Patterns of Protein Synthesis and Tolerance of Anoxia in Roo
更新时间:2023-04-21 21:48:01 阅读量: 实用文档 文档下载
- patterns推荐度:
- 相关推荐
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
PlantPhysiology,February2000,Vol.122,pp.295–317,©2000AmericanSocietyofPlantPhysiologists
PatternsofProteinSynthesisandToleranceofAnoxiainRoot
TipsofMaizeSeedlingsAcclimatedtoaLow-Oxygen
Environment,andIdentificationofProteinsby
MassSpectrometry1
WilliamW.P.Chang,LanHuang,MinShen,CeceliaWebster,AlmaL.Burlingame,andJustinK.M.Roberts*DepartmentofBiochemistry,UniversityofCalifornia,Riverside,California92521(W.W.P.C.,C.W.,J.K.M.R.);and
DepartmentofPharmaceuticalChemistry,UniversityofCalifornia,
SanFrancisco,California94143(L.H.,M.S.,A.L.B.)
transcriptionallevels(Sachsetal.,1996;Drew,1997;Fen-noyetal.,1998).
Geneexpressionisalsoalteredinhypoxicallyacclimatedmaizetissues(KelleyandFreeling,1982;Saglioetal.,1999).Hypoxictreatmentincreasestranscriptlevelsofalcoholdehydrogenase1(adh1),alcoholdehydrogenase2(adh2),pyruvatedecarboxylase(pdc1),aldolase(ald1),Sucsyn-thase(sus1),andenolase(eno1)(Andrewsetal.,1993,1994a;Zengetal.,1998).However,nocommonregulatorypatternforthecoordinatedtranscriptionofmultiplemes-sageswasobservedintheexpressionofthesegenes(forreview,seeDrew,1997).Ellisetal.(1999)haveshownthattheinhibitorcycloheximidepreventshypoxicacclimationinrootsandshootsofArabidopsis,indicatingthatproteinsynthesisisimportantfortheacclimationofplantstolow-oxygenstress.Furthermore,XiaandSaglio(1992)reportedthatcycloheximideblockstheinductionofalactateeffluxmechanismunderhypoxia,suggestingthatproteinsynthe-siscontributestoimprovedintracellularpHregulationinhypoxicallyacclimatedroots(XiaandRoberts,1994,1996).Thegoalofthisstudywastoclarifytheroleofproteinsynthesisintheadaptationofmaizeroottipstolow-oxygenstress.Wefirstdescribethepatternsofproteinsynthesisinmaizeroottipspriorto,during,andafteracclimationtolow-oxygenstress.Second,wedefinewhenproteinsynthesisismostcriticalforimprovedcytoplasmicpHregulationandsurvivalduringanoxia.Third,wereporttheresultsofmassspectrometry(MS),two-dimensionalisoelectricfocusing(IEF)SDS-PAGE,anddatabasesearchestoidentify46roottipproteinswhoseratesofsynthesisarealteredduringhypoxicacclimation.
Toleranceofanoxiainmaizeroottipsisgreatlyimprovedwhenseedlingsarepretreatedwith2to4hofhypoxia.Wedescribethepatternsofproteinsynthesisduringhypoxicacclimationandan-oxia.Wequantifiedtheincorporationof[35S]methionineintototalproteinand262inpidualproteinsunderdifferentoxygentensions.Proteinssynthesizedmostrapidlyundernormoxicconditionscon-tinuedtoaccountformostoftheproteinssynthesizedduringhy-poxicacclimation,whiletheproductionofaveryfewproteinswasselectivelyenhanced.Whenacclimatedroottipswereplacedunderanoxia,proteinsynthesiswasdepressedandno“new”proteinsweredetected.Wepresentevidencethatproteinsynthesisduringacclimation,butnotduringsubsequentanoxia,iscrucialforaccli-mation.Thecomplexandquantitativechangesinproteinsynthesisduringacclimationnecessitateidentificationoflargenumbersofinpidualproteins.Weshowthatmassspectrometrycanbeeffec-tivelyusedtoidentifyplantproteinsarrayedbytwo-dimensionalgelelectrophoresis.Ofthe48proteinspotsanalyzed,46wereidenti-fiedbymatchingtotheproteindatabase.Wedescribetheexpres-sionofproteinsinvolvedinawiderangeofcellularfunctions,includingpreviouslyreportedanaerobicproteins,anddiscusstheirpossiblerolesinadaptationofplantstolow-oxygenstress.
Plantscannotsurvivetheprolongedoxygendeficitbroughtaboutbyflooding.However,theabilityofplanttissuessuchasmaizeroottipstosurviveanoxicstresscanbeincreasedbyhypoxicpretreatment(2–4kPapartialpres-sure)(forreview,seeDrew,1997).Sachsetal.(1980)re-portedthatafter1hofanaerobictreatment,thesynthesisofmostaerobic,solubleproteinsinmaizeseedlingprimaryrootswascurtailed,whereasasetof20anaerobicproteinswasselectivelysynthesizedafter2h,andafter5hcom-prisedmorethan70%ofallsolubleproteinssynthesized.Mostoftheanaerobicproteinsidentifiedareenzymesin-volvedinsugarmetabolismandfermentation,andtheirsynthesisisregulatedatboththetranscriptionalandpost-ThisworkwassupportedbytheU.S.DepartmentofAgricul-tureNationalResearchInitiative-CompetitiveGrantsProgram(grantno.98351006146toJ.K.M.R.)andbytheNationalInstitutesofHealthNCRR(grantno.RR01614toA.L.B.).
*Correspondingauthor;e-mailjkmr@ucrac1.ucr.edu;fax909–787–3590.
295
1
MATERIALSANDMETHODS
PlantMaterial
Maize(ZeamaysL.inbredlineB73)kernelswerekindlysuppliedbyPioneerHi-BredInternational(Johnston,IA).Seedsweregerminatedinplastictrayslinedwithwetpapertowelsfor36hinthedarkat23°C.Seedlingswereplacedintosterileglasstubes(length,160mm;i.d.,2mm)linedwithwicks(width,approximately1mm;length,170mm)madefromchromatographypaper(3MM,Whatman,
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
296Changetal.PlantPhysiol.Vol.122,2000
Clifton,NJ)saturatedwith0.1mmCaSOwereplaceduprightinawater-saturated4.Transplantedseedlingscham-berandallowedtogrowunderconstantroomlightforapproximately72hat23°C,afterwhichtheseedlingrootsweretypically100to120mmlong.
GasTreatment,CycloheximideTreatment,andGrowthExperiments
Fifteento40germinatedseedlings(averagerootlength,110mm)wereplacedintoa75-mm(i.d.)glassfunnelwitha10-mLdisposablechromatographycolumn(Bio-Rad,Hercules,CA)attached.Therootsweresubmergedin0.1mmCaSO4spargedwitheither3%(v/v)ON2balancedwithN(normoxia),2(hypoxia),99.999%(v/v)dependingonthetreatment.2(anoxia),or100%(v/v)OThegasesusedin2theexperimentswerefirstsaturatedwithmoistureinagaswasherbottlefilledwithwater.Duringhypoxicoranoxictreatments,funnelsweresealedwithrubberstopperstopreventtheentryofOroottipsafteranoxia,intact2fromair.Toassessthesurvivalofseedlingsweretransferredtoafunnelattachedtoa110-mLchromatographycolumn(Econo-Column,Bio-Rad)filledwithsterile0.1mmCaSOandbubbledwith100%(v/v)O4growundernormoxic2.Theseedlingrootswereallowedtoconditionsfor26h.Thelengthoftheprimaryrootwasmeasuredusingaruleratthebeginningandendoftherecoveryphase.Theviabilityoftheroottipswasassessedbyscoringthenumberofnon-flaccidroottips.IthasbeendemonstratedthattheOconcentrationinair-saturatedwaterfallsbelowthecritical2O2pressure(thelowestvalueofthepartialOrespiration)ofsubmergedmaizeroot2pressurethatsaturatestips(Saglioetal.,1984).Consequently,forallnormoxictreatmentsused,includingtherecoveryphase,theCaSOwasspargedwith100%(v/v)OpreventO4mediumInexperimentsinvolvingcycloheximide2to(Sigma-Aldrich,2deficit.St.Louis),theproteintranslationinhibitorwasaddedtotheCaSO41hbeforeagivengastreatmenttoallowdruguptakebytheroottiptissueandtoblockproteinsynthesis.Cycloheximidewaswashedoffwithdistilledwaterattheendofthetreatments,thenseedlingsweresubjectedto13hofanoxia,followedby26hofnormoxicrecovery.Viabilityandrootelongationratewereassessedattheendoftherecoveryperiod.Whilecycloheximideinhibitedproteinsynthesiseffectively,therangeofdosagesappliedwasnon-lethalfornormoxicseedlingroottips.Inacontrolexperiment,seedlingrootsweretreatedwithupto50 mcycloheximideandnormoxiafor18h;attheendofthisperiod,cycloheximidewaswashedoffandtheseedlingswereincubatedundernormoxicconditionsforanaddi-tional26-hperiod.Allroottipsremainedviableattheendofthisexperiment(datanotshown).InVivoLabeling,ProteinExtraction,andScintillationSpectroscopy
Fifteenintactseedlingswerelabeledinafunnelattachedtoasmalldisposablecolumn(seeabove)withrootsimmersedin2mLof138 Ci/mL(0.117 m)[35S]Met(Du-Pont/NEN,Wilmington,DE)in0.1mmCaSO4bubbled
withappropriategas.Attheendofthelabelingperiod,rootsweredippedinice-cold,sterilewaterthreetimes,and5-mmpiecesofrootapiceswerecutonanaluminumblockoverdryice.Theexcisedroottipswerehomogenizedasdescribedpreviously(Damervaletal.,1986;Websteretal.,1991b).Undissolvedmaterialwasremovedbyabriefcen-trifugation(5–10s)at14,000g.Theproteinconcentrationwasdeterminedusingtheproteinassay(Bio-Rad),andincorporationof[35S]Metintoproteinwasquantified(Websteretal.,1991b).
Two-DimensionalPAGEandDensitometry
Two-dimensionalIEF-SDS-PAGEwasessentiallyasde-scribedbyO’Farrell(1975)withsomemodifications(Web-steretal.,1991b).Roottipproteins(100 gpersample)werefractionatedbytwo-dimensionalIEF-SDS-PAGE.GelswereeitherstainedwithRapidCoomassie(ResearchProductsInternational,MountProspect,IL)orweresilver-stained(Blumetal.,1987)andincubatedinFluoro-Hance(ResearchProductsInternational)for30min.DriedgelswerethenexposedtoX-Omatfilm(Kodak,Rochester,NY)at 80°Cfor95h.
