Quantum fluctuations and glassy behavior of electrons near metal-insulator transitions
更新时间:2023-05-17 06:58:01 阅读量: 实用文档 文档下载
- quantum推荐度:
- 相关推荐
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
Quantum uctuationsandglassybehaviorofelectronsnear
metal-insulatortransitions
arXiv:cond-mat/0403594v1 [cond-mat.str-el] 23 Mar 2004V.Dobrosavljevi´cDepartmentofPhysicsandNationalHighMagneticFieldLaboratory,FloridaStateUniversity,Tallahassee,FL32306,USAABSTRACTGlassybehaviorisagenericfeatureofelectronsclosetodisorder-drivenmetal-insulatortransitions.Deepintheinsulatingphase,electronsaretightlyboundtoimpurities,andthusclassicalmodelsforelectronglasseshavelongbeenused.Asthemetallicphaseisapproached,quantum uctuationsbecomemoreimportant,astheycontroltheelectronicmobility.Inthispaperwereviewrecentworkthatusedextendeddynamicalmean- eldapproachestodiscussthein uenceofsuchquantum uctuationsontheglassybehaviorofelectrons,andexaminehowthestabilityoftheglassyphaseisa ectedbytheAndersonandtheMottmechanismsoflocalization.Keywords:Electronglass,quantum uctuations,localization1.GLASSYBEHAVIORASAPRECURSORTOTHEMETAL-INSULATORTRANSITIONUnderstandingthemetal-insulatortransition(MIT)posesoneofthemostbasicquestionsofcondensedmatterphysics.IthasbeenbeenatopicofmuchcontroversyanddebatestartingfromearlyideasofMott,1andAnderson,2buttheproblemremainsfarfrombeingresolved.Quitegenerally,whenasystemisneitheragoodmetalnoragoodinsulator,boththelocalizedandtheitinerantaspectsoftheproblemareimportant.Inthisintermediateregime,severalcompetingprocessescanbesimultaneouslypresent.Asaresult,thesystemcannot
Figure1.Threebasicroutestolocalization
“decide”whethertobeametaloraninsulatoruntilaverylowtemperatureT isreached,belowwhichamoreconventionaldescriptionapplies.Thissituationistypicalofsystemsclosetoaquantumcriticalpoint,3whichdescribesazerotemperaturesecondorderphasetransitionbetweentwodistinctstatesofmatter.Understandingthenatureoflowenergyexcitationsintheintermediateregimebetweenametalandaninsulatorisofcrucialimportancefortheprogressinmaterialscience.
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
Theprimaryreasonfortheoreticaldi cultiesisrelatedtothefactthatboththeMottandtheAndersontransition ndthemselvesinregimeswheretraditional,perturbativeapproaches4cannotbestraightforwardlyapplied.Tomaketheproblemevenmoredi cult,simpleestimates1aresu cienttoappreciatethatinmanysituationsthee ectsofinteractionsanddisorderareofcomparablemagnitudeandthusbothshouldbesimul-taneouslyconsidered.Sofar,veryfewapproacheshaveattemptedtosimultaneouslyincorporatethesetwobasicroutestolocalization.
Anotheraspectofdisorderedinteractingelectronsposesafundamentalproblem.Verygenerally,Coulombrepulsionfavorsauniformelectronicdensity,whiledisorderfavorslocaldensity uctuations.Whenthesetwoe ectsarecomparableinmagnitude,onecanexpectmanydi erentlowenergyelectroniccon gurations,i.e.theemergenceofmanymetastablestates.Similarlyasinother“frustrated”systemswithdisorder,suchasspinglasses,theseprocessescanbeexpectedtoleadtoglassybehavioroftheelectrons,andtheassociatedanomalouslyslowrelaxationaldynamics.Indeed,boththeoretical5,6andexperimental7–11workhasfoundevidenceofsuchbehaviordeepontheinsulatingsideofthetransition.However,atpresentverylittleisknownastothepreciseroleofsuchprocessesinthecriticalregion.Nevertheless,itisplausiblethattheglassyfreezingoftheelectronsmustbeimportant,sincetheassociatedslowrelaxationclearlywillreducethemobilityoftheelectrons.Fromthispointofview,theglassyfreezingofelectronsmaybeconsidered,inadditiontotheAndersonandtheMottmechanism,asathirdfundamentalprocessassociatedwithelectronlocalization.Interestinunderstandingtheglassyaspectsofelectrondynamicshasexperiencedagenuinerenaissanceinthelastfewyears,primarilyduetoexperimentaladvances.Emergenceofmanymetastablestates,slowrelaxationandincoherenttransporthavebeenobservedinanumberofstronglycorrelatedelectronicsystems.TheseincludedtransitionmetaloxidessuchashighTcmaterials,manganites,andruthenates.Similarfeatureshaverecentlybeenreportedintwo-dimensionalelectrongases,andeventhreedimensionaldopedsemiconductorssuchasSi:P.
