在两个耦合的量子点和腔QED系统中的双模激子的压缩性质_英文_杨
更新时间:2023-04-22 18:02:01 阅读量: 实用文档 文档下载
第24卷 第6期2007年12月
原 子 与 分 子 物 理 学 报
JOURNALOFATOMICANDMOLECULARPHYSICS
Vol.24 No.6
Dec.2007
文章编号:1000-0364(2007)06-1194-05
在两个耦合的量子点和腔QED系统中的
双模激子的压缩性质
杨 雄,向少华
1
2
(1.湖南师范大学物理与信息学院,长沙410081;2.怀化学院物理与信息科学系,怀化418008)
摘 要:本文研究了在两个耦合的量子点和腔QED系统中的双模激子的压缩性质.讨论了不同的初始光场对双模激子的正常压缩与和压缩的影响.计算表明,当初始态光场制备在相干态时,双模激子既不存在正常压缩,也不存在和压缩,这说明双模激子振辐的两个正交分量具有相同的量子涨落;然而,当初始腔场处于压缩真空态时,无论是正常压缩还是和压缩,双模激子振辐的两个正交分量总有一个存在压缩.这意味着量子噪声能被有效的得到抑制.此外,两种情形下的最大压缩都由初始腔场的压缩因子r决定.经过比较,我们还发现双模激子的正常压缩比和压缩大.关键词:量子点;双模激子;正常压缩;和压缩中图分类号:O413 文献标识码:A
Squeezingpropertiesoftwo-modeexcitonsinasystemoftwo
coupledquantumdotsandcavityQED
YANGXiong1,XIANGShao-hua2
(1.DepartmentofPhysicsandInformationScience,HunanNormalUniversity,Changsha410081,China;2.DepartmentofPhysicsandInformationScience,HuaihuaUniversity,Huaihua418008,China)
Abstract:Squeezingpropertiesoftwo-modeexcitonsinasystemoftwocoupledquantumdotsandcavityQEDisinvestigated.Theeffectofthedifferentinitialcavityfieldstatesontwo-modeexcitonsnormalsqueezingandsumsqueezinghasbeendiscussed.Aconclusionhasalsobeenobtainedthroughcalculating.Itisthatwhen
thecavityfieldisinitialpreparedincoherentstates,two-modeexcitonsnormalsqueezingdonotexistaswellasthesumsqueezing.Itindicatesthatthetwoquadraturecomponentsoftheexcitonsamplitudepossessthesamequantumfluctuation.However,inthecasethatcavityfieldisinthevacuumsqueezedstate,nomatterhownormalsqueezingorsumsqueezing,eitherofthetwoquadraturecomponentoftheexcitonsamplitudearealwaysofsqueezing,itimpliesthatquantumnoisecanbeeffectiverestrainedinthecase.Otherwise,themaximumsqueezinginbothsituationsisdeterminedbytheinitialcavityfieldsqueezingfactorr.Aftercom-paringnormalsqueezingandsumsqueezing,wecanfindthattwo-modeexcitonsnormalsqueezingislargerthansumsqueezing.
Keywords:quantumdots,two-modeexciton,normalsqueezing,sumsqueezing
收稿日期:2006-04-18
基金项目:湖南省教育厅科研项目(05C696)
作者简介:杨雄(1961-),湖南宁乡人,副教授.主要从事量子光学与量子信息方面的研究.E-mail:hhyxmm01@
第6期 杨雄等:在两个耦合的量子点和腔QED系统中的双模激子的压缩性质 1195
1 Introduction
ThesqueezingofquantumfluctuationisoneofthemostfundamentalmanifestationsoftheHeisen-berguncertaintyrelations,whichareamongthemostimportantprinciplesquantummechanics.Squeezing,inparticularthatoftheradiationfieldduetoitspotentialapplicationsintheopticalcom-munications[1]andweaksingledetections[2]havenbeenextensivelystudiedforthepastdecades.ThefieldandatomicsqueezinginavarietyofJaynes-Cummingsmodel(JCM)underdifferentinitialcon-ditionshavebeendiscussedinsomepapers
[7]
[3-6]
groundenergyoftheexcitonsineachdotsisas-sumedtobethesame.Thereisaresonantinterac-tionbethesingle-modecavityfieldandtheexcitons.
ThedistancebetweentwoquantumdotsisassumedtobemuchlargethantheopticalwavelengthKofthecavityfields,sotheinteractionbetweenquan-tumdotscanbeneglected.Undertherotatingwaveapproximation,theHamiltonianforthissystemcanbewrittenas[9]:
H0=ÜXa^a+ÜXE^b+^mbm+
+
m-1
m=1
2
.
