希望杯试题11-20

更新时间:2023-11-04 15:39:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

题11 使不等式2?a?arccosx的解是?x1?x?1的实数a的取值范围是( ) 2A、1??125?22? B、 C、 D、?? ??222623(第十一届高二第一试第6题)

解法1 由已知可知2?arccosx?a的解集是??,1?.在此区间上函数

x?1??2??1?f?x??2x?arccosx是单调增的.因此a的值应当满足关系f????a,

?2??a?2?1222??1???.选B. ?arccos???3?2?2x解法2 原不等式同解于a?2?arccosx,因为?12?x?1,所以?2x?2, 22?2?22?22?.故选B. ??2x?arccosx?2,?a????arccosx?0,从而

32323 评析 上述两种解法的实质是一回事.

关于此题,刊物上有数篇文章的观点值得商榷,现摘其部分加以分析. 一篇文章认为:“由已知不等式得a?2?arccosx,欲使其解为?x1?x?1,实际上是对2?1??1?x???,1?的任何x,a?2x?arccosx恒成立,而y?2x?arccosx在??,1?上是增函数,

22?????122??1?所以当x??时,ymin?22?arccos.故选B.” ?????2232??1另一篇文章在介绍了“设m?f?x??n,则a?f?x??a?f?x?max?n;a?f?x??

x“令f?x??2?arccosx,当?a?f?x?min?m”后分析道:

122??x?1时,??f?x? 223?2,又a?f?x?,故a?22??,选B. ” 23 还有一篇文章干脆将题目改为:

1

使不等式2?a?arccosx的解是? A、???,1?x1?x?1的实数a的取值范围是( ) 2????2?? B、???,???22??? ?23???25??1??? D、? C、??,???,???? ??262????并作了如下解答:

“由已知得a?2?arccosx,记f?x??2x?arccosx,因为x在??,1?时,f?x?单调

x?1??2?增,所以ymin?2?1222?22??1?.因此,.选B.” ?a???arccos????2323?2??1??2?首先应当指出,第一、第三篇文章中说增函数f?x??2x?arccosx在??,1?上的最小值

22?是明显错误的. ?23这三篇文章共同的观点是“不等式2?a?arccosx的解是?x1?x?1”等价于“对2?1?x???,1?的任何x,a?2x?arccosx恒成立”.按此观点,应当有a??2??1?f???,题目就错了?2?(选择支中没有正确答案),又怎么能选B呢?第三篇文章也将题目改错了(选择支中同样没有正确答案).

问题的关键在于“不等式2?a?arccosx的解是?x1?1??x?1”与“对x???,1?的任何2?2?x,a?2x?arccosx恒成立”到底是否等价.

为说明这一问题,我们只要看一个简单的例子就能明白了. 不等式x?2x?a?0的解集是??1,3?,求a的取值范围.

2如果认为它等价于“x???1,3?时,不等式x?2x?a?0恒成立,求a的取值范围”,就

2会这样解:

由x?2x?a?0得a??x2?2x,??x2?2x?1??x?1?在??1,3?上的最小值是

22 2

22但x?2x?8?0的解集却不是??1,3?,1??3?1???3,?a??3为所求.而事实上,?8??3,

而是??2,4?,可见两者并不等价.

至此,我们可以得出结论:“关于x的不等式a?f?x?的解集是D”与“x?D时,关于x的不等式a?f?x?恒成立”不一定是等价的.

题12 已知a,b是正数,并且a1998?b1998?a1996?b1996,求证a2?b2?2.

(第十届高一培训题第74题)

证法1 若a与b中有一个等于1,那么另一个也等于1,此时,显然a?b?2.

1998?b1998?a1996?b1996改写为a1996a2?1?b19961?b2,由此若a?b且b?1,可将a22????a2?1?b?2推得0?b?1(若b?1,则a?1?0,得a?1,这与a?b矛盾),由此得???21?b?a?1996,?

b?b?0??1,0???a?a?1996a2?122a?b?2. 得 ?1,??1,21?b1998?b1998?a2?b2证法2 2a?????a1996?b1996??a1998?a2b1996?a1996b2?b1998?

?a2?b2??a1996?b1996?.?a2?b2与a1996?b1996同号,? ?a2?b2??a1996?b1996??0,

?2?a1998?b1998???a2?b2??a1996?b1996?.?a1998?b1998?a1996?b1996?0,?a2?b2?2.

证法3 由a1998?b1998?a1996?b1996及a,b?R?,得a2?b2a??1996?b1996??a2?b2?a1998?b1998

a1998?b1998?a1996b2?a2b1996a1996b2?a2b1996??1?.?a1996b2?a2b1996?a1998?b1998 1998199819981998a?ba?b???a2?b2??a1996?b1996?,又a2?b2与a1996?b1996同号,???a2?b2??a1996?b1996??0,

a1996b2?a2b1996??1,?a2?b2?2. 19981998a?b评析 解决本题的关键在于如何利用已知条件. 证法1通过分类讨论证得a?b?2,较繁.由于a

3

221998?b1998?a1996?b1996,故证法2作差

2a1998?b1998?a2?b2a1996?b1996,只要此差大于等于0命题便获证.而证法3将a2?b2表

???????a示成

1996?b1996a2?b2①,便将问题转化成证①式小于等于2.证法2,3的作法既有技巧性,

a1998?b1998???又有前瞻性,简洁明了.

