2015年北京东城初三一模数学试题及答案(word版)

更新时间:2023-04-24 22:56:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1 东城区2014—2015学年第二学期初三综合练习(一) 数学试题 2015.5

学校 班级 姓名 考号

一、选择题(本题共30分,每小题3分)

下面各题均有四个选项,其中只有一个..

是符合题意的. 1.与2-的和为0的数是

A .2-

B .12-

C .12

D .2

2.2015年元旦期间,北京各大公园接待游客达245 000万人次。其中, “冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是

A .424.510?

B .52.4510?

C .62.4510?

D .60.24510?

3.一个几何体的三视图如图所示,则这个几何体是

A .圆柱

B .球

C .圆锥

D . 棱柱

4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的 中位数和众数分别是

5. 在六张卡片上分别写有π,

, 1.5,3,0,3-,从中任意抽取一张,卡片上的数为无理数的概率是

2

6.正五边形的每个外角等于

A. 36?

B. 60?

C. 72?

D. 108?

延7.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线交AB 的 长线于点D ,连接OC ,AC . 若50D ∠=?,则A ∠的度数是

A. 20? B .25?

C .40?

D .50?

8.小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了

半小时电话,然后继续匀速行驶.已知行驶路程y (单位:千米)与行驶时间t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为

A. 43.5

B. 50

C. 56

D. 58

9. 如图,已知∠MON =60°,OP 是∠MON 的角平分线 ,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B,AB=4.则直线AB 与ON 之间的距离是

A. B.2 C. D.4

10. 如图1, ABC △和DEF △都是等腰直角三角形,其中90C EDF ∠=∠=?,点A 与点D 重

合,点E 在AB 上,4AB =,2DE =.如图2,ABC △保持不动,DEF △沿着线段AB 从点A 向点B 移动, 当点D 与点B 重合时停止移动.设AD x =,DEF △与ABC △重叠部分的面积为S ,则S 关于x 的函数图象大致是

图1 图2

A B C D

二、填空题(本题共18分,每小题3分)

11.分解因式:22

4

mx my

-=.

12.

13. 关于x的一元二次方程230

x x m

+-=有两个不相等的实数根,则实数m的取值范围是.

14. 北京的水资源非常匮乏,为促进市民节水,从2014年5月1日起北京市居民用水实行阶梯水价,实施细则如下表:

北京市居民用水阶梯水价表单位: 元/立方米

某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费元.

15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是米.

4

16.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1AO 为 边做正方形111AOC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以 21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图

所示的图形.则点4B 的坐标是 ,点n B 的坐标是 .

三、解答题(本题共30分,每小题5分)

17.如图,AC 与BD 交于点O ,OA OC =,OB OD =.

求证:DC AB ∥

. 18. 计算:()10136043-??-?+-+- ???π. 19.解不等式组:()2131,5 4.2

x x x x --???-+??>< 20.先化简,再求值:222442111

a a a a a a -+-+

÷+--,其中1a =. 21.列方程或方程组解应用题:

2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?

(1)求反比例函数的解析式;

(2)求△BOD 的面积.

四、解答题(本题共20分,每小题5分)

23. 如图,ABC △中,90BCA ∠=?,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC 的平行线交于点E ,且DE 交AC 于点O ,连接AE .

(1)求证:四边形ADCE 是菱形;

(2)若2AC DE =,求sin CDB ∠的值.

5 F 24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱

的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:

(1)在这次抽样调查中,共调查 名学生;

(2)请把条形图(图1)补充完整;

(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;

(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.

25. 如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CD 与OB 交于点F ,过点

,D A 分别作⊙

O 的切线交于点G ,且GD 与AB 的延长线交于点E . (1)求证:12∠=∠;

(2)已知::1:3OF OB =,⊙

O 的半径为3,求AG 的长.

26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .

(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;

明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;

请回答:AF 与BE 的数量关系是 .

(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=?,请参考明明思考问题的方法,求AF BE 的值.

