《离散数学》题库及答案

更新时间:2023-12-07 19:25:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《离散数学》题库与答案 一、选择或填空

(数理逻辑部分)

1、下列哪些公式为永真蕴含式?( )

(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P?(P?Q)=>?P

答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)

2、下列公式中哪些是永真式?( )

(1)(┐P?Q)→(Q→?R) (2)P→(Q→Q) (3)(P?Q)→P (4)P→(P?Q)

答:(2),(3),(4) 可用蕴含等值式证明

3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P?Q (2) P?Q=>P (3) P?Q=>P?Q

(4)P?(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P?(P?Q)=>?P

答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式

4、公式?x((A(x)?B(y,x))? ?z C(y,z))?D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为

约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)

5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1) 北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧!

1

答:(1) 是,T (2) 是,F (3) 不是 (4) 是,T (5) 不是 (6) 不是 (命题必须满足是陈述句,不能是疑问句或者祈使句。)

6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死(命题的否定就是把命题前提中的量词“?换成存在?,?换成?”,然后将命题的结论否定,“且变或 或变且”)

7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校

答:(1) ?Q?P (注意“只有……才……”和“除非……就……”两者都是一个形式的) (2) P??Q (3) P??Q (4)?P?Q

8、设个体域为整数集,则下列公式的意义是( )。

(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)

答:(1)对任一整数x存在整数 y满足x+y=0 (2)存在整数y对任一整数x满足x+y=0

9、设全体域D是正整数集合,确定下列命题的真值:

(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( ) (3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )

答:(1) F (反证法:假若存在,则(x- 1)*y=0 对所有的x都成立,显然这个与前提条件相矛盾) (2) F (同理) (3)F (同理) (4)T(对任一整数x存在整数 y满足条件 y=2x 很明显是正确的)

10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式 ?x(P(x)?Q(x))在哪个个体域中为真?( )

(1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立

答:(1)(在某个体域中满足不是奇数就是偶数,在整数域中才满足条件,而自然数子整数的子集,当然满足条件了)

11、命题“2是偶数或-3是负数”的否定是( )。

2

答:2不是偶数且-3不是负数。

12、永真式的否定是( )

(1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能

答:(2)(这个记住就行了)

13、公式(?P?Q)?(?P??Q)化简为( ),公式 Q?(P?(P?Q))可化简为( )。

答:?P ,Q?P(考查分配率和蕴含等值式知识的掌握)

14、谓词公式?x(P(x)? ?yR(y))?Q(x)中量词?x的辖域是( )。

答:P(x)? ?yR(y)(一对括号就是一个辖域)

15、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为( )。

答:??x(R(x)?Q(x))

(集合论部分)

16、设A={a,{a}},下列命题错误的是( )。

(1) {a}?P(A) (2) {a}?P(A) (3) {{a}}?P(A) (4) {{a}}?P(A)

答:(2) ({a}是P(A)的一个元素)

17、在0( )?之间写上正确的符号。

(1) = (2) ? (3) ? (4) ?

答:(4)(空集没有任何元素,且是任何集合的子集)

18、若集合S的基数|S|=5,则S的幂集的基数|P(S)|=( )。

答:32(2的5次方 考查幂集的定义,即幂集是集合S的全体子集构成的集合)

19、设P={x|(x+1)2?4且x?R},Q={x|5?x2+16且x?R},则下列命题哪个正确( )

(1) Q?P (2) Q?P (3) P?Q (4) P=Q

答:(3)(Q是集合R,P只是R中的一部分,所以P是Q的真子集)

20、下列各集合中,哪几个分别相等( )。

3

(1) A1={a,b} (2) A2={b,a} (3) A3={a,b,a} (4) A4={a,b,c} (5) A5={x|(x-a)(x-b)(x-c)=0} (6) A6={x|x2-(a+b)x+ab=0}

答:A1=A2=A3=A6, A4=A5(集合具有无序性、确定性和互异性)

21、若A-B=Ф,则下列哪个结论不可能正确?( ) (1) A=Ф (2) B=Ф (3) A?B (4) B?A

答:(4)(差集的定义)

