五年级数学下册长方体和正方体的表面积练习题(人教版)
更新时间:2023-11-28 08:38:01 阅读量: 教育文库 文档下载
- 五菱宏光推荐度:
- 相关推荐
长方体和正方体表面积练习题
一、填空。
1、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是( )厘米。
2、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。高是( )厘米。
3、至少需要( )厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
4、一个长方体的长、宽、高都扩大2倍,它的表面积就( )。 二、应用题。
1、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?
2、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?
3、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块
4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?
5、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)
6、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?
长方体和正方体表面积练习题
1、填空。
(3)一个长方体的长是6分米,宽1.5分米,高3分米,它的表面积是( )平方分米。
(4)一个正方体的棱长是0.5分米,它的表面积是( )平方分米。
(5)一个长4分米、宽2分米、高2分米的长方体,它占地面积最大是( ),表面积是( )。
2、一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?
3、用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?
4、两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是多少平方厘米?
6、一间教室长8米、宽6米,高3米,现在要用涂料粉刷它的四壁和顶棚。如果扣除门、窗和黑板24平方米,求要粉刷的面积有多大?如果每平方米用涂料0.15千克,一共需要多少千克涂料?
7、水泥厂要制作10根长方体铁皮通风管,管口是边长30厘米的正方形,管子长2米。共需多少平方米铁皮?
8、一个长方体游泳池,长20米,宽15米,深2米,现要将它的每个面先抹上水泥,再贴上边长4分米瓷砖,需要这样的瓷砖多少块?如果每平方米用水泥5千克,要用去多少水泥?
9、一种长方体铁皮烟囱,底面是边长3分米的正方形,高4米,制这样一节烟囱至少要用铁皮多少平方米?
10、一个正方体木块,若把它切成3个完全相等的长方体后,表面积增加了80平方厘米,这个正方本木块原来的表面积是多少平方厘米?
11、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?
12、张大爷制作了一种卖苹果用的长方体木箱(无盖),它的长是60厘米,宽40厘米,高30厘米。做这种箱子至少用多少木板至少平方米?
13、一个卫生间长2.4米,宽1.8米,高2米。
(1)如果在四壁贴上 花墙砖,贴墙砖的面积为多少平方米? (2)用长30厘米,宽20厘米的花墙砖贴墙,需要多少块?
二、 一个房间长5米,宽3米,高2.8米,现需油漆四壁和天花板,扣除门窗的面积4.5平方米,求油漆的总面积有多大?
三、要做一种管口周长40厘米的通气管子10根,管子长2米,至少需要铁皮多少平方米?
四、一个正方体的表面积是54平方分米,这个正方体所有棱长之和是多少?
长方体与正方体练习( 二)
(1)一个正方体的表面积是36㎡,把它放在桌子上占的面积是( )㎡ (2)一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是( )形,有( )个面的面积相等,长方体的表面积是( )。 (3)正方体的棱长扩大3倍,它的表面积就扩大( )倍。
(4).如果一个正方体,把它的棱长都缩小4倍,它的表面积将缩小( )倍。
3、做一个无盖的长方体铁盒,长0.6米,宽0.35米,高0,4米。至少需要多少平方米铁皮?
4、把一个正方体锯成两个长方体,它的表面积增加了6平方厘米,那么原正方体的表面积是多少平方厘米?
5.有一个长方体的糖盒长和宽都是12厘米,高10厘米,在盒的四周贴上商标纸,这张商标纸的面积至少是多少? 6.用铁皮焊15个底面是边长25厘米的正方形,高4分米的长方体无盖水桶,至少要用多少铁皮?
7.一个小食堂长10米,宽8米,高5米,要粉刷四壁和顶棚。扣除门窗面积18.4平方米,平均每平方米用石灰0.2千克,一共用石灰多少千克?
8. 用三个棱长为8厘米的正方体木块拼成一个长方体,长方体的表面积是多少?棱长之和是多少?
三.解决问题。
1、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?
2、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块? 3、一个通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?
5、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?
7、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米? 8、把一根长20厘米,宽5厘米,高3厘米的长方体木料沿横截面锯成2段,表面积增加多少?
四、思考题
1、一个长方体底面是一个边长为20厘米的正方形,高为40厘米,如果把它的高增加5厘米,它的表面积会增加多少?
2、一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,求原来长方体的表面积?
