第七章 三角形单元测试(含答案)

更新时间:2023-08-13 23:46:01 阅读量: IT计算机 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第七章 三角形单元测试

姓名: 时间:90分钟 满分:100分 评分:

一、选择题(本大题共10小题,每小题3分,共30分. 在每小题所给出的四个选项中,只有一项是符合题目要求的)

1.以下列各组线段为边,能组成三角形的是( )

A.2cm,3cm,5cm B.5cm,6cm,10cm

C.1cm,1cm,3cm D.3cm,4cm,9cm

2.等腰三角形的一边长等于4,一边长等于9,则它的周长是( )

A.17 B.22 C.17或22 D.13

3.适合条件∠A=11∠B=∠C的△ABC是( ) 23

A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形

4.已知等腰三角形的一个角为75°,则其顶角为( )

A.30° B.75° C.105° D.30°或75°

5.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( )

A.5 B.6 C.7 D.8

6.三角形的一个外角是锐角,则此三角形的形状是( )

A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定

7.下列命题正确的是( )

A.三角形的角平分线、中线、高均在三角形内部

B.三角形中至少有一个内角不小于60°

C.直角三角形仅有一条高

D.直角三角形斜边上的高等于斜边的一半

8.能构成如图所示的基本图形是( )

(A) (B) (C) (D)

9.已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为( )

A.10cm或6cm B.10cm C.6cm D.8cm或6cm

10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )

A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)

(1) (2) (3)

二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)

11.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.

12.四条线段的长分别为5cm、6cm、8cm、13cm, 以其中任意三条线段为边可以构成________个三角形.

13.如下图2:∠A+∠B+∠C+∠D+∠E+∠F等于________.

14.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.

15.n边形的每个外角都等于45°,则n=________.

16.乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要安排______种不同的车票.

17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形, 它的内角和(按一层计算)是_______度.

18.如图3,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是_____.

三、解答题(本大题共6小题,共46分,解答应写出文字说明, 证明过程或演算步骤)

19.(6分)如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.

20.(8分)如图:

(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.

(2)若∠A=∠B,请完成下面的证明:

已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.

求证:CE∥AB.

21.(8分)(1)如图4,有一块直角三角形XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.

(4) (5)

(2)如图5,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ 仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.

22.(8分)引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的4根火柴,使之留下5个正方形, 且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.

23.(8分)在平面内,分别用3根、5根、

6根……火柴首尾依次相接, 能搭成什么形..

状的三角形呢?通过尝试,列表如下所示:

问:(1)4根火柴能拾成三角形吗?

(2)8根、12根火柴能搭成几种不同

形状的三角形?并画出它们的示意图.

24.(8分)如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.

(1)CO是△BCD的高吗?为什么?

(2)∠5的度数是多少?

(3)求四边形ABCD各内角的度数.

答案:

1.B

2.B 点拨:由题意知,三角形的三边长可能为4,4,9或4,9,9.但4+4<9,说明以4,4,9为边长构不成三角形.所以,这个等腰三角形的周长为22.故选B.

3.B 点拨:设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理, 得x+ 2x+3x=180.解得x=30.∴3x=3×30=90.故选B.

4.D 点拨:分顶角为75°和底角为75°两种情况讨论.

5.C 点拨:据题意,得(n-2)·180=2×360+180.解得n=7.故选C.

6.B

7.B 点拨:若三角形中三个内角都小于60°,则三个内角的和小于180°, 与内角和定理矛盾.所以,三角形中至少有一个内角不小于60°.

8.B

9.A 点拨:∵BC=8cm,│AC-BC│=2cm,∴AC=10cm或6cm. 经检验以10cm, 10cm,8cm,或6cm,6cm,8cm为边长均能构成三角形.故选A.

10.B 点拨:可根据三角形、四边形内角和定理推证.

11.1<x<6 点拨:8-5<1+2x<8+5,解得1<x<6.

12.2 点拨:以5cm、6cm、8cm或6cm、8cm、13cm为边长均可构成三角形.

13.360° 点拨:∵图中正好有两个三角形:△AEC,△BDF,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.

14.七

15.8 点拨:n=360 =8. 45

16.10

17.四;360

18.100° 点拨:连接AO并延长,易知∠BOC=∠BAC+∠1+∠2=55°+20°+25 °=100°.

19.解:在△ABD中,∵∠A=90°,∠1=60°,

∴∠ABD=90°-∠1=30°.

∵BD平分∠ABC,∴∠CBD=∠ABD=30°.

在△BDC中,∠C=180°-(∠BDC+∠CBD)=180°-(80°+30°)=70°.

20.(1)如答图

(2)证明:

∵∠A=∠B,∠BCD是△ABC的外角,

∴∠BCD=∠A+ ∠B=2∠B,

∵CE是外角∠BCD的平分线,

∴∠BCE=11∠BCD=×2∠B=∠B, 22

∴CE∥AB( 内错角相等,两直线平行)

点拨:如答图所示,要证明两直线平行,只需证内错角∠B=∠BCE即可.

21.(1)150°;90°

(2)不变化.

∵∠A=30°,

∴∠ABC+∠ACB=150°,

∵∠X= 90°,

∴∠XBC+∠XCB=90°,

∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)

=(∠ABC+ ∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.

点拨:此题注意运用整体法计算.

22.如答图7-2.

23.解:(1)4根火柴不能搭成三角形;

(2)8根火柴能搭成一种三角形(3,3,2);

12根火柴能搭成三种不同的三角形(4,4,4;5,5,2;3,4,5).图略.

24.解:(1)CO是△BCD的高.

理由:在△BDC中,∵∠BCD=90°,∠1=∠2,∴∠1=∠2=90°÷2=45°. 又∵∠1=∠3,∴∠3=45°.

∴∠DOC=180°-(∠1+∠3)=180°-2×45°=90°,

∴CO⊥DB.

∴CO是△BCD的高.

(2)∠5=90°-∠4=90°-60°=30°.

(3)∠CDA=∠1+∠4=45°+60°=105°,∠DCB=90°,

∠DAB=∠5+∠6=30°+30°=60°,

∠ABC=105°.

本文来源:https://www.bwwdw.com/article/m9dj.html

Top