2.EXTENDEDDMFTAPPROACHESFORDISORDEREDELECTRONS
Anumberofexperimentalandtheoreticalinvestigationshavesuggestedthattheconventionalpictureofdisor-deredinteractingelectronsmaybeincomplete.Mostremarkably,thecharacteristic“critical”behaviorseeninmanyexperimentscoversasurprisinglybroadrangeoftemperaturesanddensities.Thisismorelikelytore ectanunderlying“mean- eld”behaviorofdisorderedinteractingelectronsthantheasymptoticcriticalbehaviordescribedbyane ectivelong-wavelengththeory.Thusasimplemean- elddescriptionisneededtoprovidethe
Figure2.Indynamicalmean- eldtheory,theenvironmentofagivensiteisrepresentedbyane ectivemedium,rep-
resentedbyits“cavityspectralfunction” i(ω).Inadisorderedsystem, i(ω)fordi erentsitescanbeverydi erent,re ectingAndersonlocalizatione ects.
equivalentofaVanderWaalsequationofstate,fordisorderedinteractingelectrons.Suchatheoryhaslongbeenelusive,primarilyduetoalackofasimpleorder-parameterformulationforthisproblem.Veryrecently,analternativeapproachtotheproblemofdisorderedinteractingelectronshasbeenformulated,basedondynamicalmean- eldtheory(DMFT)methods.12Thisformulationislargelycomplementarytothescalingapproach,andhasalreadyresultinginseveralstrikingpredictions.
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
TheDMFTapproachfocusesonasinglelatticesite,butreplaces12itsenvironmentbyaself-consistentlyde-termined“e ectivemedium”,asshowninFig.2.Foritinerantelectrons,theenvironmentcannotberepresentedbyastaticexternal eld,butinsteadmustcontaintheinformationaboutthedynamicsofanelectronmovinginoroutofthegivensite.Suchadescriptioncanbemadeprecisebyformallyintegratingout12allthedegreesoffreedomonotherlatticesites.Inpresenceofelectron-electroninteractions,theresultinglocale ectiveactionhasanarbitrarilycomplicatedform.WithinDMFT,thesituationsimpli es,andalltheinformationabouttheenvironmentiscontainedinthelocalsingleparticlespectralfunction i(ω).Thecalculationthenreducestosolvinganappropriatequantumimpurityproblemsupplementedbyanadditionalself-consistencyconditionthatdeterminesthis“cavityfunction” i(ω).
ThepreciseformoftheDMFTequationsdependsontheparticularmodelofinteractingelectronsand/ortheformofdisorder,butmostapplications12tothisdatehavefocusedonHubbardandAndersonlatticemodels.TheapproachhasbeenverysuccessfulinexaminingthevicinityoftheMotttransitionincleansystemsinwhichithasmetspectacularsuccessesinelucidatingvariouspropertiesofseveraltransitionmetaloxides,13heavyfermionsystems,andKondoinsulators.14
Whenappropriatelygeneralizedtodisorderedsystems,13thesemethodsareabletoincorporateallthethreebasicmechanismsofelectronlocalization.Inparticular,theDMFTapproachisabletopresentaconsistentpicturefortheglassybehaviorofelectrons,anddiscussitsemergenceinthevicinityofmetal-insulatortransi-tions.Inthispaperwereviewrecentresultsobtainedinthisframework,anddiscusstheirrelevancetoseveralexperimentalsystems.
3.SIMPLEMODELOFANELECTRONGLASS
Theinterplayoftheelectron-electroninteractionsanddisorderisparticularlyevidentdeepontheinsulatingsideofthemetal-insulatortransition(MIT).Here,bothexperimental15andtheoreticalstudies16havedemonstratedthattheycanleadtotheformationofasoft“Coulombgap”,aphenomenonthatisbelievedtoberelatedtotheglassybehavior7–11,17oftheelectrons.Suchglassyfreezinghaslongbeensuspected18tobeofimportance,butveryrecentwork19,20hassuggestedthatitmayevendominatetheMITbehaviorincertainlowcarrierdensitysystems.TheclassicworkofEfrosandShklovskii16hasclari edsomebasicaspectsofthisbehavior,butanumberofkeyquestionshaveremainunanswered.
Asasimplestexample21displayingglassybehaviorofelectrons,wefocusonasimplelatticemodelofspinlesselectronswithnearestneighborrepulsionVinpresenceofrandomsiteenergiesεiandinter-sitehoppingt,asgivenbytheHamiltonian
H= ( t+εiδij)c
icj+V c
icicjcj.(1)
<ij><ij>
Thismodelcanbesolved21inaproperlyde nedlimitoflargecoordinationnumberz,12whereanextendeddynamicalmean- eld(DMF)formulationbecomesexact.Weconcentrateonthesituationwherethedisorder(ormoregenerallyfrustration)islargeenoughtosuppressanyuniformordering.Wethenrescaleboththehopping√z.Aswewillseeshortly,therequiredelementsandtheinteractionamplitudesastij→tij/
uctuationsthensurviveeveninthez→∞limit,allowingfortheexistenceoftheglassyphase.Withinthismodel:
TheuniversalformoftheCoulombgap16provestobeadirectconsequenceofglassyfreezing.
Theglassphaseisidenti edthroughtheemergenceofanextensivenumberofmetastablestates,whichinourformulationismanifestedasareplicasymmetrybreakinginstability.22
Asaconsequenceofthisergodicitybreaking,22thezero- eldcooledcompressibilityisfoundtovanishatT=0,suggestingtheabsenceofscreening16indisorderedinsulators.
Thequantum uctuationscanmeltthisglassevenatT=0,buttherelevantenergyscaleissetbytheelectronicmobility,andisthereforeanontrivialfunctionofdisorder.
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
Weshouldstressthatalthoughthismodelallowstoexaminetheinterplayofglassyorderingandquantum uctuationsduetoitinerantelectrons,itistoosimpletodescribethee ectsofAndersonlocalization.Thesee ectsrequireextensionstolatticeswith nitecoordination,andandwillbediscussedinthenextsection.