4、一个正方体的表面积是384平方厘米,它的棱长是多少
稍复杂的长方体和正方体的体积和表面积练习
一、填空
1、一个长方体的棱长总和是48cm,宽是2cm,长是宽的2倍,它的表面积是( )。
2、一个长方体方木,长2m,宽和厚都是30cm,把它的长截成2段,表面积增加( )。
3、长方体中最多可以有( )条棱的长度相等,最少有( )条棱的长度相等。
4、两个完全相同的长方体,长10cm,宽7cm,高4cm,拼成一个表面积最大的长方体后,表面积是( ),比原来减少了( );如果拼成一个表面积最小的长方体,表面积是( ),比原来减少了( )。
5、一个正方体的棱长总和是48厘米,它的表面积是( )。 二、选择
1、一个棱长是1分米的正方体木块,横截成三个体积相等的小长方体后,表面积增加了( )A、2平方分米 B、4平方分米 C、6平方分米 2、大正方体棱长是小正方体棱长的3倍,大正方体的表面积是小正方体表面积的( )倍。 A、3 B、6 C、9
3、一个正方体表面积是150平方厘米,把它平均分成两个长方体,每个长方体的表面积是( ) A、75平方厘米 B、100平方厘米 C、90平方
厘米
4、一个长方体有四个面的面积相等,则其余两个面是( ) A、长方形 B、正方形 C、不一定
5、挖一个长8米、宽6米、深4.5米的长方体水池,这个水池的占地面积至少是( )A、48平方米 B、44平方米 C、36平方米 D、222平方米
三、计算
1、一个长方体的12条棱长总和是64厘米,侧面是一个周长为24厘米的长方形,它的长是多少?
2、粮店售米用的长方体木箱(上面没有盖),长1.2米,宽0.6米,高0.8米,制作这样一个木箱至少要用木板多少平方米?
3、把一个长方体和一个正方体拼成一个新的长方体,这个新长方体的表面积比原来的长方体的表面积增加了80平方厘米,求正方体的表面积。
4、一个长方体的木块,截成两个完全相等的正方体。两个正方体棱长之和比原来长方体棱长之和增加40厘米,求原长方体的长是多少厘米?
5、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个表面积最小的大长方体,这个长方体的表面积是多少平方厘米?
6、一个小食堂长10米,宽8米,高5米,要粉刷四壁和顶棚。扣除门窗面积18.4平方米,平均每平方米用石灰0.2千克,一共用石灰多少千克?
10、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每4平方米需要水泥1千克,一共要水泥多少千克?
12、用一根长36厘米的铁丝做成一个最大的正方体框架,在框架外面全部糊上白纸,需要白纸多少平方厘米?
13、一种汽车上的油箱,里面长8分米,宽5分米,高3.5分米。做这个油
箱需要多少平方分米的铁皮?如果每升汽油5.5元钱. 这个油箱装满汽油共需要多少钱?
练习一:
1、把一个正方体和一个等底面积的长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。原正方体的表面积是多少平方厘米?
2、把两个完全一样的长方体木块拼成一个大长方体,这个大长方体的表面积比原来两个小长方体的表面积之和减少了46平方厘米,而长是原来长方体的2倍。如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?
3、一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
4、把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积会减少多少平方分米? 练习二:
1、长方体不同的三个面的面积分别为10、15和6平方厘米。这个长方体的体积是多少立方厘米?
思路:长方体不同的三个面的面积分别为长×宽、长×高和宽×高。因此,15×10×6=(长×宽×高)×(长×宽×高),而15×10×6=900=30×30。所以,这个长方体的体积是30立方厘米。
2、一个长方体、不同的三个面的面积分别为35、15和21平方厘米,且长宽高都是素数。这个长方体的体积是多少立方厘米?
3、一个长方体,前面和上面的面积之和是209立方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。这个长方体的体积是多少立方厘米?
4、长方体不同的三个面的面积分别为25、18和8平方厘米。这个长方体的体积是多少立方厘米?
练习三:
1、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水,如果在水
中沉入一个棱长为30厘米的正方体铁块,那么水箱中水深多少分米?
思路:铁块的体积为9立方分米,沉入水中后,水上升的体积就是9立方分米,用这个体积除以水箱底面积就能得到水上升的高度。则30厘米=3分米;3×3×3÷(15×12)+10=10.15(分米)
2、有一个长方体容器,从里面量长5分米,宽4分米,高6分米,里面注入水,水深3分米。如果把一块长2分米的正方体铁块浸入水中,水面上升了多少分米
3、有一个小金鱼缸,长4分米,宽3分米,水深2分米。把一个小块假山石浸入水中后,水面上升了0.8分米。这块假山石的体积是多少立方分米?