Fluorographswerescanned(ScanJet4c/T,Hewlett-Packard,PaloAlto,CA).Thescanneroutputresponsewaslinearizedbycalibrationusingareflectiondensityguide(Kodak;Kendricketal.,1994).Scannedimagesweresavedastaggedimageformatfiles,andinpidualspotintensi-tiesweredeterminedusinganimageanalysisprogram(ImageQuant,MolecularDynamics,Sunnyvale,CA).Back-groundwassubtractedfromeachspotbythefollowingapproach.Anarbitraryrectangularregion4mm2insizewaschosenfromapartofthegelwheretherewasnovisibleproteinspots;densitometricvolume(intensity spotarea)ofthisregionwaspidedbyitsareatogivetheaveragebackgroundvolume/area,andthisvaluewasmul-tipliedbytheareaofaspotthatwasthensubtractedfromthereporteddensitometricvolumegivenbyImageQuanttoobtainthenormalizedvolume.Thenormalizedvolumewasusedinallsubsequentquantitativegelanalysesofinpidualproteins.Western-BlotAnalyses
Westerntransferandimmunodetectionwerecarriedoutaspreviouslydescribed(Websteretal.,1991a)usingrabbitpolyclonalantiseraraisedagainstthefollowingproteins:recombinanteIF-4A,wheateEF-2(agiftfromKarenBrowning,UniversityofTexas,Austin),andmaizeADH(agiftfromJuliaBailey-Serres,UniversityofCalifornia,Riv-erside;FennoyandBailey-Serres,1995).Bindingofprimaryantibodywasvisualizedusinghorseradishperoxidase-conjugatedgoatanti-rabbitIgG(Bio-Rad)andmetal-enhanceddiaminobenzidinetetrahydrochloridesubstrate(ImmunopurekitfromPierceChemical,Rockford,IL).EstimationofCytoplasmicpHandMetaboliteAnalysisby31P-NMR
NMRspectroscopyofroottipsofintactmaizeseedlingswasdoneessentiallyasdescribedinXiaandRoberts
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
ProteinSynthesisandToleranceofAnoxia
297
(1996).Intactseedlingswerefirsttreatedinglassfunnels,asdescribedabove.Priortoanoxia,seedlingsweretrans-ferredintoasealedNMRsampletube,andspectrawereobtainedat202.5MHzonaspectrometer(modelGN500,GeneralElectric,Fairfield,CT).Gasesequilibratedwith0.1mmCaSO4wereusedforperfusionwithaconstantgasstreamthroughthesampletubeduringtheexperiment.CytoplasmicpHwasestimatedfromthechemicalshiftsofcytoplasmicPi(Roberts,1986).
ProteinIdentificationbyMS
Inpidualorpooledgelspots(2–3spots)fromseparateCoomassieBlue-stainedorsilver-stainedtwo-dimensionalgels(100 gprotein/gel)weresubjectedtotrypticdiges-tionusingamodifiedprocedureofRosenfeldetal.(1992).Gelspotscontainingproteinswereexcisedfromgelsusingascalpelinalaminarflowhood.Theexcisedgelspotswerestoredin100 LofHPLC-gradewaterat4°Cuntilsubse-quentanalyses.Thespotswerethenmincedandwashedwith25mmNH4HCO3in50%(v/v)acetonitrile.Thegelpieceswereallowedtodryandthenrehydratedin25mmNH4HCO3with0.5to1.0 goftrypsinat37°Covernight.Afterdigestion,thedigestionsolutionwasseparatedfromthegelslices,andthegelsliceswerewashedwithHPLC-gradewateronceandwith50%(v/v)acetonitrile,5%(v/v)trifluoroaceticacidthreetimesatroomtemperaturetoextractthepeptidesfurther.Pooledextracts(includingthedigestionsolutionandboththeaqueousandorganicwashes)wereconcentratedusingaSpeed-Vac(SavantIn-struments,Holbrook,NY).Insomecases,sampleswerefurtherfractionatedbyreversedphaseHPLConamicro-boreC18column(1.0mm 15cm;Vydac,TheSeparationsGroup,Hesperia,CA).HPLCfractionswerecollectedandconcentrated.
Trypticpeptidemassesweremeasuredbyanalyzingone-twentiethofeachconcentratedsampleafterdigestion(orone-tenthofeachHPLCfraction)usingamatrix-assistedlaserdesorption-ionizationdelayedextractionreflectrontime-of-flight(MALDI-DE-TOF)massspec-trometerequippedwithanitrogenlaser( 337nm)(Voyager-DESTR,PEBiosystems,Framingham,MA).Peptideswereco-crystallized1:1(v/v)withmatricescon-sistingofsaturated -cyano-4-hydroxycinnamicacidpre-paredin50%(v/v)acetonitrile/1%(v/v)trifluoroaceticacid.AllMALDIspectrawereeitherexternallycalibratedusingastandardpeptidemixtureorinternallycalibratedusingtrypsinauto-proteolysisproducts.Mono-isotopicmassesfromallspectrarecordedforagivenpeptidearereported.Forseveralpeptidesthatexhibitedthehighestpseudo-molecularionabundanceonMALDImassspectra,partialaminoacidsequencewasdeterminedusingpost-sourcedecayanalysis.
Matchingofexperimentalresults(measuredpeptidemassvalues)withtheoreticaldigestsandsequenceinfor-mationobtainedfromvariousdatabaseswasperformedusingtwosequencedatabasesearchprograms,MS-Fitand
MS-Tag(Jimenezetal.,1998;Clauseretal.,1999).TheseprogramsweredevelopedbyKarlClauserandPeterBakeroftheNationalInstitutesofHealth(NIH)/NationalScienceFoundationMassSpectrometryFacility,UniversityofCalifornia,SanFrancisco,andareavailableathttp://pros-pector.ucsf.edu/.MS-Fitallowstheusertomatchtheob-servedtrypticpeptidemassesofanunknownproteintotheexpectedpeptidemassesofanyproteinforwhichaminoacidornucleotidesequenceinformationisavailable.Data-basequerieswerecarriedoutformono-isotopicpeptidemassesusingthefollowingparameters:peptidemasstol-eranceof 50ppm(ppm [experimentalmass(indal-tons) theoreticalmass]/theoreticalmass,expressedinpartspermillion),equivalentto0.1Dfora2-kDpeptide;themaximumnumberofmissedtrypticcleavagesof2or3;andmodificationsincludingconversionofpeptideN-terminalGlntopyro-Gln,oxidationofMet,acetylationoftheNterminus,andmodificationofCysbyacrylamide.DatabasesearchesusingMS-Tagtomatchpost-sourcedecay(PSD)fragmentions(alongwiththemassofapre-cursorion)usedthefollowingparameters:precursorionmasstoleranceof 100ppm(measuredbyMALDI-MS)andPSDfragmentionmasstoleranceof 1,500ppm.Databasessearchedincludedproteindatabasessuchasthenon-redundantNCBInrcompiledbytheNational
Center
Figure1.Effectofdurationofhypoxicpretreatmentonmaizeroottiptoleranceto13hofanoxia.Intactseedlingswerepretreatedunderhypoxiaforvariouslengthsoftime,followedby13hofanoxiaand26hofnormoxia(seeschematic,“Experimentalplan”).Tolerancewasassessedusingrootgrowthandroottipviabilityassays.Growthdataaremeanvalues SE(n 10).Viabilitydataareaggregatesofthreeindependentexperiments,fromobservationsofatotalof30seedlingsforeachpoint.Normoxiccontrolseedlingsofthesamedevelopmentalagewereexposedto100%(v/v)O2only.
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
298Changetal.PlantPhysiol.Vol.122,2000
forBiotechnologyInformation,andtheNIH,andcDNAdatabasessuchasdbEST,whichisapisionofGenBank(NIHgeneticsequencedatabase),containingsingle-passcDNAsequencesorexpressedsequencetags.
RESULTS
AcclimationtoAnoxicStressOccurswithin2to4hofHypoxicPretreatment
Mostpreviousstudiesonacclimationhaveusedhypoxicpretreatmentslasting16hormore(e.g.Saglioetal.,1988;Johnsonetal.,1989;Germainetal.,1997;Ellisetal.,1999),althoughAndrewsetal.(1994b)reportedthat6hofhy-poxicacclimationsignificantlyimprovedanoxiatolerance.Tostudyproteinsynthesisduringtimesmostcriticalforenhancedtoleranceofanoxia,wedeterminedtheminimaltimerequiredforacclimationinhypoxicroottips.Maizeseedlingsweresubjectedto13hofanoxia,followedby26hofrecoveryunderoxygen.Enhancedtoleranceofanoxia(acclimation)wasassessedprimarilybyrecordingsurvivalafterthestressandrecoveryregime.Control(non-acclimated)seedlingscouldnotsurvivethisregimen(Fig.1,0hofhypoxia),whereasaslittleas2hofhypoxicpretreatmentledto100%viability.Acclimationwasfurtherassessedbymeasuringrootelongationduringtherecoveryphase.Rootelongationimprovedwithincreasingduration
ofhypoxicpretreatmenttoapproximately70%ofnormoxiccontrolswitha4-hpretreatment.Longerhypoxicpretreat-mentsgavenoadditionalimprovement.Consequently,a4-hhypoxicpretreatmentwasusedfortheexperimentsdescribedbelow.
ManyNormoxicProteinsAreSynthesizedduringHypoxicAcclimation
Welookedatchangesinproteinsynthesisthatoccurredduringacclimationtolow-oxygenstress.Roottipsofintactseedlingssubjectedtohypoxiawerelabeledwith[35S]Met,andproteinswereextractedandseparatedbytwo-dimensionalIEF-SDS-PAGE(Fig.2).Attheinpidualpro-teinlevel,weanalyzed262proteinswithMrsfrom36,000to99,000andpIsfrom6.88to5.70,whereresolutionwasbestandmostreproducible.Thisregionofthegelcon-tainedapproximately50%oftheproteinshavingpIsbe-tween3and10andMrsbetween20,000and200,000,basedontheintensityofsilver-stainedproteins.
During4hofhypoxicacclimation,incorporationof35
[S]Metintototal,acid-precipitableproteinwasreducedto48%to56%ofthatinnormoxicroottips.Incorporationoflabelintothe262proteinsresolvedinFigure2waslikewisedepressedduringhypoxicacclimation,to53%ofthatinnormoxiccontrols.Hypoxiadepressedthe
synthesis
Figure2.Effectsoflow-O2treatmentsonpatternsofproteinsynthesisinintactmaizeroottips.Dataarefluorographsofroottipproteins,labeledinvivowith[35S]Metandseparatedbytwo-dimensionalIEF-SDS-PAGE.Fifteen6-d-old(postimbibi-tion)seedlingswerelabeledwith[35S]Metduringthelast4hofeachtreatment.A,Normoxia,8hunder100%(v/v)O2.B,Hypoxia,4hofO2,4hof3%(v/v)O2.C,Hypoxiaplus4hofanoxia,4hofO2,4hof3%(v/v)O2,4hofN2.D,Hypoxiaplus13hofanoxia,4hofO2,4hof3%(v/v)O2,13hofN2.E,4hofanoxia,8hofO2,4hofN2(non-acclimated).Roottipproteins(100 gpersample)werefractionatedbytwo-dimensionalIEF-SDS-PAGE,andlabeledproteinswerevisualizedbyfluorographyusinganexposuretimeof95h.ArrowsinAandBpointtoproteinsthatwereinducedgreaterthan2-foldbyhypoxictreatment.ADHwasidentifiedbywesternblotandconfirmedbyMS.