Forsimplicity,wefocusonaBethelatticeathalf lling,andexaminethez→∞limit.Thisstrategyautomaticallyintroducesthecorrectorderparameters,andafterstandardmanipulations23theproblemreducestoaself-consistentlyde nedsinglesiteproblem,asde nedbyanthee ectiveactionoftheform
aβSeff(i)=
+1o βoa′2′a′dτdτ′[c i(τ)(δ(τ τ) τ+εi+tG(τ,τ))ci(τ)
2V2
a=bβo βob′dτdτ′δnai(τ)qabδni(τ).(2)
Here,wehaveusedfunctionalintegrationoverreplicatedGrassmann elds23cai(τ)thatrepresentelectronsonsiteiandreplicaindexa,andtherandomsiteenergiesεiaredistributedaccordingtoagivenprobabilitydistribution aaP(εi).Theoperatorsδnai(τ)=(ci(τ)ci(τ) 1/2)representthedensity uctuationsfromhalf lling.TheorderparametersG(τ τ′),χ(τ τ′)andqabsatisfythefollowingsetofself-consistencyconditions
G(τ τ)=
′′aa′χ(τ τ)=dεiP(εi)<δn
i(τ)δni(τ)>eff,
ab′qab=dεiP(εi)<δn
i(τ)δni(τ)>eff. aa′dεiP(εi)<c i(τ)ci(τ)>eff,(3)(4)(5)
3.1.Orderparameters
Intheseequations,theaveragesaretakenwithrespecttothee ectiveactionofEq.(2).Physically,the“hybridizationfunction”t2G(τ τ′)representsthesingle-particleelectronicspectrumoftheenvironment,asseenbyanelectrononsitei.Inparticular,itsimaginarypartatzerofrequencycanbeinterpreted24astheinverselifetimeofthelocalelectron,andassuchremains niteaslongasthesystemismetallic.Werecall23thatforV=0theseequationsreducetothefamiliarCPAdescriptionofdisorderedelectrons,whichisexactforz=∞.Thesecondquantityχ(τ τ′)representsan(interaction-induced)mode-couplingtermthatre ectstheretardedresponseofthedensity uctuationsoftheenvironment.Notethatverysimilarobjectsappearinthewell-knownmode-couplingtheoriesoftheglasstransitionindenseliquids.25Finallythequantityqab(a=b)isnothingbutthefamiliarEdwards-AndersonorderparameterqEA.Itsnonzerovalueindicatesthatthetimeaveragedelectronicdensityisspatiallynon-uniform.
3.2.EquivalentIn niteRangemodel
Fromatechnicalpointofview,aRSBanalysisistypicallycarriedoutbyfocusingonafreeenergyexpressedasafunctionaloftheorderparameters.InourBethelatticeapproach,onedirectlyobtainstheself-consistencyconditionsformappropriaterecursionrelations,23withoutinvokingafreeenergyfunctional.However,wehavefounditusefultomapourz=∞modeltoanotherin niterangemodel,whichhasexactlythesamesetoforderparametersandself-consistencyconditions,butforwhichanappropriatefreeenergyfunctionalcaneasilybedetermined.TherelevantmodelisstillgivenEq.(1),butthistimewithrandomhoppingelementstijandrandomnearest-neighborinteractionVij,havingzeromeanandvariancet2,andV2,respectively.Forthismodel,standardmanipulations23resultinthefollowingfreeenergyfunctional
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
F[G,χ,qab]=
12ln dεiP(εi) aaDc
iDciexp{ Seff(i)}, a=b2(βV)2qab(6)
withSeff(i)givenbyEq.(2).Theself-consistencyconditions,Eqs.(4-6)thenfollowfrom
0=δF/δG(τ,τ′);0=δF/δχ(τ,τ′);0=δF/δqab.(7)
WestressthatEqs.(3-5)havebeenderivedforthemodelwithuniformhoppingelementstijandinteractionamplitudesVij,inthez→∞limit,butthesameequationsholdforanin niterangemodelwheretheseparametersarerandomvariables.
3.3.Theglasstransition
Inourelectronicmodel,therandomsiteenergiesεiplayaroleofstaticrandom elds.Asaresult,inpresenceofdisorder,theEdwards-AndersonparameterqEAremainsnonzeroforanytemperature,andthuscannotserveasanorderparameter.Toidentifytheglasstransition,wesearchforareplicasymmetrybreaking(RSB)instability,followingstandardmethods.26,27Wede neδqab=qab q,andexpandthefreeenergyfunctionalofEq.(6)aroundtheRSsolution.Theresultingquadraticform(Hessianmatrix)hasthematrixelementsgivenby
2F
1
εi
4 +∞ ∞ dx x2/21etanh2π
W2+V2q,
(12)
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
sincethefrozen-indensity uctuationsintroduceanaddedcomponenttotherandompotentialseenbytheelectron.Asexpected,q=0foranytemperaturewhenW=0.Iftheinteractionstrengthisappreciableascomparedtodisorder,wethusexpecttheresistivitytodisplayanappreciableincreaseatlowtemperatures.Weemphasizethatthismechanismisdi erentfromAndersonlocalization,whichisgoingtobediscussedinthenextsection,butwhichalsogivesrisetoaresistivityincreaseatlowtemperatures.