4、在一个长20分米,宽15分米的长方体容器中,有20分米深的水。现在在水中沉入一个棱长30厘米的正方体铁块,这时容器中水深多少分米?
练习四: 1、将表面积分别为54、96和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。 思路:因为正方体的每一个面的面积相等,所以这三个正方体的每一个面面积是9、16、25平方厘米。故三个正方体的棱长分别是3、4、5厘米。则大正方体的体积只需将三个正方体的体积相加即可。
2、有三个正方体铁块,它们的表面积分别为24、54和294平方厘米。现将三块铁熔成一个大正方体(不计损耗),求这个大正方体的体积。
3、将表面积分别是216和384平方厘米的两个正方体熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。 4、把8块棱长是1分米的正方体铁块熔成一个大正方体,求这个大 正方体的表面积是多少平方分米?
练习五:
1、一个长方体容器的底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长15厘米的长方体铁块。这时容器里的水深0.5米。如果把铁块取出,容器里的水深是多少厘米? 思路:这里告诉的铁块高度是一个无用的条件,首先计算使水面升高的铁块的体积是:15×15×(0.5×100)=11250(立方厘米),这时可计算铁块使水面升高的高度:11250÷(60×60)=3.125(厘米)。则取出铁块后水的高度为50-3.125=46.875(厘米)。
2、有一块棱长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。取出铁块后,水面下降了0.5厘米。这个长方体容器的底面积是多少平方厘米?
3、有一个长方体冰箱,从里面量长40厘米,宽30厘米,深35厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。这时水面高多少厘米?
4、有大中小三个长方形水池,它们的池口都是正方形,边长分别为6分米,3分米和2分米。现在把两堆碎石分别沉入中小两个水池内。这两个水池的水面分别升高了6厘米和4厘米。如果把这两堆碎石都沉入大池内,那么,大池的水面将升高多少厘米?(结果保留整数)
练习六:
1、有一个长方体容器,长30厘米,宽20厘米,高10厘米,里面的水深6厘米(最大面为底面),如果把这个容器盖紧(不漏水),再朝左竖起来(最小面为底面),里面的水深是多少厘米?
思路:水的形状在变化,而水的体积没有变化。 30×20×6 ÷(20×10)=18(厘米)
2、有两个长方体水缸,甲缸长3分米,宽和高都是2分米。乙缸长4分米,宽2分米,里面的水深1.5分米。现把乙缸的水倒进甲缸,水深多少分米?
3、有一块边长2分米的正方形铁块,现把它锻造成一根长方体,这个长方体的截面是一个长4厘米,宽2厘米的长方形,求它的长。
4、你能计算第一题中让中面作为底面的水的高度吗?
练习七:
1、一个长方体容器内装满水,现在有大中小三个铁球,第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中。已知每次从容器中溢出的水量情况是:第二次是第一次的3倍,第三次是第一次的2.5倍。问:大球的体积是小球的几倍?
思路:假设小球的体积是1,则第一次溢出的水的体积也是1,根据第二次溢出的水是第一次的3倍,可知第二次溢出的水是3,因为取出了小球,则中球的体积为4。根据第三次溢出的水是第一次的2.5倍,可知第三次溢出的水为2.5,因为取出了中球,则大球的体积为2.5+4-1=5.5。 不难计算大球的体积是小球的5.5倍。
2、有一个正方形容器,边长是25厘米,里面注满了水,有一根长50厘米,横截面是12平方厘米的长方体铁棒,现将铁棒垂直插入水中。问:会溢出多少立方厘米的水?
3、有两个水池,甲水池长8分米,宽6分米,水深3分米,乙水池空着,它长、宽高都是4分米。现将从甲水池中抽出一部分水到乙水池,使两水池的水面同样高。求水面的高度。
4、一个长方体容器,底面是一个边长60厘米的正方形。容器里直立着一个高1米,底面边长15厘米的长方体铁块,这时容器里的水深0.5米。现在把铁块轻轻地向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?