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
ProteinSynthesisandToleranceofAnoxia
ofmostnormoxicproteins,whilethesynthesisofsevenproteins,includingADH,wasenhancedmorethan2-fold(Fig.2,AandB,arrows).Thepatternsofproteinsynthesisinnormoxicandhypoxicroottipsshowcleardifferences,butalsomanymoresimilaritiesthantheanaerobicre-sponseofwholemaizerootsdescribedbySachsetal.(1980),inwhichaerobicproteinsynthesiswashalted.Thelabelingofnormoxicproteinsduringacclimationwasnotduesimplytorun-offofnormoxicproteinsynthesisduringthetransitionintohypoxia;avirtuallyidenticalpatternwasobtainedwhenlabelingwasrestrictedtothelast30minofthe4-hhypoxicacclimation(datanotshown).Thecomplexityoftheacclimationresponserequiredquantita-tiveanalysisbydensitometry.
Therelativeamountsof[35S]Metincorporatedintoindi-vidualproteinsduringnormoxiaandhypoxiaisshowninFigure3,AandB.Theproteinslabeledduringhypoxiawerealsomadeinnormoxia,withlessthan10%oftheseinpidualproteinsbeingsynthesizedatahigherratethaninthenon-stressedcondition(Fig.3C).Remarkably,theproteinsmostheavilylabeledundernormoxicconditionsremainedthemostheavilylabeledunderhypoxia.Forexample,theseproteinsaccountingfor20%or40%ofall
299
labelingduringnormoxia(seeaxisaboveFig.3A)stillaccountedfor18%or38%,respectively,oflabelingduringhypoxia.Thesevenmostinducedproteins(Figs.2A,2B,and3B,arrows)accountedforonlyabout5%oflabelinthe262proteinsanalyzed.
AfterHypoxicAcclimation,SynthesisofMostProteinsIsFurtherReducedinAnoxia
Whenhypoxicallyacclimatedseedlingsweresubjectedto4hofanoxia,incorporationof[35S]Metintototalroottipproteinwasreducedto10%to15%ofthatobservedinnormoxia.Atthelevelofinpidualproteins,thefewla-beledmostrelativetonormoxiacorrespondedtoproteinswhosesynthesiswasinducedduringhypoxia,andtheextentoflabelingwascomparableunderhypoxiaandan-oxia(compareFig.3,CandD).
Prolongedanoxictreatmentofacclimatedroottipsgaveaverydifferentpatternofproteinsynthesis(Fig.2D),whichwasremarkablysimilartothepatternofproteinsynthesisobservedinnon-acclimatedroottipsearlyinanoxia(Fig.2E).Giventheintoleranceofanoxiainnon-acclimatedroottips,thissimilarityinprotein
synthesis
Figure3.Relativeincorporationof[35S]Metintoinpidualproteinsinmaizeroottipsbefore,during,andafteracclimation.AandB,Relativedensitometricintensitiesof262spotsfromnormoxicorhypoxicroottips;spotsarerankedfromthemosttotheleastintenseinthefluorographofnormoxicproteinsynthesis.ThehorizontalaxisaboveAshowsthepercentofradiolabelincorporatedintospotstotheleftofeachtickmark.ArrowsinBindicateproteinsthatwereinduced 2-foldbyhypoxictreatment,andcorrespondtoarrowsinFigure2.C,Ratioofhypoxictonormoxicproteinsynthesis.D,Ratioofanoxictonormoxicproteinsynthesisinacclimatedseedlings.DataforinpiduallabeledproteinsinCandDarearrangedinthesameorderasA.NumberedspotsinCwereidentifiedbyMSanalysisandarekeyedtoTableI:1and2,ADH;3,PDC(inconclusive);4,actin;5,GAPC3/4;6and7,GAPC2;8,GLU1;9,ADH;10,malatedehydrogenaseprecursor.DensitiesshownarefromthegelsinFigure2.DensitometricanalysisofthreeindependentreplicateexperimentswithproteinsfromnormoxicandhypoxicroottipsgaveSDvaluesof 0.2forspotsofrelativeintensitiesbetween1and4,andSDvaluesof 0.08forspotsofrelativeintensitiesbetween0.2and0.4.
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
300Changetal.PlantPhysiol.Vol.122,2000
patternssuggeststhatproteinsmadelaterinanoxiainac-climatedroottipsdonotcontributetoimprovedtolerance.AnoxiaToleranceIsBlockedbyCycloheximideWhen
AddedduringHypoxicPretreatmentButNotWhenAddedduringAnoxia
Theobservationthatno“novel”proteinsweresynthe-sizedundereitherhypoxiaoranoxiawithinthescopeofthisstudyledustoexaminewhenproteinsynthesisisrequiredforacclimation.Proteinsynthesisinroottipsof
intactseedlingswasinhibitedwithcycloheximide(Ker-ridge,1958;LinandKey1967)addedduringeitherthehypoxicpretreatmentorthesubsequentanoxia.
Theefficacyofcycloheximidewasassessedfromincor-porationof[35S]Metintototalprotein,andtoleranceofanoxiawasassessedbyscoringviability.Cycloheximidesubstantiallyinhibitedproteinsynthesisinbothhypoxicandanoxicroottips(Fig.4,AandB).Intheabsenceofproteinsynthesisduringhypoxia,seedlingsdidnotsur-vivesubsequentanoxia(Fig.4C).Thisresultisconsistentwithearlierstudiesofacclimationinrootsandshoots
of
Figure4.Effectofcycloheximide(CHX),duringhypoxicpretreatmentorsubsequentanoxia,onproteinsynthesisandtolerance.Roottipsofin-tactmaizeseedlingsweretreatedwithincreas-ingconcentrationsofcycloheximidefor1hpriortoandduringeither4hofhypoxia(AandC)or13hofanoxia(BandD)(seeschematic,“Experimentalplan”).Proteinsynthesiswasmeasuredbyadding[35S]Metthroughouthy-poxia(A)andduringeitherthefirst( )orlast( )4hofanoxia(B).Datashownaremeans SE.Inmeasurementsofrootsurvival(CandD),seed-lingsweretreatedsequentiallywith4hofnor-moxia,4hofhypoxia,and13hofanoxia,followedbya26-hnormoxicrecoveryperiod;cycloheximidewasadded1hpriortoanddur-ingeither4hofhypoxia(C)or13hofanoxia(D).Cycloheximidewasremovedattheendofhypoxia(C)andanoxia(D).Growthdataaremeans SE(n 10–30);viabilitydataareag-gregatesoffourindependentexperimentsfromobservationsofatotalofupto80seedlingsforeachpoint.
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
ProteinSynthesisandToleranceofAnoxia
301
Figure5.EffectofcycloheximideoncytoplasmicpHregulationduringanoxiainacclimatedroottips.Seedlingsweretreatedwith4hofnormoxiafollowedby4hofhypoxia,thentransferredtoNMRsampletubesandsubjectedtoanoxia.Cycloheximide(10 M)wasaddedeither1hpriortoandduringhypoxia(F)or1hbeforeandduringanoxia(E).CytoplasmicpHwasestimatedfromthechemicalshiftofthecytoplasmic31Pi-NMRresonance(Roberts,
1986).
Arabidopsisusingcycloheximide(Ellisetal.,1999).How-ever,wealsofoundthatwhencycloheximidewasaddedduringanoxia,survivalwasnotaffected(Fig.4D),indicat-ingthattheresidualproteinsynthesisinanoxiadoesnotplayacriticalroleinacclimation.Theinhibitionofrootelongationbycycloheximide(Fig.4D)reflectsthedepen-denceofplantgrowthonproteinsynthesis(e.g.Blacketal.,1967;Coartneyetal.,1967),andisnotanindicatorofviability.
InhibitionofProteinSynthesisduringHypoxicAcclimationCompromisesCytoplasmicpHRegulationunderAnoxiaCytoplasmicacidosisduringanoxiaisanimportantde-terminantofanoxiatolerance(Robertsetal.,1984;Drew,1997),andwehaveshownthatacclimationofmaizeroottipstolow-oxygenstressisaccompaniedbyadramaticimprovementincytoplasmicpHregulation(XiaandRob-erts,1994,1996).Inlightoftheresultspresentedabove,wepostulatedthatproteinsynthesisduringacclimationcon-tributestoimprovedcytoplasmicpHregulation.WetestedthishypothesisbydeterminingtheeffectofcycloheximideaddedduringhypoxicacclimationoncytoplasmicpHreg-ulationduringsubsequentanoxiausing31P-NMR.RootssotreatedexhibitedpoorcytoplasmicpHregulationunderanoxia;cytoplasmicpHfellfrom7.5to6.5within2hoftheonsetofanoxicstress(Fig.5),apatternofcytoplasmicacidosischaracteristicofnon-acclimatedroottips(XiaandRoberts,1994,1996).Incontrast,whencycloheximidewasaddedtoacclimatedrootsduringsubsequentanoxia,roottipsexhibitedgoodcytoplasmicpHregulation,maintain-inganearlyneutralpH(Fig.5),similartoregulationinacclimatedroottipsnotexposedtocycloheximide(XiaandRoberts,1994,1996).
31
P-NMRspectraofroottipsrecordedafterthesediffer-entcycloheximidetreatmentsandanormoxicrecoveryperiodconfirmedthatpreventionofcytoplasmicacidosiscorrelateswithtoleranceofanoxia.Roottipsofacclimatedseedlingstreatedwith10 mcycloheximideduringanoxiaretainedmetabolitessuchassugarphosphatesandnucle-otidesandgavedistinctcytoplasmicandvacuolarPisig-nals,indicatingmaintenanceofthepHgradientbetweencytoplasmandvacuole(compareFig.6,AandB).Thesespectroscopicsignaturesarecharacteristicoflivingroottips(RobertsandTesta,1988),andconfirmtheviabilitymeasurementsinFigure4.Incontrast,rootsthathadbeenexposedto10 mcycloheximideduringhypoxicpretreat-mentlostessentiallyallofthesespectroscopicsignatures(Fig.6C).Theseresultsindicatethathypoxicproteinsyn-thesisduringacclimationisrequiredforimprovedcyto-plasmicpHregulationduringanoxia,whichiscrucialforanoxiatolerance.
