一元二次方程的解法

更新时间:2024-04-18 12:44:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一元二次方程的解法 一元二次方程的解法

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基

础,应引起同学们的重视。

一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2

的整式方程。

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解

法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例题精讲:

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的

方程,其解为x=m± .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以

此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2)解: 9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解为x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2

方程左边成为一个完全平方式:(x+ )2=

当b2-4ac≥0时,x+ =±

∴x=(这就是求根公式)

例2.用配方法解方程 3x2-4x-2=0

解:将常数项移到方程右边 3x2-4x=2

将二次项系数化为1:x2-x=

方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2

配方:(x-)2=

直接开平方得:x-=±

∴x=

∴原方程的解为x1=,x2= .

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项

系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x2-8x=-5

解:将方程化为一般形式:2x2-8x+5=0

∴a=2, b=-8, c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= = =

∴原方程的解为x1=,x2= .

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让

两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个

根。这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

(1)解:(x+3)(x-6)=-8 化简整理得

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

小结:

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般

形式,同时应使二次项系数化为正数。

直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式

法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程

是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方

法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

例5.用适当的方法解下列方程。

(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0

(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0

分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差

公式分解因式,化成两个一次因式的乘积。

(2)可用十字相乘法将方程左边因式分解。

(3)化成一般形式后利用公式法解。

(4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。

(1)解:4(x+2)2-9(x-3)2=0

[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0

(5x-5)(-x+13)=0

5x-5=0或-x+13=0

∴x1=1,x2=13

(2)解: x2+(2- )x+ -3=0

[x-(-3)](x-1)=0

x-(-3)=0或x-1=0

∴x1=-3,x2=1

(3)解:x2-2 x=-

x2-2 x+ =0 (先化成一般形式)

△=(-2 )2-4 ×=12-8=4>0

∴x=

∴x1=,x2=

(4)解:4x2-4mx-10x+m2+5m+6=0

4x2-2(2m+5)x+(m+2)(m+3)=0

[2x-(m+2)][2x-(m+3)]=0

2x-(m+2)=0或2x-(m+3)=0

∴x1= ,x2=

例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (选学)

分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我

们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方

法)

解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0

即 (5x-5)(2x-3)=0

∴5(x-1)(2x-3)=0

(x-1)(2x-3)=0

∴x-1=0或2x-3=0

∴x1=1,x2=是原方程的解。

例7.用配方法解关于x的一元二次方程x2+px+q=0

解:x2+px+q=0可变形为

x2+px=-q (常数项移到方程右边)

x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)

(x+)2= (配方)

当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)

∴x=- ±=

∴x1= ,x2=

当p2-4q<0时,<0此时原方程无实根。

说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母

取值的要求,必要时进行分类讨论。

练习:

(一)用适当的方法解下列方程:

1. 6x2-x-2=0 2. (x+5)(x-5)=3

3. x2-x=0 4. x2-4x+4=0

5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0

(二)解下列关于x的方程

1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0

练习参考答案:

(一)1.x1=- ,x2= 2.x1=2,x2=-2

3.x1=0,x2= 4.x1=x2=2 5.x1=x2=

6.解:(把2x+3看作一个整体,将方程左边分解因式)

[(2x+3)+6][(2x+3)-1]=0

即 (2x+9)(2x+2)=0

∴2x+9=0或2x+2=0

∴x1=-,x2=-1是原方程的解。

(二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a· a=0

[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0

∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0

∴x1= +b,x2= -b是 ∴x1= a,x2=a是

原方程的解。 原方程的解。

测试

选择题

1.方程x(x-5)=5(x-5)的根是( )

A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5

2.多项式a2+4a-10的值等于11,则a的值为( )。

A、3或7 B、-3或7 C、3或-7 D、-3或-7

3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个

根是( )。

A、0 B、1 C、-1 D、±1

4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。

A、b≠0且c=0 B、b=0且c≠0

C、b=0且c=0 D、c=0

5. 方程x2-3x=10的两个根是( )。

A、-2,5 B、2,-5 C、2,5 D、-2,-5

6. 方程x2-3x+3=0的解是( )。

A、 B、 C、 D、无实根

7. 方程2x2-0.15=0的解是( )。

A、x= B、x=-

C、x1=0.27, x2=-0.27 D、x1=, x2=-

8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。

A、(x-)2= B、(x- )2=-

C、(x- )2= D、以上答案都不对

9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。

A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1

答案与解析

答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D

解析:

1.分析:移项得:(x-5)2=0,则x1=x2=5,

注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。

2.分析:依题意得:a2+4a-10=11, 解得 a=3或a=-7.

3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax2+bx+c=a+b+c,意味着当x=1

时,方程成立,则必有根为x=1。

4.分析:一元二次方程 ax2+bx+c=0若有一个根为零,

则ax2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.

另外,还可以将x=0代入,得c=0,更简单!

5.分析:原方程变为 x2-3x-10=0,

则(x-5)(x+2)=0

x-5=0 或x+2=0

x1=5, x2=-2.

