneratedanditwillgenerateerroneousbitstillthenexttimetheintegratorisauto-zeroed.ThoughthistechniquecanbeusedforotherADCs,itwillhavethemaximumimpactonADCslikethe -Σ,partofwhichretainssomeinformationfromthepreviouscycle(liketheintegrator).

Whiletheinputisbeingsampledontothesamplingcapaci-tor,therestofthenodesintheADCaremaintainedatthevalueevaluatedinthepreviouscycle.Thischaracteristiccanbeusedtodetectanerrorandprotectthecircuitfromfaultsinjectedduringthesamplingtime.Sincerecent -ΣADCimplemen-tationsshowthatalmost50%[18]ofthecycletimeisspentinsampling,thisschemewouldaddressasizeablenumberoffaults.Thisfactfurtherforti estheargumentthattheproposedtechniqueisbettersuitedtothe -ΣADCascomparedtootherADCs.Figure29showsthemodi ed rst-order -Σmodula-torwiththeredundancyincorporatedinit.ThecapacitorC1

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

(ARE)(ARE)SENSITIVITY,

p=3,q=8,r=4

TABLEXI

FLASHADC(NFTVSFT)

0.16

Fig.30.FaultTolerant4-bitFlashADC

0.140.12

"2pC""4pC""6pC""8pC""10pC"

storesacopyofthevalueintheintegrator.Whentheinputisbeingsampled(T1ishighandT2islow),theintegratoroutput(markedbyXinFigure29)shouldnotchange.Intheeventthatafaultcausesittochange,theerrordetectionblock agsanerrorwhichactivatestheredundantblock(whenT2goeshigh).TableXshowstheresultofthesensitivityanalysisrunontheNon-FaultTolerant(NFT)andtheFaultTolerant(FT)versionsofthe -ΣModulator.Theresultsshowa65.8%im-provementinsensitivityand25%improvementinMREwithapproximately75%areaoverhead.C.PatternDetection

InsomeADCs(e.g.,FlashandFI)thesignallinesattheboundarybetweentheanalogandthedigitalblocksexhibitaspeci cpattern.Iftheexpectedpatternisnotdetected,eithera agcanbeassertedor,ifpossible,acorrectioncanbeat-tempted.Thistechniquehasbeenusedforimprovingthereli-abilityofa4-bit ashADC.Theoutputofthecomparatorsinthe ashADCexhibitathermometercodepattern.Therefore,a0detectedwithinastringof1sorvice-versa,indicatesanerror.Thiserrorcanbecorrectedbyselectingthemajorityvaluefromwithinaneighborhoodofxbitsoneithersideofthebittobecorrected,wherex≥1.Forourimplementation,xwastakenas1.Figure30showsthemodi edblockdiagramofthefaulttolerant4-bit ashADC.TheErrorCorrectionblockcontainsthreetypesoferrorcorrectingsubblocks,twofortheboundarysignals(A15andA0)andonefortherestofthesignals.ThefollowingBooleanexpressionsillustratethelogicusedforthecorrection.

A(11)15=A15·(A13+A14)

0=A0+(A1·A2)A

j=Aj·Aj 1+Aj·Aj+1+Aj+1·Aj 1A

(12)(13)

0.1

POF

0.080.060.040.0201

2

3

4

5

6

Sizing Factor

Fig.31.Sensitivityvariationwithsizingandinjectionlevels,q=14,r=4

D.TransistorSizing

Anα-particleinjectionresultsinacurrentspikeatthefaulty

node.Thiscurrenttranslatestoavoltage uctuationwhosemagnitudedependsonthedrivingstrengthofthetransistor,thecapacitanceatthenodeandtheinjectioncurrent[24].Oneoftheprimaryfactorsin uencingthemagnitudeofthe uctuationistheresistanceposedbythetransistorsconnectedtothatnode.Therefore,onewouldexpectanimprovementinthereliabilitybysizingupthetransistorandthusreducingtheresistance.Ontheotherhand,sizingupatransistoralsoincreasesitsfault-sensitivearea.Thebene tsoftransistorsizingwereanalyzedforbothdigitalandanalogcircuitsin[17]andarefurtherdis-cussedinthefollowingsubsections.

