新人教版七年级上册数学电子教案
更新时间:2023-12-01 13:10:01 阅读量: 教育文库 文档下载
第一章 有理数
1.1 正数和负数(2课时) 第1课时 正数和负数的概念
了解正数和负数的产生;知道什么是正数和负数;理解正负数表示的量的意义;知道0既不是正数,也不是负数.
重点
正、负数的意义. 难点
1.负数的意义.
2.具有相反意义的量.
一、新课导入
活动1:创设情境,导入新课
教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,可以让学生自由发表意见和感想.
二、推进新课
活动2:体验负数的引入的必要性 教师出示温度计:
安排三名同学进行如下活动:研究手中的温度计上刻度的确切含义,一名同学手持温度计,一名同学说出其中三个刻度,一名同学在黑板上速记.
教师根据活动情况,如果学生不能引入符号表示,教师也可参与活动,逐步引入负数.强调:0既不是正数,也不是负数.
活动3:分组活动,感受正负数的意义
各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜.
1.老师说出指令:向前2步,向后3步,向前-2步,向后-3步,学生按老师的指令表演.
2.各小组互相监督,派一名同学汇报完成的情况.
活动4:深入理解正负数的意义,提高分析解决问题的能力 师投影展示问题,讲解课本例题.
例:1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值.
2.某年,下列国家的商品进出口总额比上一年的变化情况是: 美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率. 学生讨论后解决. 活动5:练习与小结
练习:教材第3页练习.
小结:这堂课我们学习了哪些知识?你能说一说吗? 活动6:作业
习题1.1第4,5,6,8题
1
本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.
第2课时 正数、负数以及0的意义
进一步理解正、负数及0的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量.
重点
进一步理解正、负数及0表示的量的意义. 难点
理解负数及0表示的量的意义.
一、创设情境,复习引入
师:在会计的账目本上我们会看到这样一些数据,如+1800元,—6932元,你知道它们是什么意思吗?你能再举出一些这样的例子吗?
思考:“0”为什么既不是正数也不是负数呢? 学生思考讨论,借助举例说明.
二、推进新课
活动1:尝试解释正负数的含义 教师出示问题
1.学生举例说明正、负数在实际中的应用.
2.在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔为0).通常用正数表示高于海平面的某地的海拔,负数表示低于海平面的某地的海拔.珠穆朗玛峰的海拔为8844.43米,它表示什么含义?吐鲁番盆地的海拔为-155米,它表示什么含义?
3.记录账目时,通常用正数表示收入款额,负数表示支出款额. 活动2:感受数0的含义.
师:在前面的几个问题中出现的那些新数,我们把前面带有“-”的数叫做负数.并且为与负数相区别,我们把以前学过的0以外的数,例如3,2,0.5等,叫做正数,根据需要,11
有时在正数前面也加“+”,例如+2,+3,+0.5,+就是2,3,0.5,.一个数前面的
33“+”“-”叫做它的符号.
教师说明数0的意义.0既不是正数,也不是负数,0是正数与负数的分界.0℃是一个确定的温度,海拔0表示海平面的平均高度.0的意义已不仅是表示“没有”.
三、迁移应用,巩固提高
例:举出几对具有相反意义的量,并分别用正、负数表示. 提示:相反意义的量有“上升”与“下降”,“前”与“后”,“高于”与“低于”,“得到”与“失去”,“收入”与“支出”等.
这是一道开放性练习题,意在考查正负数与相反意义量的表示能力.
四、练习与小结
2
练习:教材第4页练习题.
小结:谈谈你对正数、负数和0的认识. 五、作业
教材习题1.1第1,2,3,7题
“数0既不是正数,也不是负数。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识,通过实际例子的学习激发学生学习数学的兴趣.
1.2 有理数
1.2.1 有理数
1.理解有理数的意义.
2.能把给出的有理数按要求分类. 3.了解0在有理数分类中的作用.
重点
会把所给的各数填入它所属于的集合里. 难点
掌握有理数的两种分类.
一、创设情境,导入新课 师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
学生讨论.
二、合作交流,解读探究
师:你能列举出一些你已经学过的各类型的数吗?
125
学生列举:3,5.7,-7,-9,-10,0,,,-3,-7.4,5.2,?
356师:你能说说这些数的特点吗?
学生回答,并相互补充.
教师指出,我们把所有的这些数统称为有理数. 你能对以上各种类型的数作出分类吗? 正整数??整数?0
?有理数?负整数
?????
??
?正分数??分数负分数
说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数
可分为整数和分数两大类,那么整数又包含哪些数?分数呢?