22、判断下列命题哪个为真?( )

(1) A-B=B-A => A=B (2) 空集是任何集合的真子集

(3) 空集只是非空集合的子集 (4) 若A的一个元素属于B,则A=B

答:(1)(考查空集和差集的相关知识)

23、判断下列命题哪几个为正确?( )

(1) {Ф}∈{Ф,{{Ф}}} (2) {Ф}?{Ф,{{Ф}}} (3) Ф∈{{Ф}} (4) Ф?{Ф} (5) {a,b}∈{a,b,{a},{b}}

答:(2),(4)

24、判断下列命题哪几个正确?( )

(1) 所有空集都不相等 (2) {Ф}?Ф (4) 若A为非空集,则A?A成立。

答:(2)

25、设A∩B=A∩C,A∩B=A∩C,则B( )C。

答:=(等于)

26、判断下列命题哪几个正确?( ) (1) 若A∪B=A∪C,则B=C (2) {a,b}={b,a} (3) P(A∩B)?P(A)∩P(B) (P(S)表示S的幂集) (4) 若A为非空集,则A?A∪A成立。

答:(2)

27、A,B,C是三个集合,则下列哪几个推理正确:

(1) A?B,B?C=> A?C (2) A?B,B?C=> A∈B (3) A∈B,B∈C=> A∈C

答:(1) ((3)的反例 C为{{0,1},0} B为{0,1},A为1 很明显结论不对)

4

(二元关系部分)

28、设A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={〈x,y〉|x=y2

求(1)R (2) R-1

答:(1)R={<1,1>,<4,2>} (2) R?1={<1,1>,<2,4>}(考查二元关系的定义,R?1为R的逆关系,即R?1={}| ∈R)

29、举出集合A上的既是等价关系又是偏序关系的一个例子。( )

答:A上的恒等关系

30、集合A上的等价关系的三个性质是什么?( )

答:自反性、对称性和传递性

31、集合A上的偏序关系的三个性质是什么?( )

答:自反性、反对称性和传递性(题29,30,31全是考查定义)

32、设S={1,2,3,4},A上的关系R={〈1,2〉,〈2,1〉,〈2,3〉,〈3,4〉} 求(1)R?R (2) R-1 。

答:R?R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}(考查F?G ={|?t(∈F?

∈G)})

R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}

33、设A={1,2,3,4,5,6},R是A上的整除关系,求R= {( )}

R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}

34、设A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={〈x,y〉|x=2y},求(1)R (2) R-1 。

答:(1)R={<1,1>,<4,2>,<6,3>} (2) R?1={<1,1>,<2,4>,(36>}

35、设A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={〈x,y〉|x=y2},

求R和R-1的关系矩阵。

5

?1?0?0答:R的关系矩阵=??0??0??000?00??100000??00?? 000100 R?1的关系矩阵=???10????000000??00?00??36、集合A={1,2,…,10}上的关系R={|x+y=10,x,y?A},则R 的性质为( )。

(1) 自反的 (2) 对称的 (3) 传递的,对称的 (4) 传递的

答:(2)(考查自反 对称 传递的定义)

(代数系统部分)

37、设A={2,4,6},A上的二元运算*定义为:a*b=max{a,b},则在独异点中,单位元是( ),零元是( )。

答:2,6(单位元和零元的定义,单位元:e。x=x 零元:θ。x=θ)

38、设A={3,6,9},A上的二元运算*定义为:a*b=min{a,b},则在独异点中,单位元是( ),零元是( );

答:9,3

(半群与群部分)

39、设〈G,*〉是一个群,则

(1) 若a,b,x∈G,a?x=b,则x=( ); (2) 若a,b,x∈G,a?x=a?b,则x=( )。

答: (1) a?1?b (2) b (考查群的性质,即群满足消去律)