1)DigitalCircuits:Thistechniquewasimplementedina2-bitcounter(with73circuitnodes)usedinthedigitaldecima-tion lterinthe -ΣADC,andthevariationofthesensitivitywithsizingandbyboundingthemaximuminjectionlevelwasanalyzed.Figure31showsthatthesensitivityincreasesandthendecreaseswithsizingforboundedinjections.Forinjectionlevelsboundedby1pCanimprovementinreliabilityof33%isobservedwhensizingthecircuitbytwiceitsoriginalsize.Fur-thermore,themaximumvalueofthePOFforahigherinjectionboundoccursatahighersizingratio(1for1pCand2for4pCinFigure31).Fortheabovesimulationsthewholecircuitwassized.Thebene tsofselectivenodesizingonthesensitivityofthe2-bitcounterwerealsostudiedandarediscussednext.Thenodeswhichwillresultinmaximumsensitivitygainsshouldbechosenascandidatesforsizing.Oneoftheschemesthatcanbefollowedsortsthenodesindecreasingorderoftheircontri-butiontotheoverallsensitivityoftheblock.Outofthissortedlistthe rstnnodescanbeselectedascandidatesforresizing.Figure32showsthatforlowerinjectionlevelbounds(1pC)sensitivityimprovementofasmuchas60%isobservedwithanTableXIshowstheresultsofthesensitivityanalysisonthe ashADC.Itwasobservedearlier(SubsectionIII-C.1)thattheanalogportionoftheADCwhichisprimarilycomprisedofcomparatorswasmoresensitive(TableIII)thanthedigitalpart.Sincethistechniqueaddressestheerrorsduetofaultsin-jectedintheanalogblock,itwillprovideconsiderableoverallsensitivityimprovement.Animprovementofaround67.8%insensitivityatthecostof55%areaoverheadwasobserved.

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

0.025

"All 73 nodes"

"4 nodes""8 nodes""12 nodes"

0.025

"All 73 nodes"

"4b""8b"0.02

0.02

1.008

0.015

1.02

0.015

POF

0.01

POF

4.00

1.21.381.51

0.01

0.005

0.005

4.00

1.51

1

2

3

4

5

6

12350

Sizing FactorSizing Factor

Fig.32.Sensitivityvariationwithselectivenoderesizingwithinjectionlevelboundedby1pC(thenumberonthecurvesindicatethecorrespondingfault-sensitiveareaincreasefactor)q=14,r=4

0.0450.040.0350.03

Fig.35.Sensitivityvariationwithselectivenoderesizing(injectionlevelboundedby1pC)q=14,r=4

0.045

"All 73 nodes"

"4 nodes""8 nodes""12 nodes"

0.040.0350.03

1.05All 73 nodes

4b nodes8b nodes12 nodes

1.641.86

POF

0.0250.020.015

POF

0.0250.020.0150.01

0.010.005

6.00

1

2

3

4

5

0.005

01

2

3

4

5

6

Sizing Factor

Sizing Factor

Fig.33.Sensitivityvariationwithselectivenoderesizing(injectionlevelboundedby2pC)q=14,r=4

0.070.060.05

Fig.36.Sensitivityvariationwithselectivenoderesizing(injectionlevelboundedby2pC)q=14,r=4

0.07

"4b nodes""8b nodes""12 nodes"

"All 73 nodes"

"4 nodes""8 nodes""12 nodes"

0.060.050.040.030.02

POF

0.040.030.020.010

6.00

POF

0.010

123456

12

Sizing Factor

3456

Sizing Factor

Fig.34.Sensitivityvariationwithselectivenoderesizing(injectionlevelboundedby4pC)q=14,r=4