拓展 本题可作如下推广

推广1 设a,b?R,且a推广2 设a,b?R,且a推广3 设a,b?R,且a1998?b1998?a1996?b1996,则a2?b2?2.

?b2n?2?a2n?b2n,其中n?N?,则a2?b2?2. ?b2m?2n?a2m?b2m,其中m,n?N?,则a2n?b2n?2.. ?Bb2m?2n?Aa2m?Bb2m,其中m,n?N?,

2n?22m?2n推广4 设a,b?R,且Aa2m?2nA,B?R?,A?B?1,则Aa2n?Bb2n?1②.

由于推广1,2,3都是推广4的特例,故下面证明推广4. 证明 ⑴当a?b?0时,②式显然成立. ⑵当a,b不全为零,有

?A?B??Aa2m?2n?Bb2m?2n???Aa2m?Bb2m??Aa2n?Bb2n??AB?a2m?2n?a2mb2n?a2nb2m?b2m?2n??AB?a2m?b2m??a2n?b2n?.?a2m?b2m与

a2n?b2n同号,?AB?a2m?b2m??a2n?b2n??0,??A?B??Aa2m?2n?Bb2m?2n?

??Aa2m?Bb2m??Aa2n?Bb2n?.?Aa2m?2n?Bb2m?2n?Aa2m?Bb2m?0,?Aa2n?Bb2n?A?B?1.即当a,b不全为零时,②式也成立.综上,不等式②成立.

推广5 设a,b?R,且a推广6 设a,b?R,且a???m?n?bm?n?am?bm,其中m,n?Z,mn?0,则an?bn?2. ?bm?n?am?bm,其中m,n?R,mn?0,则an?bn?2. ?Bbm?n?Aam?Bbm,

nnm?n推广7 设a,b?R,且Aam?n?其中m,n?R,mn?0,A,B?R,A?B?1,则Aa?Bb?1③.

由于推广5,6是推广7的特殊情形,故下面证明推广7.

4

m?n?Bbm?n?Aam?Bbm证明 ?A?B?Aa?????Aan?Bbn?

?AB?am?n?ambn?anbm?bm?n??AB?am?bm??an?bn?.?mn?0.由幂函数的性质,可知

am?bm与an?bn同号,

?AB?am?bm??an?bn??0,??A?B??Aam?n?Bbm?n???Aam?Bbm??Aan?Bbn?.

?Aam?n?Bbm?n?Aam?Bbm?0,?Aan?Bbn?A?B?1.即不等式③成立.

从变元个数进行推广可得

推广8 设xi?R?i?1,2,?,k?,且?xi?i?1k?km?nkk??xi,其中m,n?R,mn?0,则?xi?k.

i?1i?1km?ni?1mn推广9 设xi,Ai?R?i?1,2,?,k?,?Ai?1,且?Aixii?1??Aixi,

i?1km其中m,n?R,mn?0,则

?Axii?1kni?1④.

由于推广8是推广9的特例,故下面证明推广9. 证明 令??kk?A?Axii?1i?1kkm?nii??Aixi??Aixin

mi?1i?1kk??Ai?Ajxji?1j?1m?n??Aixii?1km?Axjj?1knj??i?1nk?AAx??xknijjj?1mmmj?xi.由下标的对称性,对换上

m?式的下标,得??kk?i?1k?AiAjxixi?xj..将上面两式相加,得

j?1k??2???i?1?AA?xijj?1mi?xjm??xin?xjn?.?mn?0,由幂函数性质知xi?xj与xi?xj同

mmnnnmm号, AiAjxi?xj???xi?xjn??0,?2??0,

即??0,?k?Ai?Aixii?1i?1kkkm?n??Aixi??Aixi,??Aiximni?1i?1i?1kkkm?n??Aixi?0,

mi?1k??Aixi??Ai?1,即不等式④成立.

ni?1i?1题13 设x1,x2,x3,y1,y2,y3是实数,且满足x1?x2?x3?1,证明不等式

5

222

2222(x1y1?x2y2?x3y3?1)2?(x12?x2?x3?1)(y12?y2?y3?1).

(第十届高二第二试第22题)

222证法1 当x1?x2?x3?1时,原不等式显然成立.

22222?x3?1t2?2?x1y1?x2y2?x3y3?1?t 当x1?x2?x3?1时,可设f?t??x12?x222??y12?y2?y3?1?.易知右边??x1t?y1???x2t?y2???x3t?y3???t?1?.

??2222222?f?1???x1?y1???x2?y2???x3?y3??0.?f?t?是开口向下的抛物线,2222??t?4?x1y1?x2y2?x3y3?1??4?x12?x2?x3?1??y12?y2?y3?1??0即

22222(x1y1?x2y2?x3y3?1)2?(x12?x2?x3?1)(y12?y2?y3?1).

222综上,x1?x2?x3?1时,

2222(x1y1?x2y2?x3y3?1)2?(x12?x2?x3?1)(y12?y2?y3?1).

22222证法2,?xi,yi?R??i?1,2,3?,x1?x2?x3?1,?当y12?y2?y3?1时, 2222(x12?x2?x3?1)(y12?y2?y3?1)?0,又(x1y1?x2y2?x3y3?1)2?0,?求证的不等式2222222成立.当y1?x3?1)(y12?y2?y3?1)? ?y2?y3?1时,(x12?x2?1?x212222?x2?x31?y12?y2?y3????2222?1?x12?x2??x3?1?y12?y2?y3????2??2???2??x12?y12??x22?y22??x32?y32??21????1?xy?xy?xy???????????112233222????????(x1y1?x2y2?x3y3?1)2.综上,在题设条件下,总有

2222(x1y1?x2y2?x3y3?1)2?(x12?x2?x3?1)(y12?y2?y3?1).