练习八:
1、一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的小正方体,表面积增加了多少平方厘米? 思路:把棱长6厘米的正方体锯成棱长为2厘米的正方体,每锯一次的表面积可增加6×6×2=72(平方厘米),一共要锯6次,则表面积增加72×6=432(平方厘米)。 2、把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的面积之和少多少平方厘米?
3、有一个棱长是1米的正方体木块,如果把它锯成相等的8个小正方体,表面积增加多少平方米?
4、把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样大的小长方体,没有涂颜色的面积是60平方厘米。求涂上红色的面积一共是多少平方厘米?
练习九:
1、一个正方体的表面涂满了红色,然后切成大小相同的27个小正方体。⑴、三个面有红色的有几个?⑵二个面有红色的有几个?⑶一个面有红色的有几个?⑷六个面都没有红色的有几个?
思路:三面有红色的正方体都在顶点处,所以有8个。两面有红色的小正方体都在棱上,所以有12个。只有一个面有红色的在六个面上,所以有6个,六个面都没有红色的在大正方体的中间,所以只有1个。
2、把一个棱长是5厘米的正方体六个面都涂上红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有红色的各有多少个?
3、把若干个体积相同的小正方体堆成一个大正方体,然后在大大正方体的表面涂上颜色,已知两面被涂上颜色的小正方体有24个,那么,这些小正方体一共有多少个? 4、把1立方米的正方体木块的表面涂上颜色,然后切成1立方分米的小正方体,在这些小正方体中,六个面都没有涂色的有多少个?
练习十:
1、一个长方体的长宽高分别是6、5、4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体的表面积的和最大是多少平方厘米?
思路:这个长方体的原表面积为148平方厘米,每切割一刀,增加两个面,切成三个体积相等的小长方体要切2刀。一共增加4个面。要求增加面积最大,应增加4个30平方厘米的面。所以三个小长方体的表面积和最大是148+6×5×4=268(平方厘米)。
2、有三块完全一样的长方体木块,每块长8厘米,宽5厘米,高3厘米。要把它们粘成一个大长方体,这个长方体的表面积最大是多少平方厘米?最少是多少平方厘米?
3、把8个同样大的小正方体拼成一个大正方体,已知每个小正方体的表面积是72平方厘米,拼成的大正方体的表面积是多少平方厘米?
4、把一个长宽高分别是7、6、5厘米的长方体截成两个小长方体,使这两个长方体的表面积的和最大。求它们的表面积和是多少平方厘米?
练习十一:
1、有一个正方体,棱长是3分米。如果把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?
思路:根据小正方体的数量为27个,在依据每个小正方体的表面积为6平方分米。就可以得到这些小正方体的表面积之和了。
2、用棱长是1厘米的小正方体摆成一个较大的正方体,至少需要多少个?如果要摆成一个棱长是6厘米的正方体,需要多少个小正方体?
3、有一个长方体,长10厘米,宽6厘米,高4厘米。如果把它锯成棱长是1
厘米的小正方体,一共可锯多少个?这些小正方体的表面积和是多少? 4、把24个棱长是1厘米的小正方体摆成一个长方体,这个长方体的表面积至少是多少平方厘米? 1、做一个长8厘米、宽6厘米、高4厘米的长方体纸盒,至少要用( )平方厘... 2、已知一个正方体纸盒的棱长为6厘米,则它的表面积是( )平方厘米... 3、两个长宽高相等的长方体,长6厘米,宽4厘米,高2厘米,可以拼成一个长方体...
4、把一个长10厘米,宽8厘米、高6厘米的长方体木块,切成两个长方体,表面积...
5、一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是( ...
6、一个正方体的棱长是5厘米,它的表面积是( )平方厘米 7、一个长方体的棱长总和是72厘米,已知长是8厘米,高是4厘米,宽是( ... 8、用一根长100厘米的铁丝,做成一个长6厘米,宽3厘米,高2厘米的长方体后...
9、一个长方体无盖铁盒,长12厘米,宽5厘米,高10厘米.做这个铁盒至少要用...
10、一个正方体的棱长是1.2分米,则它的表面积是( )平方分米. A... 11、把一个棱长为10厘米的正方体切成两个长方体,表面积增加( )平方厘... 12、一个长方体铁箱,棱长之和是128厘米,如果它的长是16厘米,宽是10厘米...