Fig.37.Sensitivityvariationwithselectivenoderesizing(injectionlevelboundedby4pC)q=14,r=4

areaoverheadofonly20%.Thenumbersonthecurvesindi-catetheareaincreasefactorforthesizingfactorwhichresultsinthelowestsensitivity.Theabovenodeselectionschemeworkswellforinjectionlevelsboundedby1pC.However,theimprovementisnotsosizeableforhigherinjectionlevelbounds(seeFigures33and34).Thismotivatesasearchforabetternodeselectionschemeandaninsightintowhytheimprove-mentislimitedforhigherinjectionlevels.Theerroroffsetatanodecausedbyaninjectionisdependentamongotherfac-torsontheinjectionlevelandthetransistordrivingstrength.Denoteby Vtheerroneousvoltageoffset,whichisequalto V=IinjRon,whereIinjisthemagnitudeoftheinjectedcurrentandRonistheresistanceposedbythetransistorcon-nectedtothenode. VcanbereducedbyloweringRon,which

canbeachievedbysizingupthetransistor.ButifRonislargethenthetransistorwillhavetobeconsiderablysizedbeforeanygaininsensitivitycanbeachieved.Itisverylikelythatthiskindofnodeswillshowupatthetopofthesortedlistofnodes.Thus,insuchcasesitispossibletoachievehighersensitivitygainswithasmallerareaoverheadbyoptingforanalternatescheme.Inthisschemeonlythemnodesatthebottomofthesortedlistofthenmostsensitivenodesaresized.Notethatsincethemnodesareselectedfromalistofthenmostsensi-tivenodestheyarestillquitesensitive.Figures35,36and37showthatforhigherinjectionbounds,asizeableimprovementinsensitivitycanbeattainedbyoptingforthealternatescheme(seeFigure37,the4band8bcurvesshowthesensitivityvaria-tionwhenmis4and8,respectively,forn=12).Insummary,forlowerinjectionlevels(≤1pC)resizingthenmostsensi-

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

0.070.060.050.040.030.020.010

"1pc""2pc""4pc""6pc""8pc"

V.CONCLUSIONS

AgenericmethodologyforthereliabilityenhancementofADCshasbeenpresented.Faultsensitivityanalysisfollowedbycircuitredesignwasidenti edasthefaulttolerancestrategytobeapplied.Theuseofnodeweights,speci ctoα-particletransients,wasproposedtoincreasetheaccuracyofthesensi-tivityanalysis.Twometrics,namelythePOFandAREwhichcharacterizethesensitivityofablock,werepresented.Thefol-lowingstepshavebeenidenti edforα-particleinducedfaultsensitivityanalysis:

(i)Calculateweightsofthenodes.

(ii)Performtransientfaultsimulationsonallnodes.

(iii)Useequation(6)or(8)tocalculatethesensitivityofthe

constituentblocks.

Thismethodologywasusedto rstidentifycriticalblocksintheFI,SA, ashand -ΣADCsandthenincreasetheirrelia-bilitybycircuitredesign.Severalredesigntechniqueswerepre-sentedincludingtheselectionofmorerobustimplementations,addingredundancy,patterndetectionandtransistorsizing,us-ingwhich,sensitivitygainsofasmuchas89%,65.8%,67.8%and60%,respectively,wereobserved.EachoftheproposedcircuitredesigntechniquescanbeusedforotherADCs.Forexample,theSHAandcomparatoraresomeofthemostubiq-uitousblocksinADCsandnumerouscircuitimplementationshavebeenproposed.Thus,severalalternativerobustimplemen-tationsofthesecanbeevaluatedformostADCs.Theproposedredundancytechniquewillbeusefulincircuitswherethenodevoltageshavetobeheldtoaconstantvalueforasubstantialamountoftime(likeinthe -Σmodulator).PatterndetectioncanbeusedinADCswherethesignallinesattheboundarybetweentheanaloganddigitalblocksarelimitedtocertainpat-terns(likethe ashandFIADCs).Lastly,transistorsizingwasfoundtobebene cialforbothdigitalandanalogcircuitsundercertaincircumstances.