IdentificationofMaizeRootTipProteinsSynthesizedduringHypoxicAcclimation
Havingdefinedthetimeperiodwhenproteinsynthesiswascriticalforacclimationtolow-oxygenstress,we
fo-
Figure6.Effectofcycloheximideon31Pmetabolitesinroottipsofintactseedlingsfollowinganoxia.Maizeseedlingsweretreatedfor4hundernormoxiaand4hofhypoxiainfunnels,andthentrans-ferredtotheNMRsampletubes.Spectrawererecordedfollowing13hofanoxiaandapproximately24hofnormoxicrecovery.A,Nocycloheximide(control).B,Cycloheximide(10 M)addedduringthefinalhourofhypoxiaandthroughoutanoxia,andthenremovedafteranoxia.C,Cycloheximide(10 M)added1hpriortoandduringhypoxia,andthenremovedafterhypoxia.
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
302Changetal.PlantPhysiol.Vol.122,2000
cussedonidentifyingwhichproteinscontributetotheadaptiveresponse.Thecomplexityofthepatternofproteinsynthesisduringacclimation(Figs.2Band3)requiredanapproachcapableofidentifyinglargenumbersofproteinswithahighrateofsuccess.Previousstudiesofplantstressresponsesattheproteinlevelhaveeitherdescribedpat-ternsofsynthesisoflargearraysofproteinsontwo-dimensionalgels,wherefewifanywereidentified,orhavefocusedononeorafewknownproteins.Neitherapproachiscapableofunravelingcomplexphysiologicalresponses,inwhichtheexpressionofmanygenescombinestogiveimprovedplantperformance.Inthepresentstudy,wetestedanewandpromisingstrategyusingMStoanalyzetrypticdigestsofproteinsfollowingthemethodsofClauseretal.(1995)andQiuetal.(1998).
Forty-eightofthe262proteinspotsresolvedbytwo-dimensionalIEF-SDS-PAGE(showninFig.7)wereexcisedfromgels,digestedwithtrypsin,andanalyzedbyMALDI-MS.Thesespotswerechosenbecausetheywerewellre-solvedwhenvisualizedwithCoomassieorsilverstaining,andincludedproteinswitharangeofMrs,pIs,andratesofsynthesisunderhypoxia.MassspectrasuchasthoseshowninFigure8AwereobtainedfromeachspotwithsufficientsignaltosearchdatabasesusingProteinProspector(see“MaterialsandMethods”).Theidentitiesof46proteinspotsandthematchingsequencesforeachpeptidemassarelistedinTableI,rankedinorderoftheirrelativeratesofsynthesisunderhypoxiaversusnormoxia.Intwocases,trypticfragmentsderivedfromasingleproteinspotwerematchedtotwodifferentproteins,indicatingcomigration
Figure7.MaizeroottipproteinsanalyzedbyMS.Figureisafluoro-graphofproteinslabeledinvivoduringnormoxia,andseparatedbytwo-dimensionalIEF-SDS-PAGE(seeFig.2A).Proteinsarerankedandnumberedaccordingtotheratioof[35S]Metincorporationunderhypoxiarelativetonormoxia,with1beingthehighest.ResultsoftheMSanalysisarepresentedinTableIusingthesamenumberingscheme.
(spots11and48).Here,spectralpeaksattributedtooneproteinweresubtractedpriortoaseconddatabasesearch(Jensenetal.,1997).Additionalsequenceinformationforselectedpeptides(TableI,bold,underlined)wasobtainedbypost-sourcedecayfor20proteins(seeFig.8BforatypicalPSDspectrum)(Qiuetal.,1998).
Mostoftheroottipproteinsidentifiedaresolublemet-abolicenzymes.Theseincludedthreeanaerobicproteins:ADH1(Sachsetal.,1980)(spots1,2,9,and16),ENO1(enolase1;Laletal.,1998)(spots12and15),andGAPC(RussellandSachs,1991)(spots5–7and13).Allthreeproteinsshowedcomparableorincreasedsynthesisduringhypoxicacclimationrelativetonormoxia(TableI).Afourthproteinwhosesynthesiswassignificantlyinducedduringhypoxicacclimation(TableI,spot3)wastentativelyiden-tifiedaspyruvatedecarboxylase(PDC),whichisalsoananaerobicprotein(Kelley,1989;Kelleyetal.,1991;PeschkeandSachs,1993).ThisassignmentwasbasedonmatchesoffourmasspeakstoricePDCsequences,threeofwhichalsomatchedmaizePDC1,andonthepIandMarecomparabletothepredictedvaluesrofspot3,whichforPDC1(TableI).However,ascompletesequencesforothermaizePDCgenesarenotavailable,andtwomajorpeptidemassescouldnotbeassigned,thisidentificationisinconclusive.Inadditiontotheseanaerobicproteins,twoabundantpro-teins,actin(spot4)and -d-glucosidase(GLU1)(spot8),werealsosynthesizedathighratesduringbothnormoxiaandhypoxia(Fig.3andTableI).
Proteinswithcrucialrolesinbothcytoplasmicandor-ganellartranslation(eIF-4A,spot36;eEF-2,spots34and46;andmitochondrialelongationfactorTu,spot45)werealsoidentified.Thesynthesisofthesefactorswassubstantiallyrepressedbyhypoxia(TableI),whichmaycontributetotheoverallreductioninproteinsynthesisduringlow-oxygenstress.Inaddition,weidentifiedproteinsinvolvedinoxidativephosphorylation(subunitsoftheF1-ATPase,spots11and48),proteinfolding(mitochondrialchapero-nin60,spot41),intracellulartrafficking(Golgi-associatedproteinse-wap41,spots42and47),andheatstress(HSP70,spot31).
For20proteins,identitieswereassignedbymatchingtohomologoussequencesfromotherspecies.Incasesinwhichhomologiesfrommorethanonespecieswerematched,onlythematchthatgavethehighestMOWSEscore(Pappinetal.,1995)islisted(TableI).Withtheexceptionofmalatedehydrogenase,maizesequencesfortheseproteinswereeitherabsentfromthedatabasesorincomplete.Forexample,spots25,26,35,and43wereidentifiedashomologoustoMetsynthasefromplantsotherthanmaize.ThreeofthesespotsalsohadoneortwomassesthatmatchedapartialmaizeMetsynthasese-quence(GenBankaccessionno.AF093539),buttheselim-itedmatchesgavemuchlowerMOWSEscores.
Multipleisoformsofmanyproteinswereidentified.Thesewerenotduetoallelicvariation,becauseweusedtheinbredmaizelineB73.Rather,theymayhaveresultedfrompost-translationalmodificationsand/orexpressionofge-neticallydistinctisoforms.Forexample,phosphorylatedproteinsarereadilyseparatedontwo-dimensionalgels,duetoanacidicpIshift.Thisphenomenonmayaccount
for
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
ProteinSynthesisandToleranceofAnoxia303
Figure8.A,MALDI-DE-TOFpeptidemassfingerprintspectrumofapeptidemixturefromin-geltrypticdigestionofproteinspot41.Masseslabeledonthespectrumarethelargestineachisotopecluster.Onlythemono-isotopicmasseswereusedfordatabasesearches.B,MALDI-TOF-PSDspectrumofapeptidewithmassatm/z1,389.72fromthetrypticdigestionofspot41.PSDspectrumwasacquiredbyselectingthespecificpeptidefromthetrypticmixturebyprecursoriongating.Fragmentionmassesfromthisspectrumwereusedasthefragmentiontagforspot41inanMS-Tagdatabasesearch.Thepartialaminoacidsequencededucedfromthefragmentionmassesandthemono-isotopicmassoftheprecursorionareshownabovethespectrum.PeptidebackbonecleavageionsassociatedwithchargeretentionattheNterminusarelabeledb,whilethosewithC-terminalchargeretentionarelabeledy(fornomenclatureoffragmentions,seeBiemann,1990).T,Trypsinautolyticproducts.I 86.04,Y 136.04,IT-H2O 196.78,PYF 408.11.
severaloftheisoformpairsweidentified(Fig.7);e.g.Metsynthase(spots35,43,and25,26),EF-2(34,46),ENO1(12,15),andGAPC3/4(5,13).Moredefinitivewasouridenti-ficationofgeneticallydistinctisoforms.Evensmallvaria-tionsinprimaryaminoacidsequencecangivesubstantialdifferencesinthenumberofuniquepeptidemassesgen-eratedfromeachisoform.GAPC2differsfromGAPC1byonly2.7%inprimarysequence(ManjunathandSachs,1997),but50%ofthematchedpeptideswereuniquetoGAPC2(spots6and7).
Conversely,wewereunabletodistinguishGAPC3fromGAPC4becausetheseisozymesdifferbyonlytwoaminoacids(0.6%)(ManjunathandSachs,1997),andnoneoftheninematcheswereuniquetoeitherisozyme(spots5and13).Theseninematchescovered32%oftheproteinse-quenceofGAPC3/4.WewerealsoabletoidentifyanddistinguishENO1(spots12,15)andENO2(spot39),whichdifferby10.5%insequence(Laletal.,1998).ENO1waspreferentiallysynthesizedduringhypoxia(TableI).Simi-larly,observedpeptidesinspots1,2,9,and16wereidentifiedasADH1,sincemostpeptidemassesmatchedwereuniquetoADH1.MaizeADH1andADH2share87%sequencehomologyattheaminoacidlevel(Dennisetal.,1985).Finally,forspot8,twoofthepeptidemassesmea-suredcouldonlybematchedtoGLU1butnotGLU2,indicatingthatGLU1wastheisozymeobserved.Aprimary
sequencehomologyof88%issharedbetweenGLU1andGLU2(EsenandShahid,1992;BandaranayakeandEsen,1996).
TheseresultsdemonstratethatMScanbeusedsuccess-fullytoidentifyplantproteinsarrayedbytwo-dimensionalIEF-SDS-PAGEandtostudycomplexpatternsofgeneexpressionattheproteinlevel.
DISCUSSION
Low-oxygenstresshasbeenshowntotriggermanybasiccellularresponsesinplants.Theseincludeearlyevents,within1mintotensofminutes,ofchangesinfreecytosoliccalcium(Subbaiahetal.,1994),pH,metabolism(forreview,seeXiaandRoberts,1996),andtranslation(forreview,seeVaydaandWebster,1998).Changesingeneexpressionatthelevelsoftranscriptionandtranslationhavegenerallybeenstudiedinplantsstressedforseveralhours(forre-view,seeSachsetal.,1996;Drew,1997;VaydaandWeb-ster,1998).Toleranceoflow-oxygenstressvarieswithplantspecies,age,celltype,andacclimationconditions,andtheroottipisparticularlysensitive(Drew,1997).Inthisstudywefirstdefinedtheminimumtimeperiodrequiredforacclimationintheroottipasbeingwithinthefirst4hofhypoxia(Fig.1).Experimentswiththeinhibitorcycloheximidesupportamodelforacclimationinwhich
(Continuedonp.
