备战高考数学二轮复习专题1.7排列组合、二项式定理测试卷理

更新时间:2024-07-10 11:12:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

专题1.7 排列组合、二项式定理

(一)选择题(12*5=60分)

1.【2018四川德阳三校联考】从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为 A. 48 B. 72 C. 90 D. 96 【答案】D

拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。

2. ?1?2x??1?x?的展开式中x的系数为( )

35A.10 B.-30 C.-10 D.-20 【答案】C

【解析】由题意得展开式中x3的系数为C5?2C5?10?20??10,选C. 3.【2018广西桂梧高中联考】?1?3x?的展开式的第4项的系数为( )

4334A. ?27C7 B. ?81C7 C. 27C7 D. 81C7

732【答案】A

37?333【解析】由题意可得?1?3x?的展开式的第4项为T3?1?C7?1???3x???27C7x,选A.

734.【2018广西南宁摸底联考】A. 80 B. 【答案】B 【解析】由题意可得

C.

的展开式中项的系数为( )

D. 48

,令r=1,

5所以的系数为-80.选B.

1??5.【2018云南昆明一中摸底】二项式?xx??展开式中的常数项为( )

x??A. 10 B. ?10 C. 5 D. ?5 【答案】B

1

【解析】展开式的通项为Tr?1???1?Cxr53?C5??10,故选B.

r1?15?5r?2,令

1?15?5r??0得r?3,所以展开式中的常数项为26.【2018广东德庆香山一模】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有( )种. A. 36 B. 30 C. 12 D. 6 【答案】A

【解析】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,因为先从其余3人中选出1人担任文艺委员,再从4人中选2人担任学习委员和体育

12委员,所以不同的选法共有C3A4?36种.本题选择A选项.

?27.【2018陕西西安长安区联考】若n?2A. 8 B. 16 C. 24 D. 60 【答案】C

?0?2??2sin?x??dx,则?y??的展开式中常数项为

y?4?????n

8.【2018广东德庆香山一模】在高校自主招生中,某学校获得5个推荐名额,其中中山大学2名,暨南大学2名,华南师范大学1名,并且暨南大学和中山大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( ) A. 36 B. 24 C. 22 D. 20 【答案】B

32【解析】由题意可分成两类:第一类是将3个男生每个大学各推荐1人,共有A3A2?12种推荐方法;第二类

是将3个男生分成两组分别推荐给暨南大学和中山大学,其余2个女生从剩下的大学中选,共有

2

222C3A2A2?12种推荐方法,故共有12+12=24种推荐方法.本题选择B选项.

4??1??9.【2018陕西名校五校联考】?x2?3x???1?的展开式中常数项为( ) ?x??x??A. ?30 B. 30 C. ?25 D. 25 【答案】C

5

3??10.【2018江西新余一中二模】在二项式?x??的展开式中,各项系数之和为A,各项二项式系数之

x??和为B,且A?B?72,则展开式中常数项的值为( ) A. 6 B. 9 C. 12 D. 18 【答案】B

n3??【解析】在二项式?x??的展开式中,令x?1得各项系数之和为4n,?A?4n,二项展开式的二项式

x??3??3??nnnn系数和为2,?B?2, ?4?2?72,解得n?3, ??x????x??的展开式的通项为

x??x??n3nTr?1?Cr3?x?3?r?3?rr???3C3x?x?r3?3r2,令

3?3r1?0得r?1,故展开式的常数项为T2?3C3?9,故选B. 211.【山东省师大附中2018届第三次模拟】将编号1,2,3,4的小球放入编号为1,2,3盒子中,要求不允许有空盒子,且球与盒子的编号不能相同,则不同的放球方法有 A. 6种 B. 9种 C. 12种 D. 18种 【答案】C

3

12.【黑龙江省齐齐哈尔市2017届期第一次模拟】由1、2、3、4、5、6、7七个数字组成七位数,要求没有重复数字且6、7均不得排在首位与个位,1与6必须相邻,则这样的七位数的个数是( ) A. 300 B. 338 C. 600 D. 768 【答案】D

44【解析】当1在首位时,6只有一种排法,7有四种排法,余下四数共有A4中排法,共有1?4?A4 ?96种;

当1在个位时,同样共有96种;当1即不再首位也不在个位时,先把1和6排好,有4?A22种排法,再排

44192?576=768,故选:7有3种排法,余下四数共有A4中排法,共有4?A22?3?A4?576种,综上:共有

D

(二)填空题(4*5=20分)

513.设1?x?a0?a1?x?1??a2?x?1??…?a5?x?1?,则a1?a2?…?a5? .