222证法3 设a?x1?x2?x3?1,b??2(x1y1?x2y2?x3y3?1),c?y1?y2?y3?1,则

22222222由x1?x3?1?2?x1y1?x2y2?x3y3?1??y12 ?x2?x3?1知a?0,从而a?b?c?x12?x222?y2?y3?1??x1?y1???x2?y2???x3?y3??0.

222 6

?b22?4ac??2a?b???4a2?4ab?4ac??4a?a?b?c??0,b2?4ac??2a?b??0,

2?2222?b2?4ac?0,即(x1y1?x2y2?x3y3?1)2?(x12?x2?x3?1)(y12?y2?y3?1).

证法4 设a??x1,x2,x3?,b??y1,y2,y3?,则

????a?b??x1,x2,x3??y1,y2,y3??x1y1?x2y2?x3y3,又

????2222?x3?y12?y2?y3?cos?. a?b?a?b?cos??x12?x22222?x1y1?x2y2?x3y3?1?1?x12?x2?x3?y12?y2?y3?cos??222222221?x12?x2?x3?y12?y2?y3?cos??1?x12?x2?x3?y12?y2?y3?0 22222?(x1y1?x2y2?x3y3?1)2?(1?x12?x2?x3y12?y2?y3)

2222?(x12?x2?x3?1)(y12?y2?y3?1).

证法5 记A??x1,x2,x3?,则由AB?OA?OB, O?0,0,0?为坐标原点,B??y1,y2,y3?,得?x1?y1???x2?y2???x3?y3?222?2222,整理得 x12?x2?x3?y12?y2?y322221??x1y1?x2y2?x3y3??1?x12?x2?x3?y12?y2?y3?0,

22?xy1?x2y2?x3y3?1?1?x12?x2?x322y12?y2?y3?0,

2223?(x1y1?x2y2?x3y3?1)?1?x?x?x2?212223y?y?y21?222222?(x12?x2?x3?1)(y12?y2?y3?1).

评析 这是一个条件不等式的证明问题.由求证式是b?ac的形式自然联想到二次函数的判别式,构造一个什么样的二次函数是关键.当然是构造

2222f?t??x12?x2?x3?1t2?2?x1y1?x2y2?x3y3?1?t?y12?y2?y3?1,但只有当 2222x12?x2?x3?1?0时,f?t?才是二次函数,故证法1又分x12?x2?x3?1?0与

22x12?x2?x3?1?0两类情形分别证明.很显然,等价转化思想、分类讨论思想是证法1的精髓.

????证法2直接运用基本不等式证明.证法3通过换元后证明b?4ac?0(即求证式),技巧性很强,一般不易想到,读者可细心体会其思路是如何形成的.证法4由求证式中的

2 7

22222,y1及x1y1?x2y2?x3y3联想到空间向量的模及数量积,因而构造向量x12?x2?x3?y2?y3解决问题.证法5则从几何角度出发,利用AB?OA?OB使问题轻松得证.五种证法,从多角度展示了本压轴题的丰富内涵.

拓展 本题可作如下推广:

推广 1 若xi,yi?R?i?1,2,?,n?,2?xi?1n2i?1,则

?n??n2??n2???xiyi?1????xi?1???yi?1?. ?i?1??i?1??i?1?推广 2 若xi,yi?R?i?1,2,?,n?,m?0,

?xi?1n2i?m,则

?n??n2??n2???xiyi?m????xi?m???yi?m?. ?i?1??i?1??i?1?两个推广的证明留给读者.

2x2y2z2题14 已知x、y、z?0,并且???2, 2221?x1?y1?zx2y2z2求证:???2. 1?x21?y21?z2 (第一届备选题)

证法1 令x?tan?,y?tan?,z?tan?,且?,?,?为锐角,则题设可化为

si2n??s2i?n?22即co?s?in?,2s?2c?o?s2.由?c?os柯西1不等式知

2?2?1?sin2??sin2??sin2????cos2??cos2??cos2??

?1????sin2??sin2??sin2???. ?2?2??sin?cos??sin?cos??sin?cos???21?sin2??sin2??sin2???2.由万能公式得 2tan?tan?tan?xyz???2???2. ,即

1?tan2?1?tan2?1?tan2?1?x21?y21?z2证法2 构造二次函数

8

?1x??1y?f?t???t??t???221?x??1?y21?y2?1?x22??1z????t??2??1?z21?z??2?1?x11?2yz?222??????t?2??txyz???222222 . ????222??1?x1?y1?z??1?x1?y1?z??1?x1?y1?z??,即?,z取t?x?y?z时取等号,??0?f?t??0,当且仅当x?y?xyz?2?111??x2y24??1?x2?1?y2?1?z??2?4??1?x?z2?12?y?1?2z????1?2x?1?y2?1?z2???0?11?x2?1?x21y21z21?x2,1?y2?1?1?y2,1?z2?1?1?z2, 又x2y2z211?x2?1?y2?1?z2?2,?1?x2?11?y2?11?z2?1, 2?4??xyz??1?x2?1?y2?1?z2???4?1?2?0, 故