VI.FUTUREWORK

ADCarchitectureslikethepipelined,multi-stepandintegrat-ingADCscanbesimilarlyanalyzedfortheirsensitivitiestoα-particletransients.Itisalsonecessarytostudytheimpactofparametricvariationsinmixed-signalcircuitsonthesensitiv-itytoα-particletransients.Currently,thisworkassumesthatthecircuitundertestisproperlycenteredintheprocessenve-lope.Initialsimulationsbyvaryingthewidthandthethresh-oldvoltageofthetransistorsinacomparatorhaveshownthatsometimesan“uncentered”designcanhavealowerratherthanhighersensitivitytoα-particletransients.Inmostofthecaseshowever,thevariationwassmallforthetypeofparametricvari-ationsconsidered.Allinall,thereisaneedtostudythesen-sitivityofsocalled“uncentered”designstoα-particleinducedtransients.Finally,thisworkcanbeextendedforothertypesoftransientfaultsbydevelopingappropriatemodelsforthecandi-datefaults.

REFERENCES

[1]H.BallandF.Hardy,“Effectsanddetectionofintermittentfailuresin

digitalsystems,”inProc.ofFJCC,AFIPSConf.,Vol.351969,pp.329–335.

Average Relative Error

12

Sizing Factor

3456

Fig.38.AnalogBlockAREvariationwithsizingandinjectionlevels,p=3,q=14,r=4

0.160.140.120.1

"1pc""2pc""4pc""6pc""8pc"

POF

0.080.060.040.02

12

Sizing Factor

3456

Fig.39.AnalogBlockPOFvariationwithsizingandinjectionlevels,p=3,q=14,r=4

tivenodesprovedbene cialwhileforhigherinjectionlevels(≥2pC)resizingtheleastsensitivemnodesinthesortedlistofnprovedbene cial.Theselectivenodeselectionstrategyprovidessensitivitygainswithminimumareaoverheadamongthetwostrategiesconsidered.Thisisanexampleofastrategyforeffectivenodeselectionforreliabilityenhancement.

2)AnalogCircuits:Thistechniquewasimplementedforthecomparatorswhichwereidenti edasthecriticalblocksinthe4-bitFlashADC.Figure38showsthatanimprovementofaround50%inAREcanbeachievedbysizingforinjectionlev-elsboundedby1pC.However,theAREincreaseswithsizingforinjectionlevelsabove4pC.AninterestingpointtonotehereisthatthePOFmetric(seeFigure39)indicatesthatthesensitivitydoesnotchangebymuchforasizingfactorof2foraninjectionboundedby1pC.Thisimpliesthatthenum-berofinjectedfaultstranslatingtoerrorsstillremainsaboutthesamebutthemagnitudeoferrorduetoeachofthosefaultshasreduced,thusresultinginanoverallreductionof50%intheARE(seeFigure38).Furtherreductioninsensitivityforahighersizingratioissmallerbecauseincreasingthewidthofthetransistorinananalogcircuitentailsincreasingitslengthalso,sincetheW/Lratiosmustbemaintained.Thisimpliesthattheresistanceposedbythetransistorwillnotchange,butthecapacitanceseenbythenodewillincrease,thuscausingareductioninthesensitivityinsomecasesasshowninFigure38.

Therefore,sensitivitygainscanbeattainedforlowerinjec-tionlevels(≤2pC)butastheinjectionlevelboundincreasesthistechniquedoesnotprovebene cial.