25【答案】31

5【解析】令x?1,a0?2,令x?2,1?2?a0?a1??a5,a1??a5?31.

14.如图所示,某货场有两堆集装箱,一堆2个,一堆3个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是 ____________(用数字作答).

【答案】10.

【解析】如下图所示,对集装箱编号,则可知排列相对顺序为1,2,3(即1号箱子一定在2号箱子前被

4

5A5取走,2号箱子一定在3号箱子前被取走),4,5,故不同取法的种数是32?10,故填:10.

A3A2

15.【2018江西宜春六校联考】若m?2?1??6x212?tanxdx,且2x?3???m?a0?a1x?a2x2???amxm,

则?a0?a2???am???a1???am?1?的值为__________. 【答案】1

1?21???2px16.【2018辽宁凌源三校联考】在?x?的展开式中,含项的为, 2x???的展开式中含x?2??2x?x7???项的为q,则p?q的最大值为__________. 【答案】?43 831?1?8?2r?r8?r?1??rr?2可得:【解析】?x?展开式的通项公式为: 令8?2r? T?Cx?x?C?r?188?????x,

2x22??????1?123?1?8?2?322?2??r?3,则p?C8,结合排列组合的性质可知,由?x??7xq?C???3??????27x?2??x??7?328rrp?q??7x2?231212?212?22,当且仅当时等号成立.综上可x???7x???27x???43?22?277x7x?7x?得: p?q的最大值为?43. 17.【2018山西山大附中四调】?x?1???x?2??a0?a1?x?1? ?a2?x?1??382?a8?x?1?,则

8 5

a6?__________.

【答案】28

268【解析】令x?1?t ,则?t?2???t?1??a0?a1t?a2t?...?a6t?...?a8t,

r8?r26设?t?1?的展开式含有t6项, Tr?1?C8t??1?,令8?r?6 T3?C8,r?2 ,t?28t6,所以a6?28.

8r3821.

18.【山东省济宁市2018届期末联考】设函数

fn?x??1?____.

x?x?1??x?2???x?n?1?xx?x?1?x?x?1??x?2??????,则方程fn?x??0的根为

11?21?2?31?2?3???n【答案】?1,?2,?3,?,?n

19.【2018届浙江省重点中学期末联考】甲,乙,丙,丁四名同学做传递手帕游戏(每位同学传递到另一位同学记传递1次),手帕从甲手中开始传递,经过5次传递后手帕回到甲手中,则共有__________种不同的传递方法.(用数字作答) 【答案】60种

1【解析】根据题意分3种情况:①当甲第一次传给其余3人,有C3?3种情况,第二次将手帕传给了甲,11第三次甲再传给其余3人,有C3?2种情况,第五次传?3种情况,第四次传给了除甲以外的2人,有C21给甲,此时有3?3?2?18种情况;②当甲第一次传给其余3人,有C3?3种情况,第二次将手帕传给了除11甲以外的2人,有C2?2种情况,第三次传给了甲,第四次传给了其余3人,有C3?3种情况, 第五次传1给甲,此时有3?2?3?18种情况;③当甲第一次传给其余3人,有C3?3种情况,第二次将手帕传给了除11甲以外的2人,有C2?2种情况,第三次再传给了除甲以外的2人,有C2?2种情况,第四次仍然传给了

6

1除甲以外的2人,有C2?2种情况,第五次传给甲,此时有3?2?2?2?24种情况,综上,共有

18?18?24?60种不同的传递方法,故答案为60

1?3?620.【河北省衡水第一中学2018届综合考试】若2?x?x??的展开式中含有常数项,则n的最小

??n?xx?值等于__________. 【答案】2

7

本文来源:https://www.bwwdw.com/article/mjt.html

Top