40、设a是12阶群的生成元, 则a2是( )阶元素,a3是( )阶元素。

答: 6,4

41、代数系统是一个群,则G的等幂元是( )。

答:单位元(由a^2=a,用归纳法可证a^n=a*a^(n-1)=a*a=a,所以等幂元一定是幂等元,反之若a^n=a对一切N成立,则对n=2也成立,所以幂等元一定是等幂元,并且在群中,除幺元即单位元e外不可能有任何别的幂等元)

42、设a是10阶群的生成元, 则a4是( )阶元素,a3是( )阶元素

6

答:5,10(若一个群G的每一个元都是G的某一个固定元a的乘方,我们就把G叫做循环群;我们也说,G是由元a生成的,并且用符号G=表示,且称a为一个生成元。并且一元素的阶整除群的阶)

43、群的等幂元是( ),有( )个。

答:单位元,1 (在群中,除幺元即单位元e外不可能有任何别的幂等元)

44、素数阶群一定是( )群, 它的生成元是( )。

答:循环群,任一非单位元(证明如下:任一元素的阶整除群的阶。现在群的阶是素数p,所以元素的阶要么是1要么是p。G中只有一个单位元,其它元素的阶都不等于1,所以都是p。任取一个非单位元,它的阶等于p,所以它生成的G的循环子群的阶也是p,从而等于整个群G。所以G等于它的任一非单位元生成的循环群)

45、设〈G,*〉是一个群,a,b,c∈G,则

(1) 若c?a=b,则c=( );(2) 若c?a=b?a,则c=( )。

答:(1) b?a?1 (2) b(群的性质)

46、的子群的充分必要条件是( )。

答:是群 或 ? a,b ?G, a?b?H,a-1?H 或? a,b ?G,a?b-1?H

47、群<A,*>的等幂元有( )个,是( ),零元有( )个。

答:1,单位元,0

48、在一个群〈G,*〉中,若G中的元素a的阶是k,则a-1的阶是( )。

答:k

49、在自然数集N上,下列哪种运算是可结合的?( )

(1) a*b=a-b (2) a*b=max{a,b} (3) a*b=a+2b (4) a*b=|a-b|

答:(2)

50、任意一个具有2个或以上元的半群,它( )。 (1) 不可能是群 (2) 不一定是群 (3) 一定是群 (4) 是交换群

答:(1)

51、6阶有限群的任何子群一定不是( )。

7

(1) 2阶 (2) 3 阶 (3) 4 阶 (4) 6 阶

答:(3)

(格与布尔代数部分)

52、下列哪个偏序集构成有界格( ) (1) (N,?) (2) (Z,?)

(3) ({2,3,4,6,12},|(整除关系)) (4) (P(A),?)

答:(4)(考查幂集的定义)

53、有限布尔代数的元素的个数一定等于( )。

(1) 偶数 (2) 奇数 (3) 4的倍数 (4) 2的正整数次幂

答:(4)

(图论部分)

54、设G是一个哈密尔顿图,则G一定是( )。 (1) 欧拉图 (2) 树 (3) 平面图 (4) 连通图

答:(4)(考察图的定义)

55、下面给出的集合中,哪一个是前缀码?( ) (1) {0,10,110,101111} (2) {01,001,000,1} (3) {b,c,aa,ab,aba} (4) {1,11,101,001,0011}

答:(2)

56、一个图的哈密尔顿路是一条通过图中( )的路。

答:所有结点一次且恰好一次

57、在有向图中,结点v的出度deg+(v)表示( ),入度deg-(v)表示( )答:以v为起点的边的条数, 以v为终点的边的条数

58、设G是一棵树,则G 的生成树有( )棵。 (1) 0 (2) 1 (3) 2 (4) 不能确定

答:1

59、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。 8

答:

n(n?1), n-1 260、一棵无向树的顶点数n与边数m关系是( )。

答:m=n-1

61、一个图的欧拉回路是一条通过图中( )的回路。

答:所有边一次且恰好一次

62、有n个结点的树,其结点度数之和是( )。

答:2n-2(结点度数的定义)

63、下面给出的集合中,哪一个不是前缀码( )。 (1) {a,ab,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011}

答:(1)