Next,weexaminetheinstabilitytoglassyordering.Intheclassical(t=0)limitEq.(9)reducesto
1=1√ xβWeff(q),(13)2
withWeff(q)givenbyEq.(12).TheresultingRSBinstabilitylineseparatesalowtemperatureglassyphasefromahightemperature“badmetal”phase.Atlargedisorder,theseexperssionssimplify,andwe nd
TG≈1V2
2π
ρ(ε,t=0)=1
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
0.600
0.400
Vρ( ε )
0.200
0.000
–3.00–2.00–1.000.00
ε/V1.002.003.00
Figure3.Singleparticledensityofstatesintheclassical(t=0)limitatT=0,asafunctionofdisorderstrength.ResultsareshownfromasimulationonN=200sitesystem,forW/V=0.5(thinline)andW/V=1.0(fullline).Notethatthelowenergyformofthegaptakesauniversalform,independentofthedisorderstrengthW.ThedashedlinefollowsEq.(16).
Theergodicitybreakingassociatedwiththeglassyfreezinghasimportantconsequencesforourmodel.Again,usingtheclosesimilarityofourclassicalin niterangemodeltostandardSGmodels,22itisnotdi culttoseethatthezero- eldcooled(ZFC)compressibilityvanishesatT=0,incontrasttothe eld-cooledone,whichremains nite.Essentially,ifthechemicalpotentialismodi edafterthesystemiscooledtoT=0,thesystemimmediatelyfallsoutofequilibriumanddisplayshystereticbehavior29withvanishingtypicalcompressibility.Ifthisbehaviorpersistsin nitedimensionsandformorerealisticCoulombinteractions,itcouldexplaintheabsenceofscreeningindisorderedinsulators.
4.2.Arbitrarylatticesand nitecoordination:mean- eldglassyphaseofthe
random- eldIsingmodel.
Simplesttheoriesofglassyfreezing22areobtainedbyexaminingmodelswithrandominter-siteinteractions.Inthecaseofdisorderedelectronicsystems,theinteractionsarenotrandom,butglassinessstillemergesduetofrustrationintroducedbythecompetitionoftheinteractionsanddisorder.AswehaveseenfortheBethelattice,21randominteractionsaregeneratedbyrenormalizatione ects,sothatstandardDMFTapproachescanstillbeused.However,onewouldliketodevelopsystematicapproachesforarbitrarylatticesandin nitecoordination.Theseissuesalreadyappearontheclassicallevel,whereourmodelreducestotherandom- eldIsingmodel(RFIM).30ToinvestigatetheglassybehavioroftheRFIM,wedeveloped31asystematicapproachthatcanincorporateshort-range uctuationcorrectionstothestandardBragg-Williamstheory,followingthemethodofPlefka32andGeorgesetal..33Thisworkhasshownthat:
Correctionstoeventhelowestnontrivialorderimmediatelyresultintheappearanceofaglassyphaseforsu cientlystrongrandomness.
Thislow-ordertreatmentissu cientinthejoinedlimitoflargecoordinationandstrongdisorder.
Thestructureoftheresultingglassyphaseischaracterizedbyuniversalhysteresisandavalanchebehavioremergingfromtheself-organizedcriticalityoftheorderedstate.
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
5.QUANTUMMELTINGOFTHEELECTRONGLASS
Next,weinvestigatehowtheglasstransitiontemperaturecanbedepressedbyquantum uctuationsintroducedbyinter-siteelectrontunneling.Asinotherquantumglassproblems,quantum uctuationsintroducedynamicsintheproblem,andtherelevantself-consistencyequationscannotbesolveinclosedformforgeneralvaluesoftheparameters.Inthefollowing,wewillseethatinthelimitoflargerandomness,anexactsolutionispossible.
5.1.Quantumphasediagram
Themainsourceofdi cultyingeneralquantumglassproblemsrelatestotheexistenceofaself-consistentlydetermined“memorykernel”χ(τ τ′)inthelocale ectiveaction.Bythesamereasoningasintheclasicalcase,onecanalsoignorethistermsincethisquantityisalsobounded.
Figure4.Phasediagramasafunctionofquantumhoppingt,temperatureTanddisorderstrengthW.GlasstransitiontemperatureTGdecreasesonlyslowly(as1/W)inthestrongdisorderlimit.Incontrast,thecriticalvalueofthehopingelementtGremains niteasW→∞
Theremainingactionisthatofnoninteractingelectronsinpresenceofastrongrandompotential.Theresultinglocalcompressibilitythentakestheform
χloc(ε)=β
2βω).(17)
Here,ρε(ω)isthelocaldensityofstates,whichintheconsideredlargezlimitisdeterminedbythesolutionoftheCPAequation1,(18)ρε(ω)= ω+iη ε t2G(ω)
InthelimitW/t>>1,itreducestoanarrowresonanceofwidth =πt2P(0)~t2/W
ρε(ω)≈1
(ω ε)2+ 2
.(19)
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
Theresultingexpressionforthequantumcriticallineinthelargedisorderlimittakestheform
√tG(T=0,W→∞)=V/
4z2 +∞
dx
∞ +∞dy11+(x y)2cosh 2(1
∞
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
with
D(ωn)=2 yqEA/V4
Thisbehaviorre ectstheemergenceofsoft”replicon”modes22describinginourcaserepresentlowenergychargerearrangementsinsidetheglassyphase.At nitetemperatures,electronsundergoinelasticscatteringfromsuchcollectiveexcitations,leadingtothetemperaturedependenceoftheresistivitythattakesthefollowingnon-Fermiliquidform
ρ(T)=ρ(o)+AT3/2.
Interestingly,veryrecentexperiments37ontwodimensionalelectrongasesinsiliconhaverevealedpreciselysuchtemperaturedependenceoftheresistivity.Thisbehaviorhasbeenobservedinwhatappearstobeanintermediatemetallicglassphaseseparatingaconventional(Fermiliquid)metalathighcarrierdensity,fromaninsulatoratthelowestdensities.