x1?x2?y1?y2?z1?z2?2.(当且仅当x?y?z?2时取等号) 证法3 x21?x2?y21?y2?z21?z2?2, 即

???1?1?1?x2??????1?1?1?y2??????1?1?1?z2???2,即11?x2?11?y?121?z?1,2于??1?1?x2?1?1y??1?x2y2z?2?xy?22?1?, z???z2?1?x?2?1?y2?????1?z2??1?x2?1??y21z2即

x1?x2?yz1?y2?1?z2?2. x2y2z2证法4 令1?x2?X,1?y2?Y,1?z2?Z,则X?Y?Z?2,且 9

是2?xyz??XYZ?XYZ??????? x2?,y2?,z2?,所以?222?1?X1?Y1?Z?1?x1?y1?z??xyz?22??222?X?XYZ?YZ?222? ?3?X?Y?Z?X?Y?Z?3?2?2?2??3??????????XYZyz??x???1?X1?Y1?Z?222xyz12??1?????2. ?3?2??X?Y?Z???3?2??22??2.所以2221?x1?y1?z33????x22ay22bz22c证法5 设?,?,?, 2221?xa?b?c1?ya?b?c1?za?b?c则x?22a2b2c,y2?,z2?,

b?c?aa?c?ba?b?cx21y21z21左边=?????

1?x2x1?y2y1?z2z?1b?c?ac?a?ba?b?c???2b??2c??2a???a?b?c?2a2b2c??????2a?b?c?a?b?c?a??b?a?c?b??c?b?a?c??

2?3?a?b?c?a??b?a?c?b??c?b?a?c?a?b?c6?2?ab?bc?ca???a2?b2?c2?a?b?c62122??a?b?c???a?b?c??2.a?b?c33x22证法6 ???2221?x1?x2x2?1?x2?2x?22?; 21?xy22yz22z同理???22?;??22?.

1?y21?y21?y21?z21?z21?z2?1x2y2z211?三式相加得 ???2???222222?1?x1?y1?z?1?x1?y1?z? 10

?x?xyz?yz?即?22???,2?2?1?22??. ?222?222?1?x1?y1?z1?x1?y1?z????故

xyz???2. 1?x21?y21?z22?xyz??? 证法7 ? 222??1?x1?y1?z??1x1y1z????????1?x21?x21?y21?y21?z21?z2??111??x2y2z2???????.222??222?1?x1?y1?z1?x1?y1?z????????

2111x2y2z2由已知,易知???1,???2,

1?x21?y21?z21?x21?y21?z2?xyz?xyz?????2,????2. 222?2221?x1?y1?z?1?x1?y1?z?

证法8 由已知,易知

2111???1. 2221?x1?y1?z设

1a1b1c?,?,?, 1?x2a?b?c1?y2a?b?c1?z2a?b?c则x?b?cc?aa?b,y?,z?. abc所以

xyza?b?c?b?c?a?c?a?b ???2221?x1?y1?za?b?c??a?b?c??b?c?c?a?a?b?a?b?c?2.

111x2y2z2???1,于是 证法9 由易得???2,2222221?x1?y1?z1?x1?y1?z 11

2?x??y??z??1?y2????2?x2y2z21?x1?z2?????? 2??????1111?x21?y21?z21?x21?y21?z222?xyz???2?1?x21?y21?z2???xyzxyz??????.????2. ?222?2221111?x1?y1?z1?x1?y1?z????2221?x1?y1?z111x2y2z2???1. 证法10 由易得???2,2222221?x1?y1?z1?x1?y1?z2x112?x2112???2x????, 22221?x1?x1?x222?1?x?同理,22y112z11??,??, 1?y222?1?y2?1?z222?1?z2?

?xyz?31?111?31?2??????????2.?222?222?1?x1?y1?z221?x1?y1?z????22?xyz???2. 2221?x1?y1?z证法11 由已知,易得

111???1.构造空间向量 1?x21?y21?z2???x2y2z2,,?222?, b???1?x1?y1?z????111a??,,?1?x21?y21?z2???, ??2????????2?2?2?xyz??a?b?a?b?cos??ab,?a?b?ab.???? 222?1?x1?y1?z???1x21y21z2????2222?1?x21?x21?y1?y1?z1?z?????2

222??1???1?x2????

??1??2?????1?y2??1??2?????1?z2????2?? ????2x???2??1?x??12

??y2?????1?y2????z2?????1?z2???????? ?? ?1?2?2, ?xyz???2. 2221?x1?y1?z评析 条件不等式证明的关键在于如何利用条件,而当条件难以直接利用或条件式显得相当复杂时,通常应当将条件适当转化,证法1、4、5、8正是通过不同形式的换元,使得问题变得简单易证的.灵活(变形)应用基本不等式(证法6、证法10),柯西不等式(证法3、7),以及一些重要的结论(证法9)也是证明不等式的常用方法.证法2、11分别构造函数、向量加以证明,很富创新性,同时也应纳入我们正常思考的范围.