64、n个结点的有向完全图边数是( ),每个结点的度数是( )。

答:n(n-1),2n-2

65、一个无向图有生成树的充分必要条件是( )。

答:它是连通图

66、设G是一棵树,n,m分别表示顶点数和边数,则 (1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。

答:(3)

67、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。

答:2

68、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。

答:1, 树

69、设G是有n个结点m条边的连通平面图,且有k个面,则k等于:

(1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。

答:(1)

9

70、设T是一棵树,则T是一个连通且( )图。

答:无简单回路

71、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 16

答:(4)

72、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。

(1) 10 (2) 4 (3) 8 (4) 12

答:(4)

73、设图G=,V={a,b,c,d,e},E={,,,,},则G是有向图还是无向图?

答:有向图

74、任一有向图中,度数为奇数的结点有( )个。

答:偶数

75、具有6 个顶点,12条边的连通简单平面图中,每个面都是由( )条边围成?

(1) 2 (2) 4 (3) 3 (4) 5

答:(3)

76、在有n个顶点的连通图中,其边数( )。

(1) 最多有n-1条 (2) 至少有n-1 条 (3) 最多有n条 (4) 至少有n 条

答:(2)

77、一棵树有2个2度顶点,1 个3度顶点,3个4度顶点,则其1度顶点为( )。

(1) 5 (2) 7 (3) 8 (4) 9

答:(4)

78、若一棵完全二元(叉)树有2n-1个顶点,则它( )片树叶。

(1) n (2) 2n (3) n-1 (4) 2

10

答:(1)

79、下列哪一种图不一定是树( )。

(1) 无简单回路的连通图 (2) 有n个顶点n-1条边的连通图 (3) 每对顶点间都有通路的图 (4) 连通但删去一条边便不连通的图

答:(3)

80、连通图G是一棵树当且仅当G中( )。 (1) 有些边是割边 (2) 每条边都是割边

(3) 所有边都不是割边 (4) 图中存在一条欧拉路径

答:(2)

(数理逻辑部分)

二、求下列各公式的主析取范式和主合取范式: 1、(P→Q)?R

解:(P→Q)?R?(?P?Q )?R

?(?P?R)?(Q?R) (析取范式) ?(?P?(Q??Q)?R)?((?P?P)?Q?R)

?(?P?Q?R)?(?P??Q?R)?(?P?Q?R)?(P?Q?R) ?(?P?Q?R)?(?P??Q?R)?(P?Q?R)(主析取范式)

?((P→Q)?R)?(?P??Q??R)?(?P?Q??R)?(P??Q?R)

?(P?Q??R)?( P??Q??R)(原公式否定的主析取范式)

(P→Q)?R?(P?Q?R)?(P??Q?R)?(?P?Q??R)

?(?P??Q?R)?(?P?Q?R)(主合取范式)

2、(P?R)?(Q?R)??P

解: (P?R)?(Q?R)??P(析取范式)

?(P?(Q??Q)?R)?((P??P)?Q?R)?(?P?(Q??Q)?(R??R)) ?(P?Q?R)?(P??Q?R)?(P?Q?R)?(?P?Q?R)

?( ?P?Q?R)?( ?P?Q??R)?(?P??Q?R)?(?P??Q??R)

?(P?Q?R)?(P??Q?R)?(?P?Q?R)?(?P?Q??R) (?P??Q?R)?(?P??Q??R) (主析取范式)

11

? ?((P?R)?(Q?R)??P)

(原公式否定的主析取范式) ?(P??Q??R)?(P?Q??R)

(P?R)?(Q?R)??P ?(?P?Q?R)?(?P??Q?R)(主合取范式)

3、(?P→Q)?(R?P)

解:(?P→Q)?(R?P)

?(P?Q)?(R?P)(合取范式)

?(P?Q?(R??R))?(P?(Q??Q))?R)

?(P?Q?R)?(P?Q??R)?(P?Q?R)?(P??Q?R) ?(P?Q?R)?(P?Q??R)?(P??Q?R)(主合取范式) ?((?P→Q)?(R?P))