6

图1 图2

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)

27.在平面直角坐标系xOy 中,抛物线

()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y 轴交于

点C . (1)求抛物线()210y ax bx a =++≠的函数表达式;

(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;

(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边

的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.

7

A C 28. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′

B =∠ACB =90°,∠BA ′

C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕

点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接

BD .

(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明;

(2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;

(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你

的结论;若不成立,请说明理由.

29.定义符号{}min a b ,的含义为:当a b ≥时, {}min a b b =,;当a b <时, {}min a b a =,.如:

{}min 122-=-,,{}min 121-=-,.

(1)求{}

2min x -1,-2; (2)已知2

min{2,3}3x x k -+-=-, 求实数k 的取值范围;

(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范

围.

8

东城区2014-2015学年第二学期初三综合练习(一)

数学试题参考答案及评分标准 2015.5

一、选择题(本题共30分,每小题3分)

三、解答题(本题共30分,每小题5分) 17. 证明:∵在ODC △和OBA △中,

∵,,,OD OB DOC BOA OC OA =??

∠=∠??=?

∴ODC OBA △≌△. …………3分 ∴C A ∠=∠. …………4分 ∴DC AB ∥. …………5分

()()1

118.3604

313441

5-??

-?+-+- ???

=-+=-解:π分分

19. ()2131,8x x x x --???

-+??①

>解:5<2,

2x 由①得,<, …………2分 1x -由②得,>, …………4分

所以,不等式组的解集为12x -<<. …………5分

9 ()()()2222442111

2211112

2211

31a a a a a a a a a a a a a a a a a -+-+÷+----=+?++---=+++=+20.解:分

当1a =

时,=原式.…………5分 21.解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是()25x -元. …………1分

根据题意,列方程得:200=120(25)x x -,

…………3分 解得: 15x =. …………5分 答:每棵柏树苗的进价是15元.

22. 解:(1)过点C 向x 轴作垂线,垂足为E .

∵CE x ⊥轴,AB x ⊥轴,()4,2A -,

∴CE AB ∥,()4,0B -.

∴12

OE OC CE OB OA AB ===. ∵4OB =,2AB =,

∴2OE =,1CE =.

∴()2,1C -. …………2分

∵双曲线k y x =

经过点C , ∴2k =-.

∴反比例函数的解析式为2y x =-

. …………3分 (2)∵点D 在AB 上,

∴点D 的横坐标为4-.

∵点D 在双曲线2y x =-

上, ∴点D 的纵坐标为

12. …………4分 ∴BOD

S △11141222OB BD =??=??=.…………5分

10 四、解答题(本题共20分,每小题5分)

23.(1)证明:∵DE BC ∥,CE AB ∥,

∴四边形DBCE 是平行四边形.

∴CE BD =.

又∵CD 是边AB 上的中线,

∴BD AD =.

∴CE DA =.

又∵CE DA ∥,

∴四边形ADCE 是平行四边形.

∵90BCA ∠=?,CD 是斜边AB 上的中线, ∴AD CD =. ∴四边形ADCE 是菱形. …………3分

(2)解:作CF AB ⊥于点F .

由(1) 可知, .BC DE =设BC x =,则2AC x =.

在Rt ABC △中,

根据勾股定理可求得AB =

. ∵1122

AB CF AC BC ?=?,

∴5

AC BC CF x AB ?==.

∵122

CD AB x ==, ∴4sin 5CF CDB CD ∠=

=.…………5分 24.解:(1)20÷10%=200(名),…………1分 答:一共调查了200名学生;

(2)最喜欢古筝的人数:200×25%=50(名), 最喜欢琵琶的人数:200×20%=40(名);

补全条形图如图; …………3分

(3)二胡部分所对应的圆心角的度数为:

60200

×360°=108°; …………4分 (4)1500×30200=225(名). …………5分 答:1500名学生中估计最喜欢古琴的学生人数为225.

25.(1)证明:连结OD ,如图.

∵DE 为⊙O 的切线,OD 为半径,

∴OD DE ⊥.

∴90ODE ∠=?,即290ODC ∠+∠=?.