拓展 本赛题可推广为:

xi2命题1 若x1,x2,…,xn?0,且??n?1?n?3?, 2i?11?xin则

xi?n?1. ?21?xi?1i证明 设xi?tan?i,i?1,2,…,n,0??i?nn?2,则有

nnnxi2tan2?i22??n?1,?sin??n?1,cos?i?1.????i22i?11?xii?11?tan?ii?1i?1nnxitan?i??????sin?icos?i. 22i?11?xii?11?tan?ii?1n?n??n?22由柯西不等式得?sin?icos?i???sin?i???cos?i? i?1?i?1??i?1??1??n?1??n?1.??nxi?n?1. 21?xi?1innxi2命题2 若x1,x2,…,xn?0,且??k?k为常数,n?3,0

xi?k?n?k?. ?21?xi?1inxi2m命题3 若x1,x2,…,xn?0,且??k?k?n,m?R?, 2mi?11?xinxim则??k?n?k?. 2mi?11?xin 13

命题2、3的证明与命题1相仿.

xi2 命题4 设x1,x2,…,xn?0,且??k(s,k为正常数,n?3, 2i?1s?xink?n?k?xi0?k?n)?. ,则?2s?xsi?1inxi2nnxi2ti22s?k,作变换ti?证明 将题设化为??i?1,2,…,n?,则题设化为?2?k.2xsi?1i?11?ti1?isxins?kn?k,???2xi?11?is由命题2得

ti?k?n?k?,?21?ti?1in即化简得

nxixis??kn?k,?????22s?xs?xi?1i?1iink?n?k?. s进一步发散思维,还可得到:

xi2命题5 设x1,x2,…,xn?0,且??k?k为常数,n?3,0?k?n?, 21?xi?1in则

?xi2?i?1nkn. n?k证明 设xi?tan?i,且?i为锐角?i?1,2,…,n?.则题设可化为

?sini?1n2?i?k,由此得?cos2?i?n?k.

i?1n?n?211??22?cos???n, 由柯西不等式得?cos?i???????i22cos?i??i?1i?1cos?i?i?1?nn2nnn2n2n2kn22即?sec?i?,n??tan?i?,??tan?i??n?,

n?kn?kn?kn?ki?1i?1i?1n2n即

?xi2?i?1kn. n?k14

仿命题4的证法可将命题5推广为:

xi2命题6 设x1,x2,…,xn?0,且??k(s,k为正常数,n?3, 2i?1s?xin0?k?n),则?xi2?i?1nskn. n?k对本赛题的条件再联想,又可推出

nnxi2命题7 设x1,x2,…,xn?0,且??n?1?n?3?,则?xi??n?1?2. 2i?1i?11?xin证明 设xi?tan?i,且?i为锐角?i?1,2,…,n?.则题设可化为

?sini?1n2?i?n?1,由此得?cos2?i?1.

i?1n?n?1cos?1?cos?2?…?cos?n?1222cos2?1?cos2?2?…?cos2?n?1?

n?11?cos2?nsin2?n??,即

n?1n?1cos?2?…?cos?n?1?sin?n,同理可得 ?n?1?n?1cos?1?2222…?cos2?n?2?cos2?n?n?1?n?1cos2?1?cos2?2??

?sin2?n?1,

…?cos2?n?n?1?n?1cos2?2?cos2?3?以上n个式子相乘,得

?sin2?1.

2?n?1?nn?cos??cos????cos122?n???sin?1?sin?2?…?sin?n?,

2?有?tan?n??n?1?,即?xi??n?1?.

i?1i?1n2nn2 仿命题4的证法又可将命题7推广为:

xi2 命题8 设x1,x2,…,xn?0,且??n?1?s为常数,n?3?, 2i?1s?xin则

?xi?1ni???s?n?1???.

15

n2

命题8又可推广为:

xik 命题9 设x1,x2,…,xn?0,且??n?1?n?3,k?N且2?k?n?, ki?11?xin则

?x??n?1?ii?1nnk.

11 证明 题设可化为?作变换a?,则题设化为?1.ikk1?xii?11?xixik?1?ai1?a1a2?a3?…?an1?1?, ?x1k??,

a1a1aiai1k1kn?ai?1ni?1,且

??n?1?n?1a2a3…an???n?1?n?1a2a3…an??a2?a3?…?an?x1???,即有x1???,同理可???aaa?????1?11??????n?1?n?1a1a3…an得x2??a2??以上n个式子相乘,得

1k???n?1?n?1a1a2…an?1??,…, xn??? .

an??????1k1k?x??n?1?ii?1nnk.

仿命题4的证法,命题9可进一步推广为:

xik命题10 设x1,x2,…,xn?0,且??n?1 ki?1s?xin?s为正常数,k?N且2?k?n?,则?xi?1ni???s?n?1???.

cos2xnk题15 求所有的正实数a,使得对任意实数x都有a?a2sin2x?2

(第十一届高二第二试第23题) 解法1 原不等式即a21?2sin2x?a2sin2x?2 ①.设a2sin22x?t,则化为at?1?t?2?0,其中

2is,t?ant?a2sinx?[1,a2](当a?1)

x?[a2,1](当0?a?1).①式即t2?2t?a?0.设

f(t)?t2?2t?a,由于f(t)在1与a2之间恒小于或等于零,所以f(1)?0且f(a2)?0,即

16

?a?15?1?42?a?1为所求. ?a?2a?a?0,解之,得2?a?0?解法2 ∵a?0,∴a2cosx2?a222sxin?a?21x2sin?a2x2sina?2si2nax?a2xn2?2si,a又

aco2sx?a2sinx?2,∴a?1.设t?a2sinx(a2?t?1),记f(t)?立,∴2?f(t)max.f(t)?a?t.依题意,2?f(t)恒成ta?t在区间[a2,a]上单调递减;在区间[a,1]上单调递增.而t111f(a2)??a2?f(1)?a?1,∴f(t)max??a2(当t?a2时取最大值),故?a2?2,

aaa解得

5?1?a?1为所求. 21?2sin2x解法3 原不等式即a?a2sin2x?2.令t?a2sin2x,则

a?t?2①. t(1)若a?1,则t?1,①式显然成立.