?(P??Q??R)?(?P?Q?R)?(?P??Q?R)?(?P?Q??R)

?(?P??Q??R)(原公式否定的主合取范式)

(?P→Q)?(R?P)

?(?P?Q?R)?(P??Q??R)?(P?Q??R)?(P??Q?R)?(P?Q?R) (主析取范式)

4、Q→(P??R)

解:Q→(P??R)

??Q?P??R(主合取范式) ?(Q→(P??R))

?(?P??Q??R)?(?P??Q?R)?(?P?Q??R)?(?P?Q?R)

?(P??Q?R)?(P?Q??R)?(P?Q?R)(原公式否定的主合取范式)

Q→(P??R)

?(P?Q?R)?(P?Q??R)?(P??Q?R)?(P??Q??R)?(?P?Q??R)

?(?P??Q?R)?(?P??Q??R)(主析取范式)

5、P→(P?(Q→P))

解:P→(P?(Q→P))

??P?(P?(?Q?P)) ??P?P

? T (主合取范式)

12

?(?P??Q)?(?P?Q)?(P??Q)?(P?Q)(主析取范式)

6、?(P→Q)?(R?P)

解: ?(P→Q)?(R?P)??(?P?Q)?(R?P)

?(P??Q)?(R?P)(析取范式) ?(P??Q?(R??R))?(P?(?Q?Q)?R)

?(P??Q?R)?(P??Q??R)?(P??Q?R)?(P?Q?R) ?(P??Q?R)?(P??Q??R)?(P?Q?R)(主析取范式)

?(?(P→Q)?(R?P))?(P?Q??R)?(?P?Q?R)?(?P??Q?R)

? (?P??Q??R)?(?P?Q??R)(原公式否定的主析取范式)

?(P→Q)?(R?P)?(?P??Q?R)?(P??Q??R)?(P?Q??R)

?(P?Q?R)?(P??Q?R)(主合取范式)

7、P?(P→Q)

解:P?(P→Q)?P?(?P?Q)?(P??P)?Q

?T(主合取范式)

?(?P??Q)?(?P?Q)?(P??Q)?(P?Q)(主析取范式)

8、(R→Q)?P

解:(R→Q)?P?(?R?Q )?P

? (?R?P)?(Q?P) (析取范式) ? (?R?(Q??Q)?P)?((?R?R)?Q?P)

?(?R?Q?P)?(?R??Q?P)?(?R?Q?P)?(R?Q?P) ?(P?Q??R)?(P??Q??R)?(P?Q?R)(主析取范式)

?((R→Q)?P)?(?P??Q??R)?(?P?Q??R)?(P??Q?R)

?(?P?Q?R)?(?P??Q?R)(原公式否定的主析取范式)

(R→Q)?P?(P?Q?R)?(P??Q?R)?(?P?Q??R)

?(P??Q??R)?(P?Q??R)(主合取范式)

9、P→Q

解:P→Q??P?Q(主合取范式)

?(?P?(Q??Q))?((?P?P)?Q)

?(?P?Q)?(?P??Q)?(?P?Q)?(P?Q)

13

?(?P?Q)?(?P??Q)?(P?Q)(主析取范式)

10、 P??Q

解: P??Q (主合取范式)

?(P?(?Q?Q))?((?P?P)??Q) ?(P??Q)?(P?Q)?(?P??Q)?(P??Q) ?(P??Q)?(P?Q)?(?P??Q)(主析取范式)

11、P?Q

解:P?Q(主析取范式)?(P?(Q??Q))?((P??P)?Q)

?(P??Q)?(P?Q)?(P?Q)?(?P?Q) ?(P??Q)?(P?Q)?(?P?Q)(主合取范式)

12、(P?R)?Q

解:(P?R)?Q

??(P?R)?Q ?(?P??R)?Q

?(?P?Q)?(?R?Q)(合取范式) ?(?P?Q?(R??R))?((?P?P)?Q??R)