315.)
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
304Changetal.PlantPhysiol.Vol.122,2000
TableI.Summaryofdatafor48maizeseedlingroottipproteinsfrom48two-dimensionalPAGEgelspots
DifferencefromCalculatedMass
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCovered
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic
SpotNo.MALDIMassa
PeptideSequencesMatchedb
Mr/kDpI
D
1
901.49995.541,083.621,186.601,258.601,274.591,325.571,340.651,421.731,437.721,502.801,874.012,209.012,877.412,893.41901.49995.531,083.611,186.601,212.611,258.601,274.591,309.581,325.571,340.661,421.741,437.731,502.791,874.012,144.012,209.002,356.262,877.442,893.47989.521,237.671,876.032,613.42
D0.44 0.010.000.000.00 0.01 0.01 0.02 0.01 0.010.000.00 0.06 0.07 0.070.00 0.02 0.010.000.040.00 0.01 0.01 0.01 0.010.010.00 0.010.00 0.04 0.07 0.01 0.04 0.010.010.040.020.07
(K)(I)(K)INPQAPLDK(V)(R)IIGVDLNPSR(F)(K)(T)(K)THPMNFLNER(T)
(K)THPMet-oxNFLNER(T)(K)SAESNMet-oxCDLLR(I)(R)KFGCTEFVNPK(D)(R)TDLPNVVELYMK(K)
(R)TDLPNVVELYMet-oxK(K)(K)FITHSVPFAEINK(A)
(K)(K)DHNKPVQEVLAEMTNGGVDR(S)
(K)AAVAWEAGKPLSIEEVEVAPPQAMEVR(V)
(K)AAVAWEAGKPLSIEEVEVAPPQAMet-oxEVR(V)1,004.54,1,212.66,1,290.60,2,010.00c(K)(I)(K)INPQAPLDK(V)(R)IIGVDLNPSR(F)(K)GTFFGNYKPR(T)(K)FGCTEFVNPK(D)(K)THPMNFLNER(T)
(K)THPMet-oxNFLNER(T)(K)SAESNMCDLLR(I)
(K)SAESNMet-oxCDLLR(I)(R)KFGCTEFVNPK(D)(R)TDLPNVVELYMK(K)
(R)TDLPNVVELYMet-oxK(K)(K)FITHSVPFAEINK(A)
(K)(K)ILFTSLCHTDVYFWEAK(G)
(K)DHNKPVQEVLAEMTNGGVDR(S)(K)VCVLSCGISTGLGASINVAKPPK(G)
(K)AAVAWEAGKPLSIEEVEVAPPQAMEVR(V)
(K)AAVAWEAGKPLSIEEVEVAPPQAMet-oxEVR(V)1,004.53,1290.60,1,783.87,2,010.02(K)ELLEWGSR(V)
(R)VSAANSRPPNPQ( )(R)ILHHTIGLPDFSQELR(C)
(R)ESKPVYLSISCNLPGLPHPTFSR(D)
881.28,1,188.65,1,589.85,1,742.96,2,051.09,2,308.82,2,820.40
( )AGFAGDDAPR(A)(R)AVFPSIVGRPR(H)(K)IWHHTFYNELR(V)
(K)SYELPDGQVITIGAER(F)(R)VAPEEHPVLLTEAPLNPK(A)
(R)TTGIVLDSGDGVSHTVPIYEGYALPHAILR(L)
873.03,891.00,945.57,1,066.10,1,132.55,1,443.71,1,459.71,1,531.77(K)EVAVFGCR(N)(K)YDTVHGQWK(H)(K)DAPMFVVGVNEK(E)
(K)DAPMet-oxFVVGVNEK(E)(R)AASFNIIPSSTGAAK(A)(R)VPTVDVSVVDLTVR(L)
ADH1Z.mays(X04049)42%
ConsistentwithWestern-blotresult
40.9/42
6.43/6.64
%d505.6
2
ADH1Z.mays(X04049)53%
ConsistentwithWestern-blotresult
40.9/416.43/6.64349.5
3
4
976.461,198.721,515.771,747.931,954.103,151.720.010.010.020.040.030.08
HomologoustoPDC2
O.sativa(U38199)9%
Inconclusivesearch
resultActinZ.mays(U60511)28%
64.3/645.90/6.18316.9
37.2/43.55.28/5.7195.5
5
951.481,133.541,305.671,321.661,434.781,498.870.010.000.020.010.020.02
GAPC3/4Z.mays
(U45856,U45857)
32%
36.4/35.57.02/6.75132.4
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
ProteinSynthesisandToleranceofAnoxia305
TableI.Continued
DifferencefromCalculatedMass
0.030.030.000.010.010.020.010.070.060.060.040.030.11
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCovered
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic
SpotNo.MALDIMass
PeptideSequencesMatched
Mr/kDpI
1,775.842,033.112,200.056
1,133.551,198.671,420.701,434.771,436.741,677.031,788.862,191.032,207.012,609.49
7
714.441,133.561,198.711,498.931,677.091,788.882,191.072,207.05807.41892.45972.41972.41984.50988.39988.391,078.571,094.531,126.541,830.94
0.010.020.050.080.120.080.080.07 0.03 0.020.02 0.02 0.020.00 0.030.00 0.04 0.04 0.01
8
9
901.491,083.631,186.621,212.591,258.621,274.621,309.611,325.601,340.691,421.761,437.751,502.831,874.051,219.721,318.701,809.101,825.10
0.000.010.020.010.020.020.020.020.020.030.020.030.030.010.000.030.04
10
(K)(K)FGIVEGLMet-oxTTVHAITATQK(T)(K)GILGYVEEDLVSTDFQGDSR(S)1,104.63,1,306.67,1,319.68(K)(K)AGIALNDHFIK(L)
(K)DAPMFVVGVNEDK(Y)(R)AASFNIIPSSTGAAK(A)
(K)DAPMet-oxFVVGVNEDK(Y)(K)TLLFGEKPVTVFGIR(N)(K)LVSWYDNEWGYSNR(V)
(K)GIMGYVEEDLVSTDFTGDSR(S)
(K)GIMet-oxGYVEEDLVSTDFTGDSR(S)(K)VIHDNFGIIEGLMTTVHAITATQK(T)
834.46,888.52,1,350.77,1,422.71,1,663.02,1,798.89,1,804.86,1,912.02,1,968.95,2,625.51(R)VVDLIR(H)
(K)YDTVHGQWK(H)(K)AGIALNDHFIK(L)
(R)VPTVDVSVVDLTVR(I)(K)TLLFGEKPVTVFGIR(N)(K)LVSWYDNEWGYSNR(V)
(K)GIMGYVEEDLVSTDFTGDSR(S)
(K)GIMet-oxGYVEEDLVSTDFTGDSR(S)1,663.05,1,800.91(R)LDYIQR(H)(R)FSISWPR(I)
(K)EMGMDAYR(F)(R)GDYPFSMR(S)(R)YGIVYVDR(N)
(K)Emet-oxGMDAYR(F)(R)GDYPFSMet-oxR(S)(R)IGLAFDVMGR(V)
(R)IGLAFDVMet-oxGR(V)(R)VPYGTSFLDK(Q)
(R)SWDINLGWFLEPVVR(G)
750.03,819.06,1,014.12,1,030.09,1,066.06,1,111.55,1,148.53,1,446.69,1,927.98(K)GQTPVFPR(I)(R)IIGVDLNPSR(F)(K)GTFFGNYKPR(T)(K)FGCTEFVNPK(D)(K)THPMNFLNER(T)
(K)THPMet-oxNFLNER(T)(K)SAESNMCDLLR(I)
(K)SAESNMet-oxCDLLR(I)(R)KFGCTEFVNPK(D)(R)TDLPNVVELYMK(K)
(R)TDLPNVVELYMet-oxK(K)(K)FITHSVPFAEINK(A)
(K)GSTVAVFGLGAVGLAAAEGAR(I)1,378.67
(R)LFGVTTLDVVR(A)(R)DDLFNINAGIVK(S)
(K)VAILGAAGGIGQPLSLLMK(L)
(K)VAILGAAGGIGQPLSLLMet-oxK(L)1,347.82,1,861.96,2,316.21,2,656.37
GAPC2Z.mays(U45858)35%
36.5/376.40/6.85113.6
GAPC2Z.mays(U45858)26%
36.5/376.40/6.65109.7
GLU1Z.mays(U44773)12%
64.2/606.23/6.12104.4
ADH1Z.mays(X04049)27%
40.9/436.43/6.5497.8
HomologoustoMDH
precursorM.sativa(AF020271)
12%
Inconclusivesearchresult
35.9/35.58.80/6.4397.4
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
306Changetal.PlantPhysiol.Vol.122,2000
TableI.Continued
DifferencefromCalculatedMass 0.010.010.000.000.000.030.010.010.040.02 0.040.03 0.010.000.000.000.00 0.05
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCoveredF1-ATPase, -subunit
Z.mays(M36087)32%
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic94.5
SpotNo.MALDIMass
PeptideSequencesMatched
Mr/kD59/55
pI6.01/5.63
11
11*
866.391,134.631,173.661,390.691,399.771,492.791,723.931,864.952,044.062,061.072,186.112,589.36702.41790.46839.511,052.541,312.762,197.98
12
675.32675.32719.38748.38765.42806.48900.45946.52978.52992.531,071.521,087.531,143.571,189.621,205.601,513.891,535.801,551.891,565.941,601.941,639.991,679.991,714.881,791.031,835.951,903.002,106.212,268.132,324.10951.481,133.551,305.671,321.661,434.771,498.871,775.832,033.09
0.00 0.02 0.010.020.030.030.00 0.020.020.000.000.020.000.020.000.010.040.030.040.090.090.030.040.100.070.070.100.010.060.000.010.020.010.010.020.030.02
13
(R)EGNDLYR(E)(K)TNHFLPIHR(E)(K)(G)
(K)AHGGFSVFAGVGER(T)(R)VGLTGLTVAEHFR(D)
(R)(Q)(R)LVLEVAQHLGENMet-oxVR(T)(R)DAEGQDVLLFIDNIFR(F)
(R)pyroGluISELGIYPAVDPLDSTSR(M)(R)QISELGIYPAVDPLDSTSR(M)(R)IPSAVGYQPTLATDLGGLQER(I)
(K)ITDEFTGAGAIGQVCQVIGAVVDVR(F)(K)SVIEVR(N)(K)(F)(K)AIGINVPR(S)(K)(K)VLQLETAAGAAIR(F)