Abstract — Reliability of systems used in space, avionic and biomedical applications is highly critical. Such systems consist of an analog front-end to collect data, an Analog-to-Digital Converter (ADC) to convert the collected data to digital form and a

[2]R.IyerandD.Rosetti,“AstatisticalloaddependencyofCPUerrorsat

SLAC,”inProc.FTCS-12,1982,pp.363–372.

[3]F.L.YangandR.A.Saleh,“SimulationandAnalysisofTransientFaults

inDigitalCircuits,”IEEEJournalofSolid-StateCircuits,vol.27,pp.258–264,1992.

[4]S.KangandD.Chu,“CMOScircuitdesignforthepreventionofsin-gleeventupset,”inProceedingsofIEEEInternationalConferenceonComputerDesign,Oct1986,pp.385–388.

[5]A.Antola,R.Negrini,M.SamiandN.Scarabottolo,“Tolerancetotran-sientfaultsinmicroprogrammedcontrolunits,”IEEETransactionsonReliability,vol.27,pp.258–264,1992.

[6]J.F.Ziegler,“TerrestrialCosmicRays,”IBMJournalofResearchand

Development,vol.40,pp.19–40,1996.

[7]J.F.Ziegleret.al.,“IBMExperimentsinSoftFailsinComputerElec-tronics,”IBMJournalofResearchandDevelopment,vol.40,pp.3–17,1996.

[8]B.Razavi,Principlesofdataconversionsystemdesign,IEEEpress,

1995.

[9]R.E.J.VanDeGrift,I.W.J.M.RuttenandM.VanDerVeen,“An8-bitvideoADCincorporatingfoldingandinterpolatingtechniques,”IEEEJournalofSolid-StateCircuits,pp.944–953,1987.

[10]Z.Zhou,B.PainandE.R.Fossum,“CMOSactivepixelsensorwithon-chipsuccessiveapproximationanalog-to-digitalconverter,”IEEETrans-actionsonElectronDevices,vol.44,pp.1759–1763,1997.

[11]H.Amer,M.CortesandE.McCluskey,“Robustdynamicrecoverymech-anisms,”inProceedingsofIEEEInternationalConferenceonComputerDesign,Oct1987,pp.310–313.

[12]Avant!Corporation,Star-Hspicemanual,Dec1999.

[13]G.C.Messenger,“Collectionofchargeonjunctionnodesfromion

tracks,”IEEETransactionsonNuclearScience,pp.2024–2031,1982.[14]gunaandR.Treece,“VLSImodelinganddesignforradiationen-vironments,”inProceedingsofIEEEInternationalConferenceonCom-puterDesign,Oct1986,pp.380–384.

[15]H.Cha,E.M.Rudnick,J.H.Patel,R.K.IyerandG.S.Choi,“Agate

levelsimulationenvironmentforalpha-particle-inducedtransientfaults,”IEEETransactionsonComputers,vol.45,pp.1248–1256,1996.

[16]M.Singh,R.RachalaandI.Koren,“TransientFaultSensitivityAnalysis

ofAnalog-to-DigitalConverters(ADCs),”inIEEEAnnualWorkshoponVLSI(WVLSI),Apr.2001,pp.140–145.

[17]M.SinghandI.Koren,“IncorporatingFaultToleranceinAnalog-to-DigitalConverters(ADCs),”inIEEEInternationalSymposiumonQual-ityElectronicDesign(ISQED),Mar.2002,pp.286–291.

[18]A.TabatabaeiandB.A.Wooley,“ATwo-PathBandpassSigma-Delta

ModulatorwithExtendedNoiseShaping,”IEEEJournalofSolid-StateCircuits,vol.35,pp.1799–1809,2000.

[19]Y.S.Yee,L.M.TermanandL.G.Heller,“A1mVMOSComparator,”

IEEEJournalofSolid-StateCircuits,vol.13,pp.294–297,1978.

[20]R.K.Hesteretal.,“FullyDifferentialADCwithRail-to-RailCommon

ModeRangeandNonlinearCapacitorCompensation,”IEEEJournalofSolid-StateCircuits,vol.25,pp.173–183,1990.