?(?P?Q?R)?(?P?Q??R)?(?P?Q??R)?(P?Q??R) ?(?P?Q?R)?(?P?Q??R)?(?P?Q??R)?(P?Q??R) ?(?P?Q?R)?(?P?Q??R)?(P?Q??R)(主合取范式) ?(P?R)?Q

?(?P??Q?R)?(?P??Q??R)?(P?Q?R)?(P??Q?R)?(P??Q??R)

(原公式否定的主析取范式)

(P?R)?Q

?(P?Q??R)?(P?Q?R)?(?P??Q??R)?(?P?Q??R)

?(?P?Q?R)(主析取范式)

13、(P?Q)?R

解:(P?Q)?R

??(?P?Q)?R ?(P??Q)?R(析取范式)

14

?(P??Q?(R??R))?((P??P)?(Q??Q)?R)

?(P??Q?R)?(P??Q??R)?(P?Q?R)?(P??Q?R)?(?P?Q?R)

?(?P??Q?R)

?(P??Q?R)?(P??Q??R)?(P?Q?R)?(?P?Q?R)

?(?P??Q?R)(主析取范式)

(P?Q)?R

??(?P?Q)?R ?(P??Q)?R(析取范式) ?(P?R)?(?Q?R)(合取范式)

?(P?(Q??Q)?R)?((P??P)??Q?R)

?(P?Q?R)?(P??Q?R)?(P??Q?R)?(?P??Q?R) ?(P?Q?R)?(P??Q?R)?(?P??Q?R)(主合取范式)

14、(P?(Q?R))?(?P?(?Q??R))

解:(P?(Q?R))?(?P?(?Q??R))

?(?P?(Q?R))?(P?(?Q??R))

?(?P?Q)?(?P?R)?(P??Q)?(P??R)(合取范式) ?(?P?Q?(R??R))?(?P?(Q??Q)?R)?(P??Q?(R??R))

?(P?(Q??Q)??R)

?(?P?Q?R)?(?P?Q??R)?(?P?Q?R)?(?P??Q?R)

?(P??Q?R)?(P??Q??R)?(P?Q??R)?(P??Q??R)

?(?P?Q?R)?(?P?Q??R)?(?P??Q?R)?(P??Q?R)

?(P?Q??R)?(P??Q??R)(主合取范式)

?(P?(Q?R))?(?P?(?Q??R))

?(?P??Q??R)?(P?Q?R)(原公式否定的主合取范式) (P?(Q?R))?(?P?(?Q??R))

?(P?Q?R)?(?P??Q??R)(主析取范式)

15、P?(?P?(Q?(?Q?R)))

解:P?(?P?(Q?(?Q?R)))

? P?(P?(Q?(Q?R)))

15

? P?Q?R(主合取范式) ?(P?Q?R)

?(P??Q?R)?(P??Q??R)?(P?Q??R)?(?P?Q?R)

?(?P?Q??R)?(?P??Q?R)?(?P??Q??R)

(原公式否定的主合取范式)

(P?Q?R)

?(?P?Q??R)?(?P?Q?R)?(?P??Q?R)?(P??Q??R)

?(P??Q?R)?(P?Q??R)?(P?Q?R)(主析取范式)

16、(P?Q)?(P?R)

解、(P?Q)?(P?R)

?(?P?Q)?(?P?R) (合取范式) ?(?P?Q?(R??R)?(?P?(?Q?Q)?R)

?(?P?Q?R)?(?P?Q??R)?(?P??Q?R)?(?P?Q?R) ?(?P?Q?R)?(?P?Q??R)?(?P??Q?R)(主合取范式) (P?Q)?(P?R)

?(?P?Q)?(?P?R) ??P?(Q?R)(合取范式)

?(?P?(Q??Q)?(R??R))?((?P?P)?Q?R)

?(?P?Q?R)?(?P??Q?R)?(?P?Q??R)?(?P??Q?R)

?(?P?Q?R)?(P?Q?R)

?(?P?Q?R)?(?P??Q?R)?(?P?Q??R)?(?P??Q?R)?(P?Q?R)

(主析取范式)

三、证明:

1、P→Q,?Q?R,?R,?S?P=>?S

证明:

(1) ?R 前提 (2) ?Q?R 前提 (3) ?Q (1),(2)

16

(4) P→Q 前提 (5) ?P (3),(4) (6) ?S?P 前提 (7) ?S (5),(6)

2、A→(B→C),C→(?D?E),?F→(D??E),A=>B→F

证明:

(1) A 前提 (2) A→(B→C) 前提 (3) B→C (1),(2)

(4) B 附加前提 (5) C (3),(4) (6) C→(?D?E) 前提 (7) ?D?E (5),(6) (8) ?F→(D??E) 前提 (9) F (7),(8) (10) B→F CP

3、P?Q, P→R, Q→S => R?S

证明:

(1) ?R 附加前提 (2) P→R 前提 (3) ?P (1),(2) (4) P?Q 前提 (5) Q (3),(4) (6) Q→S 前提 (7) S (5),(6) (8) R?S CP,(1),(8)

4、(P→Q)?(R→S),(Q→W)?(S→X),证明:

(1) P 假设前提

17

?(W?X),P→R => ?P

(2) P→R 前提 (3) R (1),(2) (4) (P→Q)?(R→S) 前提 (5) P→Q (4) (6) R→S (5) (7) Q (1),(5) (8) S (3),(6) (9) (Q→W)?(S→X) 前提 (10) Q→W (9) (11) S→X (10) (12) W (7),(10) (13) X (8),(11) (14) W?X (12),(13) (15) ?(W?X) 前提

(16) ?(W?X)?(W?X) (14),(15)

5、(U?V)→(M?N), U?P, P→(Q?S),?Q??S =>M

证明:

(1) ?Q??S 附加前提 (2) (3) (4) (5) (6) (7) (8) (9)

P→(Q?S) 前提 ?P (1),(2) U?P 前提 U (3),(4) U?V (5) (U?V)→(M?N) 前提 M?N (6),(7) M (8)

6、?B?D,(E→?F)→?D,?E=>?B

证明:

(1) B 附加前提

18

(2) ?B?D 前提 (3) D (1),(2) (4) (E→?F)→?D 前提 (5) ?(E→?F) (3),(4) (6) E??F (5) (7) E (6) (8) ?E 前提 (9) E??E (7),(8)

7、P→(Q→R),R→(Q→S) => P→(Q→S)

证明:

(1) P 附加前提 (2) Q 附加前提 (3) P→(Q→R) 前提 (4) Q→R (1),(3) (5) R (2),(4) (6) R→(Q→S) 前提 (7) Q→S (5),(6) (8) S (2),(7) (9) Q→S CP,(2),(8) (10) P→(Q→S) CP,(1),(9)

8、P→?Q,?P→R,R→?S =>S→?Q

证明:

(1) S 附加前提 (2) R→?S 前提 (3) ?R (1),(2) (4) ?P→R 前提 (5) P (3),(4) (6) P→?Q 前提 (7) ?Q (5),(6)

19

(8) S→?Q CP,(1),(7)

9、P→(Q→R) => (P→Q)→(P→R)

证明:

(1) P→Q 附加前提 (2) P 附加前提 (3) Q (1),(2) (4) P→(Q→R) 前提 (5) Q→R (2),(4) (6) R (3),(5) (7) P→R CP,(2),(6) (8) (P→Q) →(P→R) CP,(1),(7)

10、P→(?Q→?R),Q→?P,S→R,P =>?S

证明:

(1) P 前提 (2) P→(?Q→?R) 前提 (3) ?Q→?R (1),(2) (4) Q→?P 前提 (5) ?Q (1),(4) (6) ?R (3),(5) (7) S→R 前提 (8) ?S (6),(7)

11、A,A→B, A→C, B→(D→?C) => ?D

证明:

(1) A 前提 (2) A→B 前提 (3) B (1),(2) (4) A→C 前提 (5) C (1),(4) (6) B→(D→?C) 前提

20

本文来源:https://www.bwwdw.com/article/mk6t.html

Top