13、容器所能容纳物体的( )叫做容器的容积。
14、一个水箱可装0.8立方米的水,这个水箱的( )是0.8立方米。 A... 15、一个容积为80升的长方体油桶,长5分米,宽4分米,那么它的高为( ... 16、底面积是16平方米的正方体的水箱,则它最多能装( )立方米的水。... 17、 的棱长总和是96厘米,一条棱长是( )厘米。
18、用5个完全一样的正方体拼成一个长方体,表面积减少64平方分米,这个长方体...
19、妈妈买来一块长方体的蛋糕,长12厘米,宽10厘米,高8厘米。若用刀将其切...
20、一个正方体木块,表面积是12平方分米。把它截成8个体积相等的小正方体,
厘米的小正方体,一共可锯多少个?这些小正方体的表面积和是多少? 4、把24个棱长是1厘米的小正方体摆成一个长方体,这个长方体的表面积至少是多少平方厘米? 1、做一个长8厘米、宽6厘米、高4厘米的长方体纸盒,至少要用( )平方厘... 2、已知一个正方体纸盒的棱长为6厘米,则它的表面积是( )平方厘米... 3、两个长宽高相等的长方体,长6厘米,宽4厘米,高2厘米,可以拼成一个长方体...
4、把一个长10厘米,宽8厘米、高6厘米的长方体木块,切成两个长方体,表面积...
5、一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是( ...
6、一个正方体的棱长是5厘米,它的表面积是( )平方厘米 7、一个长方体的棱长总和是72厘米,已知长是8厘米,高是4厘米,宽是( ... 8、用一根长100厘米的铁丝,做成一个长6厘米,宽3厘米,高2厘米的长方体后...
9、一个长方体无盖铁盒,长12厘米,宽5厘米,高10厘米.做这个铁盒至少要用...
10、一个正方体的棱长是1.2分米,则它的表面积是( )平方分米. A... 11、把一个棱长为10厘米的正方体切成两个长方体,表面积增加( )平方厘... 12、一个长方体铁箱,棱长之和是128厘米,如果它的长是16厘米,宽是10厘米...
13、容器所能容纳物体的( )叫做容器的容积。
14、一个水箱可装0.8立方米的水,这个水箱的( )是0.8立方米。 A... 15、一个容积为80升的长方体油桶,长5分米,宽4分米,那么它的高为( ... 16、底面积是16平方米的正方体的水箱,则它最多能装( )立方米的水。... 17、 的棱长总和是96厘米,一条棱长是( )厘米。
18、用5个完全一样的正方体拼成一个长方体,表面积减少64平方分米,这个长方体...
19、妈妈买来一块长方体的蛋糕,长12厘米,宽10厘米,高8厘米。若用刀将其切...
20、一个正方体木块,表面积是12平方分米。把它截成8个体积相等的小正方体,
正在阅读:
五年级数学下册长方体和正方体的表面积练习题(人教版)11-28
社会实践项目申报书 - 图文01-08
高考语病修改专项训练05-04
2015春 六年级海西家园教案11-22
工程师常用 English06-13
我想说声“谢谢”作文500字06-26
PRESSCAD新增功能介绍 - 图文05-06
架桥剂项目可行性研究报告05-24
中国悬挂配套设备市场深度调研及投资价值评估报告2014-201809-05
建设工程法律法规试题04-02
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 正方体
- 长方体
- 表面积
- 练习题
- 下册
- 人教
- 年级
- 数学
- 草坪修剪机是园林绿化中最常用的园林机械之一,也是
- 小学二年级数学上学期第一单元基础巩固试卷
- 暖气安装公司推荐 - 图文
- 六年级数学下册《第二单元检测》(附答案)
- 如何区分相电压和线电压
- 车辆制动装置习题 Microsoft Office Word 文档
- 风险分级管控 - 设备设施风险分级控制清单
- 电大《高级财务会计》第三次形成性考核作业答案
- 2018年电大计算机网考统考机考试题及答案-按字母新排版
- 大数据在物流管理中的应用
- 经济学效用理论习题
- 基因工程中常用的酶及其功能分析
- 热力学统计物理课后答案11
- 人教版八年级下册英语第 一单元重点短语与句型汉译英专项练习
- 农村“低电压”问题原因分析及综合治理方法研究
- 《成本会计学》课程作业题
- 共享同一片蓝天策划书
- 城市湿地公园运营管理实施方案 - 图文
- 内蒙古2015年下半年变电安全生产知识及运行规程考试试题
- 6-7#楼人工挖孔桩询价函