以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.
3
??有理数?零
负整数
??负有理数负分数
??
???
??正整数
正有理数?
?正分数?
说明:让学生感受分类的方法和原则,统一标准,不重不漏.
三、应用迁移,巩固提高
例1:把下列各数填入相应的集合内:
1
3.1415926,0,2008,-,-7.88,10%,10.1,0.67,-89.
2
数集合
正数集合 负
整数集合 分
数集合
例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?
???整数?
有理数? 有理数?分数
?负整数??负数负有理数???负分数??
?
??正整数
正有理数?
?正分数?
正数
零
四、练习与小结
练习:教材练习题.
小结:谈一谈今天你的收获. 五、作业
习题1.2第1题
本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。
1.2.2 数轴
1.了解数轴的概念,知道数轴的三要素,会画数轴.
2.能将已知数在数轴上表示出来,能说出数轴上的已知点表示的数.
4
重点
数轴的概念. 难点
从直观认识到理性认识,建立数轴的概念,正确地画出数轴.
一、创设情境,导入新课
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出温度计所表示的三个温度.
出示温度计,并让同学读出任意的三个数.
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作)
二、推进新课
教师:由上述两个问题我们得到什么启发?你能用一条直线上的点表示有理数吗? 让学生在讨论的基础上动手操作,在操作的基础上归纳出可以表示有理数的直线必须满足的条件.
从而得出数轴的三要素:原点、正方向、单位长度.
做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第3个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第4个同学为原点,游戏还能进行吗?
问题:
1.你能举出一些在现实生活中用直线表示数的实际例子吗? 2.如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3.哪些数表示的点在原点的左边,哪些数表示的点在原点的右边,由此你会发现什么规律?
4.每个数表示的点到原点的距离是多少?由此你会发现什么规律? (小组讨论,交流归纳)
归纳出一般结论,教材第9页的归纳.
三、练习与小结
练习:首先布置学生阅读教材,重新梳理知识,然后完成教材练习. 小结:谈一谈你对数轴的认识. 四、布置作业 习题1.2第2题.
数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现出了从感性认识,到理性认识,到抽象概括的认识规律。
5
1.2.3 相反数
1.了解相反数的意义.
2.借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系. 3.给出一个数,能说出它的相反数.
重点
相反数的概念. 难点
相反数的识别及理解.
活动1:创设情境,导入新课
相反数的概念的引出.
演示活动:要一个学生向前走5步,向后走5步.
提出问题:如果向前为正、向后为负,向前走5步,向后走5步各记作什么? 学生回答.
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.
活动2:探索互为相反数的意义 师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数.(一个学生板演,其他学生自练)
师:这样的两个数即互为相反数,你能试述具备什么特点的两个数互为相反数吗?
学生讨论后回答.
师指出:0的相反数是0. 出示投影
1.在前面画的数轴上任意标出4个数,并标出它们的相反数. 2.分别说出9,-7,0,-0.2的相反数. 3
3.指出-2.4,,-1.7,1各是什么数的相反数?
5
4.a的相反数是什么?
1题动手解决,2,3题学生抢答,4题学生讨论后回答.
提出问题:a前面加“-”表示a的相反数,-(+1.1)表示什么?-(-7)呢?-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答. 活动3:巩固练习 练习:教材练习. 出示投影
1.-(+4)是________的相反数,-(+4)=________.
11
2.-(+)是________的相反数,-(+)=________.
553.-(-7.1)是________的相反数,-(-7.1)=________.
4.-(-100)是________的相反数,-(-100)=________.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”表示求这个数的相反数,如果在这些数
6
前面加上“+”呢?
学生讨论后回答. 活动4:小结与作业
小结:谈谈你对相反数的认识.
生:让学生回答,可以多让几位学生总结.
作业:教材课后练习.
相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
1.2.4 绝对值
1.理解绝对值的意义,会求一个数的绝对值. 2.会比较两个有理数的大小.
重点
1.对绝对值意义的理解. 2.有理数大小的比较方法.
3.借助数轴利用数形结合的思想方法,理解绝对值的概念及几何意义. 难点
1.利用绝对值比较两个负数的大小. 2.会利用分类讨论的方法解决问题.
一、创设情境,导入新课
投影展示教材11页图片,指出:
甲、乙两汽车从公路上的同一处地点出发,分别向东西方向行驶10千米,到达A,B两地,
(1)若向东行驶记为正,此时甲、乙两车的位置如何表示?
(2)此时甲车行驶的路程是多少?乙车行驶的路程是多少?