[21]M.SinghandI.Koren,“ReliabilityEnhancementofAnalog-to-Digital

Converters(ADCs),”inIEEEInternationalSymposiumonDefectandFaultToleranceinVLSISystems(DFT),Oct.2001,pp.347–353.

[22]J.McCrearyandP.R.Gray,“All-MOSChargeRedistributionAnalog-to-DigitalConversiontechniques-PartI,”IEEEJournalofSolidStateCircuits,pp.371–379,1975.

[23]P.LimandB.Wooley,“AHighSpeedSample-and-HoldTechniqueUs-ingaMillerHoldingCapacitor,”IEEEJournalofSolidStateCircuits,vol.26,pp.643–651,1991.

[24]H.ChaandJ.H.Patel,“ALogic-LevelModelforα-ParticleHitsin

CMOSCircuits,”inProceedingsofIEEEInternationalConferenceonComputerDesign,Oct1993,pp.538–542.MandeepSingh(M’01)receivedtheB.E(Hons.)de-greeinelectricalengineeringfromtheBirlaInsti-tuteofTechnologyandSciences,Rajasthan,Indiain1997andtheM.S.degreeinelectricalandcomputerengineeringfromtheUniversityofMassachusetts,PLACE

Amherst,in2001.WhileattheUniversityofMas-PHOTO

sachusetts,hecompletedhisthesisontheReliabilityHERE

EnhancementofAnalog-to-DigitalConverters.HeworkedforWiproGlobalResearchandDevelop-ment,Bangalore,Indiafrom1997to1999,wherehewasinvolvedinthedesignanddevelopmentofhigh

speedcommunicationASICs.HeiscurrentlyworkingforAdvancedMicroDe-vicesintheComputationProductsGroup,Austin,TX,whereheisinvolvedinhighperformancemicroprocessordesign.

IsraelKoren(S’72-M’76-SM’87-F’91)receivedtheB.Sc.,M.Sc.andD.Sc.degreesfromtheTech-nion-IsraelInstituteofTechnology,Haifa,in1967,1970,and1975,respectively,allinElectricalEn-gineering.HeiscurrentlyaProfessorofElectri-PLACE

calandComputerEngineeringattheUniversityofPHOTO

Massachusetts,Amherst.PreviouslyhewaswiththeHERE

Technion-IsraelInstituteofTechnology.HealsoheldvisitingpositionswiththeUniversityofCali-forniaatBerkeley,UniversityofSouthernCalifornia,LosAngelesandUniversityofCalifornia,SantaBar-bara.HehasbeenaconsultanttoseveralcompaniesincludingIBM,Intel,AnalogDevices,AMD,DigitalEquipmentCorp.,NationalSemiconductorandTolerantSystems.

Dr.Koren’scurrentresearchinterestsincludeTechniquesforYieldandReliabilityEnhancement,Fault-TolerantArchitectures,Real-timesystemsandComputerArithmetic.HepublishedextensivelyinseveralIEEETransactionsandhasover150publicationsinrefereedjournalsandconferences.Hecur-rentlyservesontheEditorialBoardoftheIEEETransactionsonVLSISystems.HewasaCo-GuestEditorfortheIEEETransactionsonComputers,specialis-sueonHighYieldVLSISystems,April1989andthespecialissueonComputerArithmetic,July2000,andservedontheEditorialBoardoftheseTransactionsbetween1992and1997.HealsoservedasGeneralChair,ProgramChairandProgramCommitteememberfornumerousconferences.Hehaseditedandco-authoredthebook,DefectandFault-ToleranceinVLSISystems,Vol.1,Plenum,1989.HeistheauthorofthetextbookComputerArithmeticAlgo-rithms,2ndEdition,A.K.Peters,Ltd.,2002.

本文来源:https://www.bwwdw.com/article/mknm.html

Top