Egm(^bm^a+
+
2
^+^bm)a
(1)
Hilleryhasgeneralizedsumsqueezingasaversion
ofhigher-ordersqueezingofthetwo-modefield.
Onotherhand,Nanotechnologyopenstechno-logicalpossibilitiestofabricatemesoscopicdevices.Semiconductornanostructures,especiallyquantumdotstructures,areverypromisingfortherealizationofquantumcomputationandthequantuminforma-tionprocessing.Therehavebeenmanypapersinves-tigatingthepreparationofquantumstateaswellastheentanglementofexcitonstatesusingquantumdots[8].Butuptonow,nolettersinvestigateprop-ertiesoftwo-modeexcitonssqueezing.Thispaperwillfocusonthistopic,especially,considerthein-fluenceofthedifferentinitialcavityfieldonsqueez-ing.
where^a+(^a)aretheoperatorsofthecavityfield
withfrequencyX,b^+-m(bm)denotetheexcitonoperatorswiththesamefrequencyXofthecavityfield,andm=1(2)representthefirstdotortheseconddot.Thecouplingconstantsbetweenquantumdotone(two)andcavityfieldarerepresentbygmwithm=1,2.Withoutlossofgenerality,wecantakethetwocouplingconstantsbetweenthecavityfieldandthequantumdotsasdifferent.TheHeisenbergequationsofmotionfortheoperatorsofthecavityfield^a+(^a)andtheexciton^b+m(bm)canbeeasilyobtainedas:
=-iXa-ig1^b1-ig2^b2^5^b1
=-iX^b1-ig1^a5^b2
=-iX^b2-ig2^a(2a)(2b)(2c)
2 Hamiltonianandsolution
Themodelthatisanalyzedinthisstudycon-sistsoftwoquantumdotswhichareplaceintoasin-gle-modecavity.ThedotshavelargesizessatisfyingtheconditionRmaB.Wealsoassumethatthereareafewelectronsexcitedfromvalence-bandtoconduc-tionband.ThentheexcitationdensityoftheCoulomb-correlatedelectron-holepairs,excitons,inthegroundstateforeachquantumdotislow.This,inturn,impliesthattheaveragenumberofexcitonsisnomorethanoneforaneffectiveareaoftheexc-itonicBohrradius.Thereforeexcitonoperatorscanbeapproximatedwithbosonoperators,andallnon-lineartermsincludingexciton-excitoninteractionsThesolutionoftheaboveoperatorequationsas:
-iXt
^a(t)=cos(gt)^a(0)e-g1
isin(gt)^b1(0)e-iXt-gg2
isin(gt)^b2(0)e-iXt(3a)gg1
^b1(t)=-isin(gt)^a(0)e-iXt+
g
g12cos(gt)+g22
b1(0)e-iXt+^2
g
g1g2[cos(gt)-1]
b2(0)e-iXt(3b)^gg2-iXt
^b2(t)=-igsin(gt)^a(0)e+
g1g2[cos(gt)-1]
b1(0)e-iXt+^2
1196 原 子 与 分 子 物 理 学 报
2
g22cos(gt)+g1-^b2(0)e2
g
第24卷
iXt
(3c)
denotingexcitonmodeone(two).Toachieveex-pectedresults,wewillcalculationthevaluesFiandRiunderdifferentinitialcavitystates.
Firstconsideredthecasewherethecavityfieldispreparedinitiallyincoherentstate|A>.Then,thewholeinitialstatefortheexcitonsandthecavityfieldcanbeexpressedas:
|W(0)>=|A>á|0>
1
with g=
g1+g2
3 Theoryonexcitonssqueezing
Toconsiderthetwo-modeexcitonicsqueezing,
weusetwoslowly-varyingHermitianoperatorsde-finedas[6]:
X^1=2
-3/2
i=1
|0>
2
(14)
E[bi
2
2
+
exp(-iXt)+
(4)
+
accordingtoequations(3),makinguseofheisen-bergpicture,afterrigorouscalculation,somequan-titiescanbeobtainedasfollows:
<$X1>
(5)
or
A
FA1=F2=0
2
2
biexp(iXt)]X^2=i2
-3/2
i=1
E[biexp(-iXt)-and
=<$X1>
=4
(15)
2
biexp(iXt)]
withthecommutationrelation:
[X^1,X^2]=
2
Thevariances($X^i)2=<X^i2>-<X^i>
2
2
(6)
2
<$V1>
2
=<$V2>=
satisfy
or
R1=R2=0
A
A
theuncertaintyrelation($X1)($X2)\1/16,thenthefluctuationsinX^iaresaidtobesqueezed,if
<$X^i><4
2
(|A|2sin2gt+1)
4
(16)
(7)
or
<0(8)4
Wecallthissqueezingtwo-modeexcitonsnormalsqueezing(TMENS).