∵OC OD =, ∴C ODC ∠=∠.

∴290C ∠+∠=?.

而OC OB ⊥,

11

26. 解:(1)AF =BE ; …………1分

(2)

AF BE

=. …………2分 理由如下:∵四边形ABCD 是菱形,120ABC ∠=?, ∴AC BD ⊥,60ABO ∠=?.

∴90FAO AFO ∠+∠=?.

∵AG BE ⊥,

∴90EAG BEA ∠+∠=?.

∴AFO BEA ∠=∠.

又∵90AOF BOE ∠=∠=?,

∴AOF BOE △∽△. …………3分

∴AF AO BE OB

= . ∵60ABO ∠=?,AC BD ⊥,

∴tan 60AO OB

=?= ∴AF BE = …………5分

12 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)

27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,

∴10,1 1.a b a b -+=??++=?

∴1,21.2

a b ?=-????=?? ∴抛物线的函数关系式为211122

y x x =-++. …………2分 (2)∵122

b x a =-=,()0,1C ∴抛物线211122

y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =

的对称点,则点E 的坐标为()2,0. 连接EC 交直线12

x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,

则2m 0,1.

k m +=??=? 解得1,21.

k m ?=-???=?

所以,直线EC 的函数表达式为112

y x =-+. 当12x =时,34

y =. ∴ 点D 的坐标为13,24??

???. …………4分 (3)存在.

13 ①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥,

∴90AOM CAM ∠=∠=?.

∵()0,1C ,()1,0A -,

∴1OA OC ==.

∴45CAO ∠=?.

∴45OAM OMA ∠=∠=?.

∴1OA OM ==.

∴点M 的坐标为()0,1-.

设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标, 则111

0,1.k b b -+=??=-? 解得111,1.

k b =-??=-? 所以,直线AM 的函数表达式为1y x =--. 令12

x =,则32y =-. ∴点1P 的坐标为13,22??-

???. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点

N . 与①同理可得Rt CON △是等腰直角三角形,

∴1OC ON ==.

∴点N 的坐标为()1,0.

∵2CP AC ⊥,1AP AC ⊥,

∴21CP AP ∥.

∴直线2CP 的函数表达式为1y x =-+.

14 令12x =,则12

y =. ∴点2P 的坐标为11,22?? ???

. …………6分 综上,在对称轴上存在点1P 13,22??- ???,2P 11,22?? ???

,使ACP △成为以AC 为直角边的直角三角形.…………7分

28.解:(1) 当60α=?时, BD A A '⊥. ------------1分

(2)补全图形如图1, B D A A '⊥仍然成立;------------3分

(3)猜想BD A A '⊥仍然成立. 证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F ,如图2,则90AEC A FC ''∠=∠=?. ∵BC BC '=,

∴BCC BC C ''∠=∠. ∵90ACB A C B ''∠=∠=?, ∴90ACE BCC '∠+∠=?,'90A C F BC C ''∠+∠=?. ∴ACE A C F ''∠=∠. 在AEC △和A FC ''△中, 90,,

,

AEC A FC ACE A C F AC A C ''∠=∠=???''∠=∠??''=? ∴AEC A FC ''△≌△. ∴AE A F '=.

在AED △和A FD '△中, 图2 图1

15 90,

,

,

AEC A FD ADE A DF AE A F '∠=∠=???'∠=∠??'=?

∴AED A FD '△≌△.

∴AD A D '=. ∵AB A B '=,

∴'ABA △为等腰三角形. ∴BD A A '⊥------------7分

29.解:(1)∵20x ≥,

∴2x -1≥-1.

∴2-x -1>2.

∴{}2min 2x =--1,-2. ┉┉2分

(2) ∵()2211x x k x k -+=-+-2, ∴()2111x k k -+--≥.

∵2min{2,3}3x x k -+-=-, ∴13k --≥.

∴2k -≥. ┉┉5分

(3) 37m -≤≤. ┉┉8分

本文来源:https://www.bwwdw.com/article/lxoq.html

Top