(3)讨论,(2)的两个答案与(1)中的有何不同,怎样理解这两个答案?
二、推进新课 (1)绝对值的概念
师:结合图片指出,一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.这里a可以是正数、负数、0.然后结合图片让学生回答│10│=________,│-10│________.
练习:根据绝对值的定义说出下列各数的绝对值:
21
-5,3.2,0,100,-2,-,.
32
学生尝试解决.
师进一步提出:以上各数中,
①正数有哪几个,它们的绝对值和这个数有什么关系? ②负数有哪几个,它们的绝对值和这个数有什么关系? ③0的绝对值是多少?
7
引导学生讨论并归纳出:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
师要求学生根据归纳的结果,结合教材11页内容,完成如下填空.
(a>0)??
│a│=? (a=0)
?? (a<0)练习:教材11页练习1,2,3.
(2)探究有理数大小的比较
师:投影展示教材12页的思考. 提出问题:
①这14个温度中最高的是________,最低的是________.
②你能将这七天中每天的最低气温按从低到高排列吗? ③你能在数轴上表示出这七天中的最低气温吗?
④观察,你所排列的顺序和它们在数轴上的位置有什么联系?
生:独立解决①~③小题,然后同学间交流探讨第④小题并归纳出:从低到高的顺序对应于数轴上从左到右的顺序.
师:数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即在数轴上,左边的数小于右边的数.
出示问题:根据以上规定用“大于”“小于”填空: 正数________0,0________负数,正数________负数. 生:独立完成然后同学间交流. 师:利用数轴用“>”“<”填空:
12
-6________-5,-3________-2,-________-.
23
观察结果并讨论,两个负数比较时,你发现了什么规律?
生:讨论并归纳结果,两个负数相比较,绝对值大的反而小. 师:出示教材例题,然后师生共同完成.
说明:两个负数的比较,尤其是两个负分数相比较时,学生易出错,讲解例题时教师应当关注这一点.
观察例题,师生共同归纳:
异号两数相比较时,只需要考虑它们的________,同号两数相比较时,要考虑它们的________.
三、练习与小结
练习:教材13页练习. 小结:
1.说一说你对绝对值的概念的认识. 2.谈一谈有理数大小的比较方法.
四、布置作业
习题1.2第5,6,8,10.
让学生在熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,
8
如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.
1.3 有理数的加减法
1.3.1 有理数的加法(2课时) 第1课时 有理数的加法
1.通过实例,了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算. 2.能运用有理数的加法解决实际问题.
重点
了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算. 难点
有理数加法中的异号两数如何进行加法运算.
活动1:创设情境,导入新课
师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?
活动2:自主学习探究加法法则 师:布置自学任务.
自学教材16~18页的内容,归纳并识记有理数的加法法则.
这一段大约用时15分钟,教师巡视指导,要关注学生能否正确理解加法法则的内容.
有理数加法的法则是:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不同的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.
3.一个数与0相加,仍得这个数.
活动3:运用法则
试一试身手:口答下列算式的结果:
(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3); (4)(+3)+(-4);(5)(+4)+(-4);(6)(-3)+0; (7)0+(+2);(8)0+0.
学生逐题口答后,师生共同得出.
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.
解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算) =-(3+9)(和取负号,把绝对值相加)
=-12.
(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算) =-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值) =-0.8.
教师点评法则运用过程中的注意点:先定符号,再算绝对值.
9
下面请同学们计算下列各题以及教材第18页练习.
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).
学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.
本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.
活动4:小结与作业
小结:谈一谈你对加法法则的认识,在加法计算中都应该注意哪些问题? 作业:必做题,习题1.3第1,11题;选做题,习题1.3第12题.
数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.
第2课时 相关运算律
1.正确理解加法交换律,结合律,能用字母表示运算律的内容. 2.能运用运算律较熟悉地进行加法运算.
重点
1.了解加法交换律、结合律的内容,运用运算律进行加法运算. 2.运用有理数的加法解决问题. 难点
运用有理数的加法解决问题.
一、创设情境,导入新课 师投影出示练习,计算:
①30+(-20);(-20)+30;
②[8+(-5)]+(-4);8+[(-5)+(-4)]. 生独立完成后同学交流. 二、推进新课
(1)探索加法交换律,结合律
师提出问题:观察比较第一组两题,比较它们有什么异同点. 观察比较第二组两题,比较它们有什么异同点.
学生讨论归纳,师生共同归纳得出加法交换律,结合律的内容,并用字母表示. (2)运用加法交换律,结合律解决问题
师出示教材例2.先让学生按照从左到右的运算顺序进行计算. 学生独立完成.