Anotherinterestingfeatureofthepredictedquantumcriticalbehaviorrelatestodisorderdependenceofthecrossoverexponentφdescribinghowthegapscale ~δrφvanishesasafunctionofthedistanceδrfromthecriticalline.Calculations38showthatφ=2inpresenceofsiteenergydisorder,whichforourmodelplaysaroleofarandomsymmetrybreaking eld,andφ=1initsabsence.Thisindicatesthatsitedisorder,whichiscommonindisorderedelectronicsystems,producesaparticularlylargequantumcriticalregion,whichcouldbetheoriginoflargedephasingobservedinmanymaterialsnearthemetal-insulatortransition.|ωn|.
5.3.E ectsofAndersonlocalization
Aswehaveseen,thestabilityoftheglassyphaseiscruciallydeterminedbytheelectronicmobilityatT=0.Moreprecisely,wehaveshownthattherelevantenergyscalethatdeterminesthesizeofquantum uctuationsintroducedbytheelectronsisgivenbythelocal“resonancewidth” .Itisimportanttorecallthatpreciselythisquantitymaybeconsidered2asanorderparameterforAndersonlocalizationofnoninteractingelectrons.Veryrecentwork13,24demonstratedthatthetypicalvalueofthisquantityplaysthesameroleevenataMott-Andersontransition.Wethusexpect togenerallyvanishintheinsulatingstate.Asaresult,weexpectthestabilityoftheglassyphasetobestronglya ectedbyAndersonlocalizatione ects,aswewillexplicitlydemonstrateinthenextsection.
6.GLASSYBEHAVIORNEARTHEMOTT-ANDERSONTRANSITION
Onphysicalgrounds,oneexpectsthequantum uctuations39associatedwithmobileelectronstosuppressglassyordering,buttheirprecisee ectsremaintobeelucidated.Notethateventheamplitudeofsuchquantum uctuationsmustbeasingularfunctionofthedistancetotheMIT,sincetheyaredynamicallydeterminedbyprocessesthatcontroltheelectronicmobility.
Toclarifythesituation,thefollowingbasicquestionsneedtobeaddressed:(1)DoestheMITcoincidewiththeonsetofglassybehavior?(2)Howdodi erentphysicalprocessesthatcanlocalizeelectronsa ectthestabilityoftheglassphase?Inthefollowing,weprovidesimpleandphysicallytransparentanswerstobothquestions.We ndthat:(a)Glassybehaviorgenerallyemergesbeforetheelectronslocalize;(b)Andersonlocalization2enhancesthestabilityoftheglassyphase,whileMottlocalization1tendstosuppressit.
Inordertobeabletoexamineboththee ectsofAndersonandMottlocalization,weconcentrateonextendedHubbardmodelsgivenbytheHamiltonian
H= ijσ( tij+εiδij)c i,σcj,σ+U ini↑ni↓+ ijVijδniδnj.
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
Here,δni=ni ni representlocaldensity uctuations( ni isthesite-averagedelectrondensity),Uistheon-siteinteraction,andεiareGaussiandistributedrandomsiteenergiesofvarianceW2.Inordertoallowforglassyfreezingofelectronsinthechargesector,weintroduceweakinter-sitedensity-densityinteractionsVij,whichwealsoalsochoosetobeGaussiandistributedrandomvariablesofvarianceV2/z(zisthecoordinationnumber).Weemphasizethat,incontrasttopreviouswork,21weshallnowkeepthecoordinationnumberz nite,inordertoallowforthepossibilityofAndersonlocalization.Toinvestigatetheemergenceofglassyordering,weformallyaverageoverdisorderbyusingstandardreplicamethods,40andintroducecollectiveQ- eldstodecoupletheinter-siteV-term.40Amean- eldisthenobtainedbyevaluatingtheQ- eldsatthesaddle-pointlevel.Theresultingstabilitycriteriontakestheformsimilarasbefore
1 V2
j[χ2ij]dis=0.(23)
Here,thenon-localstaticcompressibilitiesarede ned(fora xedrealizationofdisorder)as
χij= ni/ εj,(24)
whereniisthelocalquantumexpectationvalueoftheelectrondensity,and[···]disrepresentstheaverageoverdisorder.Obviously, 2thestabilityoftheglassphaseisdeterminedbythebehaviorofthefour-ordercorrelation(2)functionχ=[χij]disinthevicinityofthemetal-insulatortransition.Weemphasizethatthisquantityisto
j
becalculatedinadisorderedHubbardmodelwith niterangehopping,i.e.inthevicinityoftheMott-Andersontransition.Thecriticalbehaviorofχ(2)isverydi culttocalculateingeneraql,butwewillseethatsimpleresultscanbeobtainedinthelimitsofweakandstrongdisorder,asfollows.