02sin(2)若a?1,则a?a2x?a2,即1?t?a2,即①式对任意t?[1,a2]恒成立

y ay?t? t(a?1) y y?t?a t(0?a?1) 2a O1 a a2 图1

由函数y?x 2a Oa2 a 1 图2

x

aaa?t的图象(图1)及1?a?a2,可得1??2,且a2?2?2,但这与t1a2a?1矛盾.

22sin(3)若0?a?1,则a?ax?a0,即a2?t?1.由函数y?a?t的图象(图2)及ta2?a?1,可得a2?aa2?21??2且,即(a?1)(a?a?1)?0且a?1,又0?a?1,2a117

解得

5?1?a?1. 25?1?a?1为所求. 22综合(1)、(2)、(3),可得

评析 解决本题的关键是如何由acos2x?a2sin2x?2对任意实数x恒成立,得到关于a的不

2等式.由于cos2x?1?2sinx,故原不等式即a1?2sin2sin2xx?a2sin2x?2,亦即

aa2sinx2?a2sin2x?2.

a?t?2.至此,若去分母,便将原问题转化为二次不等式恒成立taa的问题;若不去分母,应当有2?(?t)max,可通过函数f(t)??t的最大值解决问题.

tt令t?a,则原不等式就是

解法1运用函数思想,把二次不等式t?2t?a?0恒成立问题转化成二次函数从而得到关于a的不等式组,求出了a的范围.f(t)?t2?2t?a的图象恒不在x轴上方的问题,解法2则由acos2x?a2sin22x?2a及acos2x?a2sin2x?2,得a?1从而得a2?t?1.再由函数

a1?t在[a2,a]上单调减,在[a,1]上单调增,求出了f(t)的最大值?a2,由ta1af(t)?2恒成立,得?a2?2,求出了a的范围.解法3则直接根据函数f(t)??t的图象,

at分a?1,a?1,0?a?1三种情形讨论,直观地求出了a的范围. f(t)?三种解法,道出了解决恒成立问题中求参数的三种方法:解法1为函数法;解法2为最值法;解法3为图象法.当然,解决恒成立问题决不仅仅是这三种方法,比如,还有分离参数法,变更主元法,运用补集思想等.

x2?2x?2?x?1?的最小值为 ( ) 题16 函数f?x??2x?2A、-1 B、1 C、-2 D、2

(第七届高一培训题第2题)

解法1 f?x??1??1????x?1????.因为两个互为倒数的数,在它们等于?1时,其和可以?2??x?1??取到绝对值的最小值.即当x?1??1,即x?2或x?0时,f?x?的绝对值最小.又x?1,故

x?2时,f?x?的绝对值最小.又f?x??0,?f?x?min?f?2??1.选B.

18

2解法2 因为x?1,联想到sec??1,于是令x?sec?,???0,???2?,则x?1?tan?. ?2?x2?2x?2?x?1??1tan2??11?1?11f?x??????tan???1,???2tan??2?x?1?2?x?1?2tan?2?tan??2tan?2当且仅当tan??21,即x?2时,f?x?min?1.故选B.

tan2?解法3 设??x??x2?2x?2?x?1?,g?x??2x?2?x?1?.

???x??g?x??x2?2x?2??2x?2??x2?4x?4??x?2??0,???x??g?x??0.

2???x?g?x??1,即f?x??1,?f?x?min?1.故选B.

2x2?2x?2?x?1??1解法4 f?x???x?1?.由此联想到万能公式: ?2x?22?x?1?2,故令x?1?tan??0,则f?x??g????2?1?0, ??2sin?1?tan22tan221?sin??0.又?1?sin??1,0?sin??1,?1,即f?x??1.?f?x?min?1.故选B.

sin?sin??2?x?1??1x?11?x?1?0,f?x??解法5 ?x?1,???22?x?1?22?x?1?2tan?1?tan2?x?11??122?x?1?当且仅当

x?11?,即x?2时取等号.?f?x?min?1.故选B. 22?x?1?22x2?2x?2?x?2??2x?2?x?2????1?1,当x?2时解法6 ?x?1,?f?x??2x?22x?22x?2取等号.故选B.

x2?2x?22解法7 由y?去分母并整理,得x??2?2y?x?2?2y?0.?x?R,

2x?2????2?2y??4?2?2y??0,即y2?1?0,?y??1或y?1.?x?1,

2 19

?y?2x2?2x?2?x?1??1,解得x?2??1,???,f?x???0,?y?1.当y?1时,由1?2x?22?x?1??f?x?min?1.故选B.

评析 解法1、6、7都是运用高一知识解决问题的,其余解法都用到了不等式知识,以解法

5、6最简捷.