6.分析:Δ=9-4×3=-3<0,则原方程无实根。

7.分析:2x2=0.15

x2=

x=±

注意根式的化简,并注意直接开平方时,不要丢根。

8.分析:两边乘以3得:x2-3x-12=0,然后按照一次项系数配方,x2-3x+(-)2=12+(- )2,

整理为:(x-)2=

方程可以利用等式性质变形,并且 x2-bx配方时,配方项为一次项系数-b的一半的平方。

9.分析:x2-2x=m, 则 x2-2x+1=m+1

则(x-1)2=m+1.

中考解析

考题评析

1.(甘肃省)方程的根是( )

(A) (B) (C) 或 (D) 或

评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确

选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元

二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为

C。

另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。

2.(吉林省)一元二次方程的根是__________。

评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。

3.(辽宁省)方程的根为( )

(A)0 (B)–1 (C)0,–1 (D)0,1

评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、

B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。

4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。

评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。

5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )

(A)x=3+2 (B)x=3-2

(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2

评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方

根,即可选出答案。

课外拓展

一元二次方程

一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二

次的整式方程。 一般形式为

ax2+bx+c=0, (a≠0)

在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它

的倒数之和等于 一个已给数,即求出这样的x与,使

x=1, x+ =b,

x2-bx+1=0,

他们做出( )2;再做出 ,然后得出解答:+ 及 - 。可见巴比伦人已知道一元二次

方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。

埃及的纸草文书中也涉及到最简单的二次方程,例如:ax2=b。

在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。

希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中

之一。

公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x2+px+q=0的一个求根公

式。

在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种

不同的形式,令 a、b、c为正数,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等。把二次方程分成

不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一 次

给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的

1、一元二次方程的求根公式

将一元二次方程ax+bx+c=0(a≠0)进行配方,当b-4ac≥0时的根为

2

2

该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.

说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax+bx+c=0(a≠0);

2

(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;

(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.

2、一元二次方程的根的判别式

(1)当b-4ac>0时,方程有两个不相等的实数根

2;

(2)当b-4ac=0时,方程有两个相等的实数根

2;

(3)当b-4ac<0时,方程没有实数根.

2

二、重难点知识

1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“多余的了。

”类型的题目,如果用“公式法”就显得

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程

;用因式

分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为

,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有

实根,就一定可以用求根公式求出根,但因为要代入所以对某些特殊方程,解法又显得复杂了。

(≥0)求值,

2、在运用b-4ac的符号判断方程的根的情况时,应注意以下三点:

2

(1)b-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b-4ac;

2

2

(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;

(3)根的判别式是指b-4ac,而不是

2

三、典型例题讲解 例1、解下列方程:

(1);

(2);

(3).

分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

解:(1)因为a=1,,c=10

所以

所以

(2)原方程可化为

因为a=1,,c=2

所以

所以.

(3)原方程可化为

因为a=1,,c=-1

所以

所以;

所以总结:

(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;

(2)用求根公式法解方程按步骤进行. 例2、用适当方法解下列方程:

① ②

③ ④

⑤ ⑥

⑦ 分析:

要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法。 ⑴ 公式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入一元二次方程的求根公式

求值,所以对某些方程,解法又显得复杂了。如①,可以直接开平方,

就能马上得出解;若此时还用求根公式就显得繁琐了。

⑵ 配方法是一种非常重要的方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便的作用。若方程中的一次项系数有因数是偶数,则可使用,计算量也不大。如②,因为224比较大,分解时较繁,此题中一次项系数是-2。可以利用用配方法来解,经过配方之后得到

,显得很简单。

⑶ 直接开平方法一般解符合型的方程,如第①小题。

⑷ 因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。

解:①

两边开平方,得

所以

配方,得

所以

所以

配方,得

所以

所以

因为

所以 =4+20=24

所以

所以

配方:

所以

所以

整理,得

所以

移项,提公因式,得

所以小结:

以上各题请同学们用其他方法做一做,再比较各种方法的优缺点,体会如何选用合适的方法,下面给出常规思考方法,仅作参考。

例3、已知关于x的方程ax-3x+1=0有实根,求a的取值范围.

2

解:当a=0时,原方程有实根为

若a≠0时,当原方程有两个实根.

故,综上所述a的取值范围是小结:

.

此题要分方程ax-3x+1=0为一元一次方程和一元二次方程时讨论,即分当a=0与a≠0两种情况.

2

例4、已知一元二次方程x-4x+k=0有两个不相等的实数根.

2

(1)求k的取值范围;

(2)如果k是符合条件的最大整数,且一元二次方程x-4x+k=0与x+mx-1=0有一个相同的根,求此时m的值.

2

2

解:(1)因为方程x-4x+k=0有两个不相等的实数根,

2

所以b-4ac=16-4k>0,得k<4.

2

(2)满足k<4的最大整数,即k=3.

此时方程为x-4x+3=0,解得x=1,x=3.

2

1

2

①当相同的根为x=1时,则1+m-1=0,得m=0;

②当相同的根为x=3时,则9+3m-1=0,得

所以m的值为0或

例5、设m为自然数,且3

有两个整

解:,

∵方程有整数根,

∴4(2m+1)是完全平方数。 ∵3

解得x=2或x=8

当m=12时方程为 解得x=26或x=16

当m=24时方程为总结:

解得x=52或x=38

本题先由整数根确定2m+1是完全平方数,再由3

本文来源:https://www.bwwdw.com/article/lphp.html

Top