rgedisorder
Asthedisordergrows,thesystemapproachestheAndersontransitionatt=tc(W)~W.The rsthintofsingularbehaviorofχ(2)inanAndersoninsulatorisseenbyexaminingthedeeplyinsulating,i.e.atomiclimitW t,wheretoleadingorderwesett=0andobtainχij=δ(εi µ)δij,i.e.χ(2)=[δ2(εi µ)]dis=+∞diverges!Sinceweexpectallquantitiestobehaveinqualitativelythesamefashionthroughouttheinsulatingphase,weanticipateχ(2)todivergealreadyattheAndersontransition.Notethat,sincetheinstabilityoftheglassyphaseoccursalreadyatχ(2)=V 2,theglasstransitionmustprecedethelocalizationtransition.Thus,forany niteinter-siteinteractionV,wepredicttheemergenceofanintermediatemetallicglassphaseseparatingtheFermiliquidfromtheAndersoninsulator.Assumingthatnearthetransition
χ(2) A
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
4
3
2
1
1.002468
W/t01012t/VFermi Liquid
Metallic Glass
Insulating Glass
0.0024
W/V68χ(2)
dωImG(εi,ω,W)1.50.5Figure5.Phasediagramforthez=3Bethelattice,validinthelargedisorderlimit.Theinsetshowsχ(2)ingthismethod,wehavecalculatedχ(2)asafunctionofW/t(forthislatticeathalf- llingEF=√2 εi
G(εi,ω,W)==1 εi1 0(27) ∞
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
t/VW/VFigure6.PhasediagramfromTypicalMediumTheoryofAndersonlocalization,43givingα=1.TheintermediatemetallicglassyphaseshrinksasdisorderWgrows,parethistotheBethelatticecaseFig.5,whereα=∞.
6.2.Lowdisorder-Motttransition
InthelimitofweakdisorderW U,V,andinteractionsdrivethemetal-insulatortransition.Concentratingonthemodelathalf- lling,thesystemwillundergoaMotttransition1asthehoppingtissu cientlyreduced.SincefortheMotttransitiontMott(U)~U,nearthetransitionW t,andtoleadingorderwecanignorethelocalizatione ects.Inaddition,weassumethatV U,andtoleadingorderthecompressibilitieshavetobecalculatedwithrespecttotheactionSelofadisorderedHubbardmodel.Thesimplestformulationthatcandescribethee ectsofweakdisorderonsuchaMotttransitionisobtainedfromthedynamicalmean- eldtheory12(DMFT).Thisformulation,whichignoreslocalizatione ects,isobtainedbyrescalingthehoppingelements√t→t/
3πtc(1 otc(W)
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
Figure7.SchematicphasediagramforanextendedHubbardmodelwithdisorder,asafunctionofthehoppingelementtandthedisorderedstrengthW,bothexpressedinunitsoftheon-siteinteractionU.Thesizeofthemetallicglassphaseisdeterminedbythestrengthoftheinter-siteinteractionV.
thefullsolutionoftheMott-Andersonproblem.TherequiredcalculationscanandshouldbeperformedusingtheformulationofRef.13,24,butthatdi culttaskisachallengforthefuture.However,basedongeneralargumentspresentedabove,weexpectχ(2)tovanishasoneapproachestheMottinsulator(W<U),buttodivergeasoneapproachestheMott-Andersoninsulator(W>U).NearthetetracriticalpointM(seeFig.2),wemayexpectχ(2)~δW αδtβ,whereδW=W WMott(t)isthedistancetotheMotttransitionline,andδt=t tc(W)ingthisansatzandEq.(23),we ndtheglasstransitionlinetotaketheform
δt=tG(W) tc(W)~δWβ/α;W~WM.(31)
Wethusexpecttheintermediatemetallicglassphasetobesuppressedasthedisorderisreduced,andoneapproachestheMottinsulatingstate.Physically,glassybehaviorofelectronscorrespondstomanylow-lyingrearrangementsofthechargedensity;suchrearrangementsareenergeticallyunfavorableclosetothe(incom-pressible)Mottinsulator,sincetheon-siterepulsionUopposescharge uctuations.Interestingly,veryrecentexperimentsonlowdensityelectronsinsiliconMOSFETshaverevealedtheexistenceofexactlysuchanin-termediatemetallicglassphaseinlowmobility(highlydisordered)samples.37Incontrast,inhighmobility(lowdisorder)samples,44nointermediatemetallicglassphaseisseen,andglassybehavioremergesonlyasoneenterstheinsulator,consistentwithourtheory.SimilarconclusionshavealsobeenreportedinstudiesofhighlydisorderedInO2 lms,7–11wheretheglassyslowingdownoftheelectrondynamicsseemstobesuppressedasthedisorderisreducedandonecrossesoverfromanAnderson-liketoaMott-likeinsulator.Inaddition,theseexperiments37,44providestrikingevidenceofscale-invariantdynamicalcorrelationsinsidetheglassphase,consistentwiththehierarchicalpictureofglassydynamics,asgenerallyemergingfrommean- eldapproaches22suchastheoneusedinthiswork.
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
7.CONCLUSIONS
Recentyearshavewitnessedenormousrenewedinterestinthemetal-insulatortransition.Scoresofnewandfascinatingmaterialsarebeingfabricated,withpropertiesthatcouldnotbeanticipated.Acommonthemeinmanyofthesesystemsisthepresenceofboththestrongelectron-electroninteractionsanddisorder,asituationwhichproveddi culttoanalyzeusingconventionaltheoreticalmethods.Inthispaper,wehavedescribedanovelapproachtothisdi cultproblem,andshownthatitcancapturemostrelevantprocesses.Thisformulationcaneasilybeadaptedtomanyrealisticsituationsandwillopennewavenuesforthedevelopmentofmaterialsscienceresearch.
ACKNOWLEDGMENTS
TheauthorwouldliketoacknowledgehiscollaboratorsA.A.Pastor,M.H.Horbach,D.Tanaskovi´c,D.Dali-dovich,L.Arrachea,andM.J.Rozenberg,withwhomitwasapleasuretoexplorethephysicsofelectronglasses.IalsothankS.Bogdanovich,S.Chakravarty,J.Jaroszynski,D.Popovi´c,Z.Ovadyahu,J.Schmalian,andG.Zimanyiforusefuldiscussions.ThisworkwassupportedbytheNSFgrantDMR-9974311andDMR-0234215,andtheNationalHighMagneticFieldLaboratory.