解法7运用的是判别式法.运用此法是有前提的,如果将题中限制条件“x?1”去掉,此法总能解决问题.但有了“x?1”的限制,此法就不一定能奏效.只有当y?1时求出的x的值在

x?1的范围内时,1才是最小值,否则1就不是最小值,应当另寻他法加以解决.事实上,若将

x2?2x?2?x?3?的最小值,此题改为“求函数f?x??”此法就失灵了.因为y?1时,

2x?2x?2??3,???.故y取不到1,也就谈不上ymin?1了.

x2?2x?2?x?1??1x?11?x?3,?x?1?0,y????若用不等式知识解:,

2x?22?x?1?22?x?1?2?y?2x?11x?11?,即x?2时取等号,但2??3,???,??1,当且仅当

??22x?122?x?1?故y取不到1,同样不能解决问题.此时我们可利用函数单调性解:

设3?x1?x2,则

22x12?2x1?2x2?2x2?2x12?2x1?2?x2?1??x2?2x2?2?x1?1?f?x1??f?x2????2x1?22x2?22?x1?1??x2?1?22x12x2?x12?x2x1?x2xx?x?x2???x1?x2??x1?x2??x1?x2??x1x2??x1?x2????121?2?x1?1??x2?1?2?x1?1??x2?1?2?x1?1??x2?1?????.

?3?x1?x2,?x1?x2?0,x1x2??x1?x2??0,?x1?1?0,x2?1?0, ?f?x1??f?x2??0,f?x1??f?x2?,已知函数是?3,???的单调增函数.

?ymin32?2?3?25?f?3???.

2?3?24k?x?0,k?0?,容易证明,该函数在(0,k]上x拓展 本题的函数模型实际就是f?x??x? 20

?ab??(x?y)????(a??xy????b),即x?y?a?b?2ab,当且仅当m、n共线,即当

2?ab?x(x,y)???,,亦即??xy??y??a时取等号,?(x?y)min?a?b?2ab. ba?x?x?b?y??(?y?2?ab??解法4 x?y?(x?y)???????xy???a2)b??a?b2, abxyx2a当且仅当?,即2?时取等号,?(x?y)min?a?b?2ab.

abbyxy解法5 设x?y?k,即y?k?x,代入

ab??1,得x2?(b?a?k)x?ka?0, xy?x?R?,由??0,得k?a?b?2ab或k?a?b?2ab(舍去).由??0,求得

x?a(a?b),y?k?x?b(a?b),?x?ya时,(x?y)min?a?b?2ab. b解法6 x,y,a,b?R?且

aabb??1?0??1,0??1?x?a?0,y?b?0,

xyxy故设x?a??,y?b??(?,??0)代入

ab??1,得???ab(定值),xy?x?y?a?b?????a?b?2???a?b?2ab,当且仅当????ab,即xa?aba时取等号,?(x?y)min?a?b?2ab. ??yb?abb解法7 由解法6知x?a?0,y?b?0,记k?x?y①,由

bxab??1,得y?,

x?axy代入①可得k?(x?a)?ab?(a?b)?a?b?2ab,当且仅当 x?aab??x?a?x?a,即x?a?ab时取等号,此时y?b?ab, ???x?a?0

26

?当

x?ya时 ,(x?y)min?a?b?2ab. b解法8 如图,在平面直角坐标系XOY中,由己知条件x,y,a,b?R?及

abXY??1知直线??1过第一象xyxy限内的定点P(a,b),x?y便是该直线在两坐标轴上的截距之和. 如图所示,设?BAO??,则?BPC??,由图可知

A(x,0),B(0,y),x?OA?a?bcot?,

y?OB?b?atan?.?x?y?a?b?bcot??atan??a?b?2ab,当且仅当bcot??a,即tan??b时取等号,?(x?y)min?a?b?2ab. a解法9 在平面直角坐标系XOY中,设过定点P(a,b)的直线方程为Y?b?k(X?a),易求得直线在X轴与Y轴上的截距分别为x?a?b,y?b?ak, kb?b??x?y?a?b?????(?ka).?k?0,???0,?ka?0,

k?k?b??ka??bb???2k?故x?y?a?b?2???(?ka)?a?b?2ab,当且仅当?,时取等号, ka?k???k?0?(x?y)min?a?b?2ab.

解法10 由己知,得bx?ay?xy?0,即xy?bx?ay?0,?xy?bx?ay?ab?ab,即

(x?a)(y?b)?ab,又由bx?xy?ay?y(x?a),ay?xy?bx?x(y?b)得x?a?0,y?b?0.

如图,设四边形ABCD是长方形,令AD=x?a,AB=y?b,则SABCD?ab(定值),由于面积为定值的长方形中,正方形的周长最小,于是可得x?a?y?b?ab,

27

x?a?ab,y?b?ab,?x?y?a?b?2ab,当且仅当x?a?ab,y?b?ab时,(x?y)min?a?b?2ab.

评析 考虑到x,y,a,b?R?且

ab??1,解法1运用三角代换,是常用方法. 两个正数的xy积为定值,则和有最小值,解法2将x?y改写成(x?y)??ab???,使之可运用这一结论求最值,xy??这是一种常用的技巧.解法3构造向量求最值,使得新教材中向量这一工具得到应用,虽然解法并

不很简单,但其意义仍不应低估.柯西不等式在数学竞赛中占有很重要的地位,解法4表明,运用柯西不等式解题十分方便.解法7表明,运用均值不等式求最值,应注意“一正二定三相等” ,重视配凑技巧的运用.