Fi=($xi)2-Forthesumsqueezing,thecorrespondingHer-mitianoperatorsaregivenby:
^1=V{b1+b2+exp[-i(X1+X2)t]+
2
b1b2exp[i(X1+X2)t]}(9)
^2={b1+b2+exp[-i(X1+X2)t]-V
2
b1b2exp[i(X1+X2)t]}(10)andtheysatisfythecommutationrelation:++
[V^1,V^2]=2(^b1b^1+^b2^b2+1)Sumsqueezingexistsif
<$Vi>or
Ri=($Vi)2-<b1+b1+b+(13)2b2+1><04
weassumethatthetwomodesofexcitonsareinitia-lly1|2
[7]
Forsimplicity,herewealreadyassumethattwoquantumdotsarecompletelythesamesothatinter-actionbetweencavityfieldandtwoquantumdotsareequaltoeachother,thatisg1=g2.
Secondly,weassumethatcavityfieldisinvac-uumsqueezingstate|F>=S^(N)|0>f,where|0>
f
expresscavityfield,S^(N)denotingsqueezing
operator,N=reiH,riscalledassqueezingfactorde-cidingsqueezingdegreeandHasphaseangledeter-miningsqueezingdirection.Thenwholesystemin-itialstatebecomes:
|W(0)>=|F>á|0>
^(NS)|0>
f
1
|0>
21
=|0>
2
á|0>
(11)
(17)
throughcalculating,wecanobtain:
2
F1=singtsinhr(sinhr+coshrcosU)
2
(18a)
F2=
2
singtsinhr(sinhr-coshrcosU)2
(18b)
and
RF1=
4
sin2gtsinh2r(cosh2r+<
<b^+b1+^b+b2+1>(12)1^2^4
w
第6期 杨雄等:在两个耦合的量子点和腔QED系统中的双模激子的压缩性质 1197
sinh2r-cosh2rcos2<+2
2coshrcos2U)2RF2=
4
sin2gtsinh2r(cosh2r+4222
sinhr-coshrsin<-2cosh2rcos2U)2
(19a)
(19)thatthereisalwaysacomponentofVicanbesqueezed.AsshowninFig.2,choosingdifferentU,adifferentcompooentofViwillbesqueezed.Forinstance,choosingU=0,thiswillresultinR1>0,R2<0.WhereaschoosingU=P/2,thenobtainR2>0,R1<0.Astotheinfluenceofsqueezingfactorronsumsqueezingisthesameasthecavityfieldin
(19b)
coherentstates.Otherwise,incontrasttotwo-modeexcitonsnormalsqueezing,wefindtwo-modeexc-itonsumsqueezingaresmallerundersamercond-ition.Forexample,forr=1,themaximumnormalsqueezingmayreachabout22%.Itisbecauseofsumsqueezingbeinghigh-ordersqueezing.
4 Resultsanddiscussion
Inthissectionwewilldiscussvarioussqueezingoftwo-modeexcitonsunderdifferentinitialcavity
fields.Whencavityfieldbeingincoherentstate,ac-cordingtoEqs.(15)and(16),thetwo-modeexc-itonsnormalsqueezingdonotexistaswellasthesumsqueezing.Itindicatesthatthetwoquadraturecom-ponentsoftheexcitonsamplitudepossessthesamequantumfluctuation.
Nextwefocusonthecasethatcavityfieldisinitialpreparedinvacuumsqueezedstate.Abouttwo-modeexcitonsnormalsqueezing(TMENS),fromEq.(18),onlywhenU=P/2,componentX2canbesqueezed.AtgtXnP(n=0,1,2,,),theresultforthesqueezingfunctionF2inEq.(18b),withdifferentr,areshowninFig.1.Wealsono-ticethateffectofsqueezingfactorrontheTMENS.Itisobviousthatthesqueezingisincreasingwithinitialsqueezingfactorrto
beincrease.