(K)YSNSNIEIHTFNQSQYPR(I)965.543,1,274.63,1,520.79,1,661.82,2,438.33(K)TGAPCR(S)(R)APVEPY( )(K)ISGDSLK(D)
(R)pyro-GluIFDSR(G)(R)QIFDSR(G)(K)YNQLLR(I)(K)TYDLNFK(E)(K)TCNALLLK(V)(K)( )(K)ARQIFDSR(G)
(R)AGWGVMASHR(S)
(R)AGWGVMet-oxASHR(S)(K)DKTYDLNFK(E)(K)MGVEVYHNLK(S)
(K)Met-oxGVEVYHNLK(S)(K)LGANAILAVSLAVCK(A)(R)IEEELGDAAVYAGAK(F)(K)IPLYQHIANLAGNK(T)(K)AVSNVNNIIGPAIVGK(D)(K)VNQIGSVTESIEAVR(M)(K)VQIVGDDLLVTNPTR(V)(K)KIPLYQHIANLAGNK(T)
(K)VVIGMet-oxDVAASEFFGEK(D)(R)GAVPSGASTGIYEALELR(D)(R)(K)LAMet-oxQEFMet-oxILPTGASSFK(E)(K)EAMet-oxKMGVEVYHNLKSIIK(K)(R)SGETEDTFIADLSVGLSTGQIK(T)(K)YGQDATNVGDEGGFAPNIQENK(E)794.41,1,103.5,1,604.89,1,773.86(K)EVAVFGCR(N)(K)YDTVHGQWK(H)(K)DAPMFVVGVNEK(E)
(K)DAPMet-oxFVVGVNEK(E)(R)AASFNIIPSSTGAAK(A)(R)(L)(K)LVSWYDNEWGYSTR(V)
(K)FGIVEGLMet-oxTTVHAITATQK(T)
HomologoustoUDP-Glupyrophosphorylase
H.vulgare(X91347)13%
51.6/555.20/5.63
ENO1Z.mays(X55981)63%
48.1/525.20/5.8394.4
GAPC3/4Z.mays
(U45856,U45857)
32%
36.4/35.57.02/6.890.8
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
ProteinSynthesisandToleranceofAnoxia307
TableI.Continued
DifferencefromCalculatedMass 0.02
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCovered
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic
SpotNo.MALDIMass
PeptideSequencesMatched
Mr/kDpI
2,200.02
14
910.501,087.561,188.651,304.631,475.671,557.781,589.802,434.322,629.60 0.010.010.020.010.030.05 0.010.080.08
15
16
675.33675.33748.36765.39806.45959.55978.511,071.521,087.521,551.851,601.851,639.901,679.981,698.881,714.841,790.931,835.891,886.971,902.942,106.162,268.082,324.052,968.39901.491,083.621,186.601,258.601,274.591,309.591,325.571,340.671,421.731,437.731,502.791,874.002,144.022,208.96845.53888.411,065.561,081.54
0.010.000.000.000.000.000.010.000.01 0.010.000.000.020.040.010.000.010.030.010.05 0.050.010.090.000.000.000.00 0.010.00 0.020.01 0.010.00 0.01 0.02 0.04 0.100.010.010.010.00
17
(K)GILGYVEEDLVSTDFQGDSR(S)
1,045.57,1,104.61,1,149.54,1,173.82,1,319.68,1,987.10(R)VHILTDGR(D)
(K)GVDAQIASGGGR(M)(R)YLVSPPEIDR(T)(K)IYDGDGFNYIK(E)(K)ALEYADFDNFDR(V)
( )AcetN-GSSGFSWTLPDHPK(L)(K)RGWDAQVLGEAPYK(F)
(R)DVLDGSSIGFVETLENDLLELR(A)(R)IQILTSHTLQPVPVAIGGPGLH-PGVK(F)
841.06,1,482.72,2,312.20,2,807.41(K)TGAPCR(S)(R)APVEPY( )
(R)pyro-GluIFDSR(G)(R)(G)(K)YNQLLR(I)
( )Ac-AVTITWVK(A)(K)( )
(R)AGWGVMASHR(S)
(R)AGWGVMet-oxASHR(S)(K)IPLYQHIANLAGNK(T)(K)VNQIGSVTESIEAVR(M)(K)VQIVGDDLLVTNPTR(V)(K)KIPLYQHIANLAGNK(T)(K)VVIGMDVAASEFFGEK(D)
(K)VVIGMet-oxDVAASEFFGEK(D)(R)GAVPSGASTGIYEALELR(D)(R)GNPTVEVDVGLSDGSYAR(G)(K)LAMQEFMet-oxILPTGASSFK(E)
(K)LAMet-oxQEFMet-oxILPTGASSFK(E)(K)EAMet-oxKMGVEVYHNLKSIIK(K)(R)SGETEDTFIADLSVGLSTGQIK(T)(K)YGQDATNVGDEGGFAPNIQENK(E)(K)SFVSEYPIESIEDPFDQDDWSTYAK(L)(K)GQTPVFPR(I)(R)IIGVDLNPSR(F)(K)GTFFGNYKPR(T)(K)THPMNFLNER(T)
(K)THPMet-oxNFLNER(T)(K)SAESNMCDLLR(I)
(K)SAESNMet-oxCDLLR(I)(R)KFGCTEFVNPK(D)(R)TDLPNVVELYMK(K)
(R)TDLPNVVELYMet-oxK(K)(K)FITHSVPFAEINK(A)
(K)GSTVAVFGLGAVGLAAAEGAR(I)(K)ILFTSLCHTDVYFWEAK(G)
(K)DHNKPVQEVLAEMTNGGVDR(S)1,987.08,1,993.98,2,010.02(K)SLLIPFR(E)(R)SHSCDLR(M)
(R)MGAFTLGVNR(V)
(R)Met-oxGAFTLGVNR(V)
2,3-Bisphosphoglycerate-independentphosphoglyceratemutase
Z.mays(M80912)23%
60.6/655.29/5.7687.0
ENO1Z.mays(X55981)60%
48.1/525.20/5.6885.6
ADH1Z.mays(X04049)37%
40.9/426.43/6.5467.3
Gludehydrogenase
Z.mays(D49475)40%
44.0/416.09/6.4265.6
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
308Changetal.PlantPhysiol.Vol.122,2000
TableI.Continued
DifferencefromCalculatedMass0.000.000.000.01 0.010.01 0.030.00
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCovered
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic
SpotNo.MALDIMass
PeptideSequencesMatched
Mr/kDpI
1,161.621,300.621,555.851,760.862,214.152,226.102,336.172,412.13
18
1,219.721,318.701,809.101,825.10873.48877.45877.45974.541,001.561,017.521,346.751,362.741,373.811,568.771,650.021,693.831,821.932,000.172,016.162,379.202,466.272,619.382,635.39
0.010.000.030.040.00 0.01 0.010.010.000.000.010.010.070.020.030.030.030.030.030.050.060.050.06
19
20
910.50915.391,083.671,087.551,167.521,188.641,304.621,323.681,387.661,403.651,433.711,481.711,557.741,589.832,311.172,420.242,434.252,629.542,721.27 0.01 0.02 0.010.00 0.010.010.010.050.00 0.010.000.010.010.020.000.070.020.020.04
(K)TAVANIPYGGAK(G)(K)DDGTLASYVGFR(V)(R)GVLFATEALLAEHGK(G)(K)GGIGCSPGDLSISELER(L)
(K)FHGYSPAVVTGKPVDLGGSLGR(D)(K)YIIEAANHPTDPEADEILSK(K)
(R)FVIQGFGNVGSWAAQLISEAGGK(V)(R)YHHEVDPDEVNALAQLMet-oxTWK(T)970.54,1,129.79,1,262.66,1,312.74,1,655.83,2,284.19(R)LFGVTTLDVVR(A)(R)DDLFNINAGIVK(S)
(K)VAILGAAGGIGQPLSLLMK(L)
(K)VAILGAAGGIGQPLSLLMet-oxK(L)1,347.82,1,861.96,2,316.21,2,656.37(R)ALGQISER(L)(K)NVTCLTR(L)(R)KEGMERK(D)(K)TSTGEKPVR(E)(R)LNVQVSDVK(N)(K)EFAPSIPEK(N)
(K)MELVDAAFPLLK(G)
(K)Met-oxELVDAAFPLLK(G)(K)(K)SQASALEAHAAPNCK(V)(K)VLVVANPANTNALILK(E)(K)(R)KFSSALSAASSACDHIR(D)
(R)VLVTGAAGQIGYALVPMIAR(G)
(R)VLVTGAAGQIGYALVPMet-oxIAR(G)(R)ELVSDDEWLNGEFITTVQQR(G)(K)NVIIWGNHSSSQYPDVNHATVK(T)
(K)GVVATTDVVEACTGVNVAVMVGGFPR(K)(K)GVVATTDVVEACTGVNVAVMet-oxVGGFPR(K)
886.51,1,277.71,2,032.14(R)VHILTDGR(D)(R)MYVTMDR(Y)(R)LDQLQLLLK(G)
(K)GVDAQIASGGGR(M)(R)YENDWDVVK(R)(R)YLVSPPEIDR(T)(K)IYDGDGFNYIK(E)(R)YENDWDVVKR(G)(R)YAGMLQYDGELK(L)
(R)YAGMet-oxLQYDGELK(L)(R)GWDAQVLGEAPYK(F)(K)FGHVTFFWNGNR(S)
( )AcetN-GSSGFSWTLPDHPK(L)(K)RGWDAQVLGEAPYK(F)
(K)ESFESGTLHLIGLLSDGGVHSR(L)(R)MVMLAKALEYADNFDRVR(V)(R)DVLDGSSIGFVETLENDLLELR(A)
(R)IQILTSHTLQPVPVAIGGPGLHPGVK(F)
(K)AHGTAVGLPSDDDMGNSEVGHNALGAGR(I)
HomologoustoMDHprecursor
M.sativa(AF020271)
12%
Inconclusivesearchresult
CytoplasmicMDH
Z.mays(AF007581)
39%
35.9/36.58.80/6.4465.3
35.6/36.55.93/6.1460.8
2,3-Bisphosphoglycerate-independentphosphoglyceratemutase
Z.mays(M80912)42%
60.6/645.29/5.8357.2
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
ProteinSynthesisandToleranceofAnoxia309
TableI.Continued
DifferencefromCalculatedMass
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCovered
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic
SpotNo.MALDIMass
PeptideSequencesMatched
Mr/kDpI
21
993.481,510.781,797.860.03 0.07 0.02
794.36,1,101.55,1,202.65,1,277.71,1,280.62,1,458.68,1,474.67,1,742.96,1,794.83,1,837.08,1,940.94,2,230.15,2,297.16,2,339.20
(R)HAFGDQYR(A)
(R)LVPGWTKPICIGR(H)
(K)GGETSTNSIASIFAWTR(G)1,149.58,1,378.57,2,108.01
22
622.28778.42914.58945.421,009.531,025.521,073.521,090.641,279.571,292.681,497.691,513.711,578.861,739.821,821.002,298.282,453.28 0.010.000.010.010.020.010.010.01 0.020.02 0.03 0.010.02 0.020.090.000.03