美国著名数学教育家玻利亚说过,“对于一个非几何问题,去找一个清晰的几何表达式,可能是走向解答的重要一步”.解法8、9、10正是这样做的.充分挖掘代数问题的几何背景,构造适当几何图形,运用数形结合的思想,常常可以收到意想不到的解题效果,同时也可培养我们的发散思维和创造性思想的能力.

拓展 此题可作推广:

推广 己知正常数a1,a2,???,an,以及正实数x1,x2,???,xn(n?N,n?2),

aaaxxx且1?2?????n?1,则当且仅当1? 2????n时,x1?x2?????xn取得最小值x2x2xna2ana1222(a1?a2?????an)2.

读者可参照解法4,利用柯西不等式自己证明该推广,此处不再赘述.

题19 如果a?b?c?1,那么3a?1?3b?1?3c?1的最大值是_______.

(第八届高二第一试第19题)

2222解法1 设x?3a?1,y?3b?1,z?3c?1,t?x?y?z,则 t?x?y?z

?2xy?2yz?2zx?3(x2?y2?z2)?3(3a?1?3b?1?3c?1)?3[3(a?b?c)?3]?18,

?t?32,当且仅当a?b?c?解法2 ??1时取等号,?(3a?1?3b?1?3c?1)max?32 . 3?3a?1??3b??13c3??1????2?3a?1???23b?1?3??2c3??1a3?(b?c?)3 ?32?2,得3a?1?3b?1?3c?1 ?32,当且仅当a?b?c?

28

1时取等号. 3?(3a?1?3b?a?3c?1)max?32.

解法3 由(3a?1?3b?1?3c?1)2?(1?3a?1?1?3b?1?1?3c?1)2?

(11?12?12)[(3a?1)2?(3b?1)2?(3c?1)2]?3[3(a?b?c)?3]?18.得 3a?1?3b?1?3c?1?32,当且仅当a?b?c?1时取等号, 3?(3a?1?3b?1?3c?1)max?32. 解法4 令a?111?t1,b??t2,c??t3,其中t1?t2?t3?0,则(3a?1?3b?1? 3333c?1)2?(2?3t1?2?3t2?2?3t3)2?(2?3t1)?(2?3t2)?(2?3t3)?22?3t1?2?3t2?22?3t2?2?3t3?22?3t1?2?3t3?(2?3t1)?(2?3t2)?(2?3t3)?(2?3t1?2?3t2)?(2?3t2?2?3t3)?(2?3t1?2?3t3)?18?9(t1?t2?t3)?18,当且仅当t1?t2?t3?0,即a?b?c?解法5

1时取等号,?(3a?1?3b?1?3c?1)max?32. 33a?1?3b?1?3c?1 ?

2? 2(3a?1)?2(3b?1)?2(3c?1)???2?2?2?(3a?1)2?(3b?1)2?(3c?1)?23(a?b?c)?9?????32,当且仅当?2?22222??1时取等号,?(3a?1?3b?1?3c?1)max?32. 3a?b?c ?解法6 对任意t?0,有2t3a?1?t2?(3a?1),2t3b?1?t2?(3b?1),

2t3c?1?t2?(3c?1),? 2t(3a?1?3b?1?3c?1)?3t2?3(a?b?c)?3,即

33?33?3a?1?3b?1?3c?1?t?,易知当t?2时,?t???32.

2t?2t?min?(3a?1?3b?1?3c?1)max?32(此时a?b?c?1). 3解法7 设 x?3a?1,y?3b?1,z?3c?1,则由a?b?c?1,得

x2?y2?z2?6, x2?y2?6?z2.设m?x?y?z,则x?y?m?z,又

29

(x?y)2(m?z)2222x?y?, ? 6?z ?,即3z?2mz?m?12?0①,?关于z的

2222不等式①有解,???4m2?4?3?(m2 ?12)?0,m?32,此时,由①得z?2.

?(3a?1?3b?1?3c?1)max?32.

解法8 令x?3a?1,y?3b?1,z?3c?1,则由a?b?c?1,得

x2?y2?z2?6, 即x2?y2?6?z2①,设m?x?y?z,则y??x?m?z②,方程①

表示O(0,0)为圆心,6?z2为半径的圆在第一象限内的部分;方程②表示斜率为?1的直线系,当①、②表示的曲线有公共点时,直线系的纵截距的最大值为

222?6?z2,即

12?2z212?2z2 ?m?z?2?6?z,?m? z?2?6?z?z?221?212?2z212?2z2?12?2z2?3?z??,即z?2时取等号,??32,当且仅当z?3?442??(3a?1?3b?1?3c?1)max?32(此时a?b?c?1). 3解法9 把3a?1,3b?1,3c?1看成一组数据,其方差

1?1S??(3a?1)2?(3b?1)2?(3c?1)2?3?32??3a?1?3b?1?3c?1?

??21?1??6?3?3?2?13a?1?3b?1?3c?1?,?S2?0,?6?3???3a?1?3b?1?3c?1

?2?0,当且仅当a?b?c?1时取等号,?所求最大值为32. 322评析 破解此题的关键是设法消去求式中的根号,这样才可利用条件a?b?c?1,解法1、4、5、6利用了基本不等式2ab?a?b;解法3利用了柯西不等式

2222(a1b1?a2b2?????anbn)2?(a12?a2?????an)(b12?b2?????bn);解法2利用了结论

a?b?ca2?b2?c2,都有效地达到了消去根号的目的,当然,运用这些公式需要适当的?33

30

本文来源:https://www.bwwdw.com/article/m2b2.html

Top