Fg.2 TimeevolutionofR1(R2)asfunctionS=gtfor
r=0.5(solidline),r=1(dashedlined)
5 Conclusion
Thetwo-modeexcitonsqueezingpropertiesun-derdifferentinitialcavityfieldarediscussed.Whencavityfieldbeingincoherentstates,itisnoticeablethattwotypesofsqueezingcannotappear.Itind-icatesthatthetwoquadraturecomponentoftheexc-itonsamplitudepossessthesamequantumfluctua-tion.However,inthecasethatcavityfieldisinthevacuumsqueezedstatenormalsqueezingandsumsqueezingareallexisted,itimpliesthatquantumnoisemayberestrained.Otherwise,themaximumsqueezinginbothcasesisdeterminedbytheinitialcavityfieldsqueezingfactorr.Aftercomparingnor-malsqueezingandsumsqueezing,wecanfindthattwo-modeexcitonsnormalsqueezingislargerthanFg.1 TimeevolutionofF2asfunctionsofS=gtforr
=0.5(solidline),r=1(dashedlined)
,
1198 原 子 与 分 子 物 理 学 报 第24卷
References:
[1] GiacobinoE,FabreC.Quantumnvisereductioninop-ticalsystems)experiments[J].Appl.Phys.B,1992,55:189.
[2] CavesCM.Quantum-mechanicalnoiseinaninterfer-ometer[J].Phys.Rev.D.1981,23:1693
[3] ZhouP,PengJS.Dipolesqueezinginthetwo-photon
Jaynes-Cummingsmodelwithsuperpositionstateprepa-ration[J].Phys.Rev.A,1991,44:3331
[4] HuangCJ,WanJY,HuangZH.Dynamicsofsingle
modefieldRamaninteractingwithtwocoupledatoms[J].J.At.Mol.Phys.,2001,18:452(inChinese).[5] WangCC,WangXC,CaoZL.Radationsqueezing
effectofthesystemofthesqueezedvacuumfieldinterat-ingwithamoving.-typethree-levelatom[J].J.At.
Mol.Phys.,2006,23:287(inChinese)
[6] Abde-lHafezAM.Degenerateandnondegeneratetwo-modenormalsqueezinginatwo-levelatomandtwo-modesystem[J].Phys.Rev.A,1992,45:6610[7] HilleryM.Sumanddifferencesqueezingoftheelectro-magneticfield[J].Phys.Rev.A,1989,40:3147[8] JohnsonNF.EntangledbellandGreenberger-Horne-Zeilingerstatesofexcitonsincoupledquantumdots[J].Phys.
Rev.
Lett.,
1999,
83:2270;ReinaJH,
QuirogaL,JohnsonNF.Quantumentanglementandinformationprocessingviaexcitonsinopticallydrivenquantumdots[J].Phys.Rev.A,2000,62:012305[9] BelleguieL,BanyaiL.Theoryofexciton-population-in-ducednonlinearabsorptioninlargemicrocrystallites[J].Phys.Rev.B,199144:8785;CaoH,PauS,Ya-maotoY,etal.Exciton-polaritonladderinasemicon-ductormicrocavity[J].Phys.Rev.B,1996,54:8083
正在阅读:
在两个耦合的量子点和腔QED系统中的双模激子的压缩性质_英文_杨04-22
政府政务服务中心关于2021年工作总结暨工作思路范文08-04
我为春天画幅画作文350字07-04
2019年整理中层干部竞争上岗的现状分析与前景展望10-09
重庆南开中学高2017级高一(上)期末考试化学试题及其答案 - 图06-04
V2.2有声优化补丁说明及使用方法07-28
冲刺2013中考历史二轮复习:世界现代史专题 03 社会主义国家改革07-09
我心中的目光作文600字06-21
小区里的桂花树作文400字06-16
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 耦合
- 英文
- 量子
- 压缩
- 性质
- 两个
- 系统
- QED
- 被害人承诺论文:论刑法中的被害人承诺
- 第一讲 自然界的水循环和水资源合理利用
- 公务员录用考试申论标准预测试卷(7)
- 出口贸易中FOB和FCA贸易术语的风险分析
- 2013新人教版八年级物理上册_第6章__质量与密度_知识点基础练习(
- 2022年山西中考部分题的翻译
- 2012新《中华人民共和国刑事诉讼法》法条释义-第二章 第一审程序
- 20世纪的战争与和平
- 外科护理技术试卷15
- 增资发行内资股法律业务委托合同
- 第四章 燃料 燃烧 综合测试卷
- 中国古代的书法和绘画艺术
- 河南_23条政策助农民工就地_就近就业
- Unit2 Lesson 7 The future of abortion 美英报刊选读
- 刀塔传奇巨魔怎么样及值不值得培养
- 2006-2007学年度烟台市第一学期期末考试初二生物试题及答案
- 《信陵君窃符救赵》课件一.
- (整理)数字电路练习题及答案--施密特触发器
- 中美欧合作有利于世界和平与发展
- 日产2000T新型干法水泥生产线建设工程可行性研究报告