23
868.46888.46934.51954.441,300.601,388.751,950.932,234.910.000.010.000.000.010.01 0.01 0.05
24
790.45949.551,052.541,300.721,312.781,358.782,198.06 0.010.010.01 0.020.020.020.04
25
734.461,041.561,096.591,096.590.000.010.010.04
(R)NFEGR(V)(R)GTFANIR(I)(R)ILLESAIR(N)(K)DFNSYGSR(R)(K)LSVFDAAMR(Y)
(K)LSVFDAAMet-oxR(Y)(R)KDFNSYGSR(R)(R)VDKLPYSIR(I)
(R)DAMNKLGSDSNK(I)(K)FYSLPALNDPR(V)(R)SDETVAMIEAYLR(A)
(R)SDETVAMet-oxIEAYLR(A)(R)SNLVGMet-oxGIIPLCFK(S)(R)ATYESITKGNPMWNK(L)(R)RGNDEIMARGTFANIR(I)
(K)INPLVPVDLVIDHSVQVDVAR(S)(R)FDTEVELAYFNHGGILPYVIR(N)713.36,727.35,734.41,896.47,1,115.59,1,141.69,1,202.61,1,263.60,1,306.59,1,322.61,1,381.70,1,527.74,1,723.84,1,758.95,1,804.97,1,962.98,2,015.10,2,031.11,2,254.07,2,834.44(R)LFADFQK(R)(R)EISHQFK(V)
(K)VNVGVGAYR(D)(K)Nmet-oxGLYGQR(A)(K)TFTYYHPESR(G)
(R)IAAVQALSGTGACR(L)
(R)IFLEDGHQIGCAQSYAK(N)
(K)HFPFFDMet-oxAYQGFASGDPER(D)943.54,1,257.61,1,339.69,1,440.69,1,456.70,1,472.73,1,874.94(K)VANFLAR(F)(K)AGFISLVSR(Y)(K)GGTLISYEGR(V)(K)SIPSIVELDSLK(V)(K)VLQLETAAGAAIR(F)(R)IVTEDFLPLPSK(G)
(K)YSNSNIEIHTFNQSQYPR(I)
1,139.72,1,146.61,1,271.66,1,398.73,1,655.96,1,790.98,1,965.06(K)LLSVFR(E)
( )AcetN-ASHIVGYPR(M)(K)YLFAGVVDGR(N)(K)KISEDDYVK(A)
Homologoustoisocitratedehydrogenase
(NADP )N.tabacum(X77944)9%
InconclusivesearchresultHomologoustoaconitase
Arabidopsis(AC007170)
21%
46.7/446.06/6.4257.2
98.2/905.79/6.3454.6
HomologoustoAspaminotransferase
O.sativa(D67043)21%
47.5/407.64/6.5653.6
HomologoustoUDP-Glupyrophosphorylase
H.vulgare(X91347)17%
51.6/545.20/5.8352.7
HomologoustoMetsynthase
C.roseus(X83499)12%
84.9/786.10/6.4450.3
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
310Changetal.PlantPhysiol.Vol.122,2000
TableI.Continued
DifferencefromCalculatedMass
0.000.010.000.020.10
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCovered
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic
SpotNo.MALDIMass
PeptideSequencesMatched
Mr/kDpI
1,130.581,130.581,658.831,991.022,296.33
26
684.40734.45958.531,041.571,096.601,096.601,470.801,470.801,658.861,699.951,807.021,807.021,864.931,991.062,296.31664.33734.40910.51931.41947.391,083.681,188.651,304.651,403.691,433.741,481.74
0.01 0.01 0.020.020.020.040.050.030.040.06 0.030.06 0.060.050.09 0.01 0.020.000.01 0.010.000.020.030.030.030.03
27
( )MASHIVGYPR(M)(R)IPSTEEIADR(I)
(K)YGAGIGPGVYDIHSPR(I)(K)LQEELDIDVLVHGEPER(N)
(K)LVVSTSCSLLHTAVDLVNEPK(L)
1,199.61,1,555.73,1,813.93,1,864.87,2,282.20,2,424.41(R)EGLPLR(K)(K)LLSVFR(E)
(R)GAKTLDLIK(G)
( )AcetN-ASHIVGYPR(M)(K)YLFAGVVDGR(N)(K)KISEDDYVK(A)
( )AcetN-ASHIVGYPRMet-oxGPK(R)(R)FETCYQIALAIK(D)
(K)YGAGIGPGVYDIHSPR(I)( )MASHIVGYPRMGPKR(E)(K)ILTALKGVTGFGFDLVR(G)
(K)GMet-oxLTGPVTILNWSFVR(N)(R)KYAEVKPALENMet-oxVSAAK(L)(K)LQEELDIDVLVHGEPER(N)
(K)LVVSTSCSLLHTAVDLVNEPK(L)
1,583.79,1,814.02,1,994.03,2,282.18(K)FDQVR(V)(R)IFAQGAK(L)(R)VHILTDGR(D)
(R)MYVTMet-oxDR(Y)
(R)Met-oxYVTMet-oxDR(Y)(R)LDQLQLLLK(G)(R)(T)(K)IYDGDGFNYIK(E)
(R)YAGMet-oxLQYDGELK(L)(R)GWDAQVLGEAPYK(F)(K)FGHVTFFWNGNR(S)
855.04,861.06,864.48,973.52,1,030.11,1,046.60,1,066.08,1,101.57,1,202.64,1,280.65,1,326.65,1,474.70,1,743.00,2,338.26,2,420.33,2,858.71(R)(Q)(K)SIVASGLAR(R)(K)(D)(K)TQVTVEYR(N)
(R)(K)TQVTVEYRNESGAR(V)(R)DDPDFTWEVVKPLK(W)(K)EHVIKPVIPEQYLDEK(T)
(K)IIIDTYGGWGAHGGGAFSGK(D)(K)ENFDFRPGMIIINLDLK(K)
(K)VLVNIEQQSPDIAQGVHGHFTK(R)(R)VHTVLISTQHDETVTNDEIAADLK(E)(K)TAAYGHFGRDDPDFTWEVVKPLK(W)832.31,1,141.63,1,414.72,1,874.93,2,206.08
(K)LAANAFLAQR(I)(K)AADLTYWESAAR(M)(K)FLNASVGFGGSCFQK(D)(K)IFDNMQKPAFVFDGR(N)
HomologoustoMetsynthase
C.roseus(X83499)21%
84.9/796.10/6.448.5
2,3-Bisphosphoglycerate-independentphosphoglyceratemutase
Z.maysM8091216%
60.6/635.29/648.2
2829
723.37873.51979.49995.531,453.801,609.761,688.901,937.051,963.992,035.102,417.352,649.442,649.440.000.000.010.010.04 0.030.050.010.030.030.090.110.13
Notidentified
HomologoustoS-adenosylMet
synthetaseO.sativa(Z26867)42%
N.A./3443.2/46N.A./5.745.74/6.0547.746.9
30
1,074.631,353.661,632.781,784.930.020.020.000.05HomologoustoUDP-Gldehydrogenase
G.max(U53418)10%
52.9/535.74/6.346.6
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
ProteinSynthesisandToleranceofAnoxia311
TableI.Continued
DifferencefromCalculatedMass
0.03
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCoveredInconclusivesearchresult
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic
SpotNo.MALDIMass
PeptideSequencesMatched
Mr/kDpI
1,800.90
31
1,228.631,278.621,294.661,294.661,313.631,329.621,412.761,473.701,659.911,659.911,675.761,680.862,658.320.00 0.01 0.030.040.010.000.010.020.020.010.030.030.05
32
993.461,033.591,117.591,170.541,355.701,510.881,797.902,122.020.010.010.010.020.010.020.020.02
33
1,219.731,347.811,825.80
0.020.010.70
(K)IFDNMet-oxQKPAFVFDGR(N)
908.49,1,365.68,1,386.69,1,398.67,1,739.95,2,004.05,3,050.56(R)VEIIANDQGNR(T)(R)MVNHFVQEFK(R)(K)EIAEAYLGSTIK(N)
(R)Met-oxVNHFVQEFK(R)(R)FEELNMDLFR(K)
(R)FEELNMet-oxDLFR(K)(K)SSVHDVVLVGGSTR(I)(R)TTPSYVGFTDTER(L)
(R)QATKDAGVIAGLNVMet-oxR(I)(R)IINEPTAAAIAYGLDK(K)(K)ATAGDTHLGGEDFDNR(M)(K)NAVVTVPAYFNDSQR(Q)
(K)EQVFSTYSDNQPGVLIQVYEGER(A)1,197.69,1,390.63,1,426.78,1,437.75,1,487.72
(R)HAFGDQYR(A)(R)NILNGTVFR(E)(K)YFDLGLPHR(D)(K)SEGGYVWACK(N)(K)TIEAEAAHGTVTR(H)(R)LVPGWTKPICIGR(H)
(K)GGETSTNSIASIFAWTR(G)(R)DHYLNTEEFIDAVADELK(A)
855.06,1,034.58,1,319.78,1,378.68,1,484.72,1,495.84,1,607.82(K)(V)(K)(K)Heatshockprotein70
Z.mays(P11143)24%
70.6/725.22/5.6644.3
Homologoustoisocitratedehydrogenase
(NADP)N.tabacum(X77944)23%
46.7/476.06/6.5643.4
1389.990.30(K)1,318.710.01(R)34
744.39744.39890.521,039.671,119.501,401.711,424.632,116.052,132.012,257.082,674.262,931.340.000.020.010.01 0.010.02 0.05 0.01 0.05 0.12 0.12 0.15
(R)FFAFGR(V)(R)DDPKNR(S)(K)FSVSPVVR(V)(R)IRPVLTVNK(M)(K)EGALAEENMR(G)(R)GFVQFCYEPIK(Q)(R)LWGENFFDPATK(K)
(R)GHVFEEMQRPGTPLYNIK(A)
(R)GHVFEEMet-oxQRPGTPLYNIK(A)(K)STLTDSLVAAAGIIAQEVAGDVR(M)(R)ITDGALVVVDCIEGVCVQTETVLR(Q)(R)KGNDYLINLIDSPGHVDFSSEVTAALR(I)865.45,955.53,1,484.73,1,797.91,2,357.15
HomologoustoMDH
B.napus(X89451)
HomologoustoMDHprecursor
M.sativa(AF020271)
HomologoustoMDH
C.reinhardtii(U40212)
HomologoustoMDHglyoxysomal
precursorG.max(P37228)
Homologoustoelongationfactor2
B.vulgaris(Z97178)15%
ConsistentwithWestern-blotresult
35.7/35.59.18/6.6439.9
35.8/35.58.00/6.64
38.5/35.58.77/6.64
37.3/35.56.99/6.64
93.8/905.93/6.6339.4
