2016年江苏省连云港市中考数学试卷含答案

更新时间:2023-03-08 04:45:42 阅读量: 初中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2016年江苏省连云港市中考数学试卷

一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.) 1.(3分)(2016?连云港)有理数﹣1,﹣2,0,3中,最小的数是( ) A.﹣1 B.﹣2 C.0 D.3 2.(3分)(2016?连云港)据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为( )

6774

A.4.47×10B.4.47×10C.0.447×10D.447×10 3.(3分)(2016?连云港)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面是的字是( )

A.丽 B.连 C.云 D.港 4.(3分)(2016?连云港)计算:5x﹣3x=( )

2

A.2x B.2xC.﹣2x D.﹣2 5.(3分)(2016?连云港)若分式

的值为0,则( )

A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2 6.(3分)(2016?连云港)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是( ) A.y=3x B.

C.

D.y=x

2

7.(3分)(2016?连云港)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=( )

A.86 B.64 C.54 D.48

8.(3分)(2016?连云港)如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为( )

A.2<r<B.C.<r<5 D.5<r<

二、填空题(本大题共有8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上.) 9.(3分)(2016?连云港)化简:

═ .

2

<r<3

10.(3分)(2016?桂林)分解因式:x﹣36= . 11.(3分)(2016?连云港)在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是 . 12.(3分)(2016?连云港)如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2= .

2

13.(3分)(2016?连云港)已知关于x的方程x+x+2a﹣1=0的一个根是0,则a= .

14.(3分)(2016?连云港)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= .

15.(3分)(2016?连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N.若AD=2,则MN= .

16.(3分)(2016?连云港)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为 .

三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答.解答时写出必要的文字说明、证明过程或演算步骤.) 17.(6分)(2016?连云港)计算:(﹣1)18.(6分)(2016?连云港)解方程:19.(6分)(2016?连云港)解不等式来.

20.(8分)(2016?连云港)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.

2016

﹣(2﹣.

)+

0

,并将解集在数轴上表示出

(1)本次问卷共随机调查了 名学生,扇形统计图中m= .

(2)请根据数据信息补全条形统计图.

(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人? 21.(10分)(2016?连云港)甲、乙两校分别有一男一女共4名教师报名到农村中学支教.

(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 .

(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率. 22.(10分)(2016?连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F. (1)求证:△ADE≌△CBF;

(2)若AC与BD相交于点O,求证:AO=CO.

23.(10分)(2016?连云港)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房. (1)求该店有客房多少间?房客多少人?

(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算? 24.(10分)(2016?连云港)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.

(1)求整改过程中硫化物的浓度y与时间x的函数表达式;

(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?

25.(10分)(2016?连云港)如图,在△ABC中,∠C=150°,AC=4,tanB=(1)求BC的长;

(2)利用此图形求tan15°的值(精确到0.1,参考数据:=2.2)

=1.4,=1.7,

2

26.(12分)(2016?连云港)如图,在平面直角坐标系xOy中,抛物线y=ax+bx经过两点A(﹣1,1),B(2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.

(1)求此抛物线对应的函数表达式及点C的坐标; (2)若抛物线上存在点M,使得△BCM的面积为

,求出点M的坐标;

(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.

27.(14分)(2016?连云港)我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON. 问题思考:

(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹,并简要说明理由;

(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;

问题拓展:

(3)如图3,两平面镜OM、ON相交于点O,且∠MON=30°,一束光线从点S出发,且平行于平面镜OM,第一次在点A处反射,经过若干次反射后又回到了点S,如果SA和AO的长均为1m,求这束光线经过的路程;

(4)如图4,两平面镜OM、ON相交于点O,且∠MON=15°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)

问题拓展:

(3)如图3,两平面镜OM、ON相交于点O,且∠MON=30°,一束光线从点S出发,且平行于平面镜OM,第一次在点A处反射,经过若干次反射后又回到了点S,如果SA和AO的长均为1m,求这束光线经过的路程;

(4)如图4,两平面镜OM、ON相交于点O,且∠MON=15°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)

本文来源:https://www.bwwdw.com/article/mk6.html

Top