REFERENCES
1.N.F.Mott,Metal-Insulatortransition,Taylor&Francis,London,1990.
2.P.W.Anderson,“Absenceofdi usionincertainrandomlattices,”Phys.Rev.109,pp.1492–1505,1958.
3.S.Sondhi,S.Girvin,J.Carini,andD.Shahar,“Continuousquantumphasetransitions,”Rev.Mod.Phys.69,p.315,1997.
4.P.A.LeeandT.V.Ramakrishnan,“Disorderedelectronicsystems,”Rev.Mod.Phys.57,p.287,1985.
5.J.H.Davies,P.A.Lee,andT.M.Rice,“Electronglass,”Phys.Rev.Lett.49,pp.758–761,1982.
6.M.PollakandA.Hunt,“Slowprocessesindisorderedsolids,”inHoppingTransportinSolids,M.PollakandB.I.Shklovskii,eds.,pp.175–206,Elsevier,Amsterdam,1991.
7.M.Ben-Chorin,D.Kowal,andZ.Ovadyahu,“Anomalous elde ectingatedAndersoninsulators,”Phys.Rev.B44,pp.3420–3423,1991.
8.M.Ben-Chorin,Z.Ovadyahu,andM.Pollak,“Nonequilibriumtransportandslowrelaxationinhoppingconductivity,”Phys.Rev.B48,pp.15025–15034,1993.
9.Z.OvadyahuandM.Pollak,“Disorderandmagnetic elddependenceofslowelectronicrelaxation,”Phys.Rev.Lett.79,pp.459–462,1997.
10.A.Vaknin,Z.Ovadyahu,andM.Pollak,“Evidenceforinteractionsinnonergodicelectronictransport,”
Phys.Rev.Lett.81,pp.669–672,1998.
11.A.Vaknin,Z.Ovadyahu,andM.Pollak,“Aginge ectsinanAndersoninsulator,”Phys.Rev.Lett.84,
pp.3402–3405,2000.
12.A.Georges,G.Kotliar,W.Krauth,andM.J.Rozenberg,“Dynamicalmean- eldtheoryofstronglycorre-
latedfermionsystemsandthelimitofin nitedimensions,”Rev.Mod.Phys.68,p.13,1996.
13.V.Dobrosavljevi´candG.Kotliar,“Dynamicalmean- eldstudiesofmetal-insulatortransitions,”Phil.Trans.
R.Soc.Lond.A356,p.1,1998.
14.M.J.Rozenberg,G.Kotliar,andH.Kajueter,“Transferofspectralweightinspectroscopiesofcorrelated
electronsystems,”Phys.Rev.B54,p.8542,1996.
15.J.G.MasseyandM.Lee,“Low-frequencynoiseprobeofinteractingchargedynamicsinvariable-range
hoppingboron-dopedsilicon,”Phys.Rev.Lett.77,p.3399,1996.
16.A.L.EfrosandB.I.Shklovskii,“Coulombgapandlowtemperatureconductivityofdisorderedsystems,”
J.Phys.C8,pp.L49–51,1975.
17.G.Martinez-Arizala,C.Christiansen,D.E.Grupp,N.Markovic,A.M.Mack,andA.M.Goldman,
“Coulomb-glass-likebehaviorofultrathin lmsofmetals,”Phys.Rev.B57,pp.R670–R672,1998.
18.D.BelitzandT.R.Kirkpatrick,“Anderson-Motttransitionasaquantum-glassproblem,”Phys.Rev.B52,
p.13922,1995.
Glassy behavior is a generic feature of electrons close to disorder-driven metal-insulator transitions. Deep in the insulating phase, electrons are tightly bound to impurities, and thus classical models for electron glasses have long been used. As the meta
19.V.Dobrosavljevi´c,E.Abrahams,E.Miranda,andS.Chakravarty,“Scalingtheoryoftwo-dimensional
metal-insulatortransitions,”Phys.Rev.Lett.79,pp.455–458,1997.
20.S.Chakravarty,S.Kivelson,C.Nayak,andK.Voelker,“Wignerglass,spin-liquids,andthemetal-insulator
transition,”Phil.Mag.B79,p.859,1999.
21.A.A.PastorandV.Dobrosavljevi´c,“Meltingoftheelectronglass,”Phys.Rev.Lett.83,p.4642,1999.
22.M.Mezard,G.Parisi,andM.A.Virasoro,SpinGlasstheoryandbeyond,WorldScienti c,Singapore,1986.
23.V.Dobrosavljevi´candG.Kotliar,“Strongcorrelationsanddisorderind=∞andbeyond,”Phys.Rev.B
50,p.1430,1994.
24.V.Dobrosavljevi´candG.Kotliar,“Mean eldtheoryoftheMott-Andersontransition,”Phys.Rev.Lett.
78,p.3943,1997.
25.H.Z.Cummins,G.Li,W.M.Du,andJ.Hernandez,“Relaxationaldynamicsinsupercooledliquids:
experimentaltestsofthemodecouplingtheory,”PhysicaA204,p.169,1994.
26.J.deAlmeidaandD.J.Thouless,“Stabilityofthesherrington-kirkpatricksolutionofaspinglassmodel,”
J.Phys.A11,p.983,1978.
27.M.MezardandA.P.Young,“Replicasymmetrybreakingintherandom eldisingmodel,”Europhys.Lett.
18,pp.653–659,1992.