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
312Changetal.PlantPhysiol.Vol.122,2000
TableI.Continued
DifferencefromCalculatedMass 0.010.000.000.000.010.040.040.040.020.070.05 0.030.060.06 0.050.070.060.070.09
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCoveredHomologoustoMetsynthase
C.roseus(X83499)23%
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic36.8
SpotNo.MALDIMass
PeptideSequencesMatched
Mr/kD84.9/77
pI6.10/6.17
35
629.29684.40734.46812.501,021.561,041.581,096.621,470.791,470.791,658.901,791.021,807.021,807.021,848.941,848.941,977.051,991.072,310.372,438.49
36
796.40976.581,053.591,104.671,114.701,156.621,366.611,461.891,553.791,570.791,579.871,587.761,800.821,827.992,059.152,075.122,911.53 0.010.020.020.010.010.030.010.040.060.030.030.050.070.050.060.030.04
(R)NDQPR(F)(R)EGLPLR(K)(K)(R)EGLPLRK(A)(K)SWLAFAAQK(V)
( )AcetN-ASHIVGYPR(M)(K)YLFAGVVDGR(N)
( )AcetN-ASHIVGYPRMet-oxGPK(R)(R)FETCYQIALAIK(D)
(K)(K)GMLTGPVTILNWSFVR(N)(K)ILTALKGVTGFGFDLVR(G)
(K)GMet-oxLTGPVTILNWSFVR(N)(K)AEHAFYLDWAVHSFR(I)(R)KYAEVKPALENMVSAAK(L)(R)KAEHAFYLDWAVHSFR(I)(K)LQEELDIDVLVHGEPER(N)(K)LNLPVLPTTTIGSFPQTLELR(R)(K)KLNLPVLPTTTIGSFPQTLELR(R)
1,100.5817,1,293.66,1,326.64,1,517.86,1,555.76,1,745.03,1,830.03,1,957.08,2,087.98,2,103.98,2,124.11,2,178.13,2,268.19
(R)VFDMet-oxLR(R)(K)GVAINFVTR(D)
(R)pyroGluSLRPDNIK(M)(R)KGVAINFVTR(D)(R)VLITTDLLAR(G)(K)VHACVGGTSVR(E)
( )AcetN-AGMet-oxAPEGSQFDAK(H)(R)(V)(K)pyroGluFYVNVDKEDWK(L)(K)QFYVNVDKEDWK(L)(K)DQIYDIFQLLPSK(I)
(K)Met-oxFVLDEADEMet-oxLSR(G)(R)DHTVSATHGDMet-oxDQNTR(D)(R)(G)(K)IQVGVFSATMPPEALEITR(K)
(K)IQVGVFSATMet-oxPPEALEITR(K)
(R)GIDVQQVSLVINYDLPTQPENYLHR(I)1,563.87,2,239.10,2,807.32
(R)VHILTDGR(D)(R)LDQLQLLLK(G)(R)YLVSPPEIDR(T)(K)IYDGDGFNYIK(E)
(R)YAGMet-oxLQYDGELK(L)(R)GWDAQVLGEAPYK(F)(K)RGWDAQVLGEAPYK(F)
(R)MVMLAKALEYADFDNFDRVR(V)861.07,1,030.11,1,066.07,1,101.58,1,165.57,1,280.64,1,320.60,1,365.65,1,475.67,1,482.71(R)QIFDSR(G)(K)YNQLLR(I)
(R)IEEELGAIAVYAGAK(F)(R)IPLYQHIANLAGNK(Q)
Translationalinitiationfactor4A
Z.mays(U73459)56%
ConsistentwithWestern-blotresult
47.0/495.38/5.7535.7
3738
910.491,083.671,188.641,304.621,403.651,433.691,589.842,420.27 0.020.000.010.000.00 0.010.030.10
Notidentified
2,3-Bisphosphoglycerate-independentphosphoglyceratemutase
Z.mays(M80912)15%
N.A./6260.6/63N.A./6.25.29/5.9135.434.6
39
765.38806.451,533.871,551.87 0.010.000.050.01ENO2Z.mays(U17973)36%
48.1/535.71/6.0334.5
Patterns of Protein Synthesis and Tolerance of Anoxia in Root
ProteinSynthesisandToleranceofAnoxia313
TableI.Continued
DifferencefromCalculatedMass
0.060.060.060.030.130.100.15
ProteinIdentified
Species
(GenBankAccessionNo.)%ofSequenceCovered
Theoretical/Observed
SpotIntensityRatioHypoxicNormoxic
SpotNo.MALDIMass
PeptideSequencesMatched
Mr/kDpI
1,573.901,790.991,984.972,252.162,557.412,573.382,986.53
40
993.461,007.591,033.601,117.591,147.521,170.511,355.711,510.891,797.932,122.050.000.030.020.01 0.02 0.010.020.030.050.06
41
633.32678.36847.41939.46975.531,064.551,196.751,251.581,267.601,288.701,389.721,433.791,549.811,608.851,736.951,906.082,093.052,109.052,521.450.000.010.000.000.030.010.01 0.010.020.010.010.020.020.010.030.040.030.040.03
42
839.44989.551,152.651,152.651,244.661,283.741,501.731,636.832,124.112,140.082,292.152,292.153,019.74
0.000.010.050.020.020.020.030.070.080.060.02 0.050.09 0.010.01
43
734.451,021.56
(K)VNQIGSVTESIEAVK(M)
(R)AAVPSGASTGVYEALELR(D)(R)GNPTVEVDVFCSDGTFAR(A)(R)SGETEDTFIADLAVGLSTGQIK(T)(K)MTEEIGEQVQIVGDDLLVTNPTR(V)
(K)Met-oxTEEIGEQVQIVGDDLLVTNPTR(V)(K)SFVSEYPIVSIEDPFDQDDWVHYAK(M)742.18,877.05,893.02,1,658.89,1,716.91,1,830.03,2,268.2,2,384.06,2,807.44(R)HAFGDQYR(A)(K)WPLYLSTK(N)(R)NILNGTVFR(E)(K)YFDLGLPHR(D)(K)CATITPDEAR(V)(K)SEGGYVWACK(N)(K)TIEAEAAHGTVTR(H)(R)LVPGWTKPICIGR(H)
(K)GGETSTNSIASIFAWTR(G)(R)DHYLNTEEFIDAVADELK(A)
729.43,1,151.61,1,319.77,1,378.70,1,484.72,1,495.86,1,607.84,1,710.74(K)SIEER(A)(K)FGVEAR(A)(K)APGFGENR(K)(K)AIFTEGCK(S)(K)APGFGENRK(A)(K)LQTANFDQK(I)(K)IGVQIIQNALK(T)
(K)SVAAGMet-oxNAMDLR(R)
(K)SVAAGMet-oxNAMet-oxDLR(R)(R)(R)(A)
(R)GISMet-oxAVDAVVTNLK(S)(K)ELDKLQTANFDQK(I)(K)CELEDPLILIHDKK(V)(K)CELDDPLILIHEKK(I)
(K)TPVHTIASNAGVEGAVVVGK(L)(R)MISTSEEIAQVGTISANGER(E)
(R)Met-oxISTSEEIAQVGTISANGER(E)(K)QRPLLIVAEDVESEALGTLIINK(L)925.50,1,586.74,1,679.84,2,046.87,2,125.05(R)(E)(K)ASNPFVNLK(K)(K)LGTIDPYFVK(L)(K)LGTIDPYFVK(L)(K)CYIYLSGQVK(E)(K)DELDIVIPTIR(N)(K)(K)YIYTIDDDCFVAK(D)
(R)DLIGPAMet-oxYFGLMGDGQPIGR(Y)(R)DLIGPAMet-oxYFGLMet-oxGDGQPIGR(Y)
(K)NLLSPSTPFFFNTLYDPYR(E)(K)GIFWQEDIIPFFQNVTIPK(D)
( )Acet-AGTVTVPGSSTPSTPLLKDELDIVIPTIR(N)2,077.79,3,057.74(K)LLSVFR(E)
(K)SWLAFAAQK(V)
Homologoustoisocitrate
dehydrogenase(NADP )N.tabacum(X77944)27%
466.5631.8
Mitochondrialchaperonin60
Z.mays(L21006)35%
60.9/615.67/5.7329.4
Golgiassociatedproteinse-wap41
Z.mays(U89897)44%
41.2/38.55.75/6.0626.5
HomologoustoMetsynthase
84.9/776.10/6.1424.5
正在阅读:
Patterns of Protein Synthesis and Tolerance of Anoxia in Roo04-21
IPS现浇混凝土剪力墙自保温体系施工工法 - 图文04-02
端午节安全主题班会策划书(精选5篇)04-01
肺栓塞诊疗(2)-临床表现及检查方法04-11
聚酰胺蜡防沉浆的化学结构 - 图文04-11
当我面对寒风凛冽的时候作文800字06-21
全国血吸虫病监测方案04-11
【公安厅警卫处】福建省公安厅警卫局2013年接收普通高校应届毕业生简章08-20
培养小学生几何直观能力的思考01-23
- 1Impact of regulatory variation from RNA to protein
- 2Titanium Dioxide Nanomaterials Synthesis, Properties, Modifications
- 3PatMan A Visual Database System to Manipulate Path Patterns
- 4Visualization of Navigation Patterns on a Web Site Using Model Based Clustering
- 5Greener protocol for one pot synthesis of coumarin styryl dyes
- 6Synthesis of ZnO nanoparticles from microemulsions in a flow type microreactor
- 71-A novel synthesis of graphene by dichromate oxidation
- 8Techniques for High Performance Digital Frequency Synthesis and Phase Control
- 9PatMan A Visual Database System to Manipulate Path Patterns and Data in Hierarchical Catalo
- 10QTL mapping of drought-tolerance-related traits of wheat see
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Synthesis
- Tolerance
- Patterns
- Protein
- Anoxia
- Roo
- 1_物体打击事故应急预案
- 生物:2.3《遗传信息携带者——核酸》课件(新人教版必修1)
- 平山乡初级中学第七周教学反思
- 课题1来到嘉兴南湖
- 大唐全能值班员题库-简答题
- 《中医基础理论》重点总结
- EC10系列可编程控制器用户手册
- 学校团总支工作计划.09-10下doc
- 《建筑构造与识图》
- 第十周班会主题:女生安全
- 六级听力易出错词汇辨析
- 教案1:photoshop_cs5基础知识
- 2010年真题 案例分析 (安装计量).doc
- 《宏观经济学》第十二章课后习题参考答案
- 电厂双曲线冷却塔的清洗
- 河南省优秀教师评选条件
- 中国不锈钢腐蚀手册
- 2022年中国智能电子控制系统市场现状调研预测分析报告目录
- 《云南的歌会》课件_正式.ppt11.定稿
- 认知实习报告格式和内容要求