28.R.G.PalmerandC.M.Pond,“Internal elddistributioninmodelspinglasses,”J.Phys.F9,p.1451,
1979.
29.F.Pazmandi,G.Zarand,andG.T.Zimanyi,“Self-organizedcriticalityinthehysteresisoftheSherrington-
Kirkpatrickmodel,”Phys.Rev.Lett.83,pp.1034–1037,1999.
30.T.Nattermann,“Theoryoftherandom eldIsingmodel,”cond-mat/9705295,1997.
31.A.A.Pastor,V.Dobrosavreljevi´c,andM.L.Horbach,“Mean- eldglassyphaseoftherandom eldIsing
model,”Phys.Rev.B66,p.014413(14),2001.
32.T.Plefka,“Convergenceconditionofthetapequationforthein nite-rangedIsingspinglassmodel,”J.
Phys.A15,pp.1971–1978,1982.
33.A.Georges,M.Mezard,andJ.S.Yedida,“Low-temperaturephaseoftheIsingspinglassonahypercubic
lattice,”Phys.Rev.Lett.64,p.2937,1990.
34.N.Read,S.Sachdev,andJ.Ye,“LandautheoryofquantumspinglassesofrotorsandIsingspins,”Phys.
Rev.B52,p.384,1995.
35.J.MillerandD.A.Huse,“Zero-temperaturecriticalbehaviorofthein nite-rangequantumIsingspinglass,”
Phys.Rev.Lett.70,p.3147,1993.
36.D.DalidovichandV.Dobrosavljevi´c,“LandautheoryoftheFermi-liquidtoelectron-glasstransition,”Phys.
Rev.B66,p.081107(4),2002.
37.S.BogdanovichandD.Popovi´c,“Onsetofglassydynamicsinatwo-dimensionalelectronsysteminsilicon,”
Phys.Rev.Lett.88,p.236401(4),2002.
38.L.Arrachea,D.Dalidovich,V.Dobrosavljevi´c,andM.J.Rozenberg,“MeltingtransitionofanIsingglass
drivenbymagnetic eld,”Phys.Rev.B(inpress),2004.
39.A.A.PastorandV.Dobrosavljevi´c,“Meltingoftheelectronglass,”Phys.Rev.Lett.83,pp.4642–4645,
1999.
40.V.Dobrosavljevi´c,D.Tanaskovi´c,andA.A.Pastor,“Glassybehaviorofelectronsnearmetal-insulator
transitions,”Phys.Rev.Lett.90,p.016402(4),2003.
41.R.Abou-Chacra,P.W.Anderson,andD.Thouless,“Aselfconsistenttheoryoflocalization,”J.Phys.C6,
p.1734,1973.
42.A.D.Mirlin,“Statisticsofenergylevelsandeigenfunctionsindisorderedsystems,”Phys.Rep.326,p.259,
2000.
43.V.Dobrosavljevi´c,A.Pastor,andB.K.Nikoli´c,“TypicalmediumtheoryofAndersonlocalization:Alocal
orderparameterapproachtostrongdisordere ects,”Europhys.Lett.62,pp.76–82,2003.
44.J.Jaroszy´nski,D.Popovi´c,andT.M.Klapwijk,“Universalbehavioroftheresistancenoiseacrossthe
metal-insulatortransitioninsiliconinversionlayers,”Phys.Rev.Lett.89,p.276401(4),2002.
正在阅读:
Quantum fluctuations and glassy behavior of electrons near metal-insulator transitions05-17
浅谈如何培养学生学习程序设计语言的兴趣04-03
索氏提取器的原理及其操作04-27
2019年电大《实用写作》考试题库及答案11-15
高新区教育局关于在2017年春节期间组织开展“崇德向善迎新春 红03-07
六同第六讲 消去法解题04-05
绿化养护工程质量检查考核评分表09-01
- 1the cross arm and the installation of insulator
- 2Fluctuations in the Bose Gas with Attractive Boundary Condit
- 3A Transforming Metal Nanocomposite with Large Elastic Strain, Low
- 4EFFECTIVE BEHAVIOR OF SOLITARY WAVES OVER RANDOM TOPOGRAPHY
- 5quantum-espresso安装
- 6Incompressible Quantum Hall Fluid
- 722.1.4 - Frictional - behavior - - 摩擦行为
- 8Multiseparability and Superintegrability for Classical and Quantum Systems
- 9Abundances of Extremely Metal-Poor Star Candidates
- 10Chapter1 what is organizational behavior
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- fluctuations
- transitions
- electrons
- insulator
- behavior
- Quantum
- glassy
- metal
- near
- 1名词与主谓一致
- 共青团中国地质大学(北京)委员会
- 2017年广西师范大学美术学院311教育学专业基础综合之简明中国教育史考研冲刺密押题
- 压缩空气系统验证方案(新)
- 巧记英语月份和星期
- 何坊2013年烟花爆竹安全专项整治工作总结
- 贵州电力通信信息化建设思路探讨
- 第三章试题答案 概率论与数理统计
- 建筑业企业资质等级标准(特级)
- 危险作业审批制度
- 2015年中考北大附属实验学校物理调研试题
- 桥梁钢结构涂装中重防腐技术的应用
- 2013年中央电大刑法学(1)形成性考核册参考答案
- 八年级地理下册第十章中国在世界中导学案
- 毕业设计-安旭梅
- 母爱是条宽阔的河
- 2021年人教版六年级数学下册二单元考试题(A4版)
- 2011国企员工入党申请书
- 第4章 基本算法和流程控制
- 英语单词速记方法