师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.
练习:教材20页练习.
学生独立完成,然后进行交流.教师可安排学生板演,从中发现学生对运算律的理解和掌握程度.
(3)运用有理数的加法解决问题
10
师投影展示教材例3.
学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)
如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?
学生讨论后解决.
教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.
三、课堂小结 小结:
1.谈谈你本节课的收获. 2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?
四、布置作业
习题1.3第2,8,9题.
本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的交换律在有理数范围内是否适用?”然后让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.
1.3.2 有理数的减法(2课时)
第1课时 有理数的减法法则
1.掌握有理的减法法则.
2.能运用有理数的减法法则进行运算.
重点
有理数的减法法则. 难点
对有理数的减法法则的探究.
一、创设情境,导入新课 师:出示温度计,提出问题:
1.你能从温度计上看出3℃比较-3℃高多少度吗? 2.你能列式求这个结果吗?
学生观察后先回答问题1得出结果,然后再列出算式3-(-3)=6.
二、探究新知
1.探究有理数的减法法则
师:这里的计算用到了有理数的减法,通过观察我们知道了3-(-3)=6,而我们还知道 3+(+3)=6.即
3-(-3)=3+(+3).
观察这个式子,你有什么发现?
学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.
11
计算:9-8,9+(-8). 15-7,15+(-7).
观察比较计算的结果,你有什么发现?
师生共同归纳有理数的减法法则.教师板书法则. 2.尝试运用法则
师出示教材例4.
师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.
练习:教材23页练习. 三.课堂小结
小结:谈谈本节课的收获.
思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?
四、布置作业
作业:习题1.3第3,4,6题.
本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索。法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成,减法法则的归纳得出是本节课的难点,在这个过程中,教师适时、适度的引导,也体现教师是学生学习的引导者和伙伴的新型师生关系.
第2课时 有理数的加减混合运算
1.熟练掌握有理数的加法和减法运算法则.
2.能进行有理数的加减混合运算,培养学生的计算能力.
重点
1.有理数的加减混合运算.
2.将加减法统一成加法的省略括号的形式并读出来. 难点
1.有理数的加减混合运算.
2.将加减法统一成国法的省略括号的形式并读出来.
活动1:复习导入
师:1.说一说有理数的加法法则的内容. 2.说一说有理数的减法法则的内容.
学生回答.
活动2:探索有理数的加减混合运算的方法 师投影展示教材例5.
计算(-20)+(+3)-(-5)-(+7). 学生完成.
说明:学生可以按照从左到右的运算顺序去进行计算.在这一过程中本身也需要将减法统一成加法,可以先让学生感受这一方法.
师:提出新的问题,可否将其先统一成加法,然后再进行运算?
12
学生讨论后回答.
师:让学生尝试新的思路,然后与刚才的方法相比较.
师:进一步提出,在刚才的过程中你是否注意到了加法运算律的应用.
让学生再重新尝试做一做.之后师生共同归纳方法: 有理数加减法的混合运算可以统一成加法运算.
活动3:探索统一成加法以后的省略括号的书写形式及读法
师:出示例子(-20)+(+3)+(+5)+(-7)并指出,这个式子是否-20,3,5,-7这四个数的和,为书写简单,可以写成省略括号和加号的形式,-20+3+5-7.
可以读作(1)负20,正3,正5,负7的和.
(2)负20加3加5减7.
注意让学生理解这两种读法,尤其是第一种,学生可能不习惯,但在后面讲到多项式时还会涉及类似的问题.
活动4:练习与小结
练习:将教材24页练习(3),(4)题写成统一成加法以后的省略括号的书写形式并读出来. 学生独立完成,然后同学间交流.
小结:谈谈你这节课的收获. 活动5:布置作业 习题1.3第5,10题.
在学生的合作交流、探求新知过程中,首先让学生考虑运算顺序的问题,这是所有混合运算必需首先解决好的问题,然后再从引例的角度遵循减法法则,让学生尝试将加减混合运算统一为加法运算;通过运算的比较,让学生感受到其中的必要性,而在整个探索活动中都充满着学生与学生之间的交流合作,给学生以充分发表意见的机会;让学生在自己与同伴的合作中去发现与探究.同时也注意引导学生的思维方向,渗透了转化的思想.
1.4 有理数的乘除法
1.4.1 有理数的乘法(2课时) 第1课时 有理数的乘法
掌握有理数的乘法法则,能利用乘法法则正确进行有理数乘法运算.
重点
运用有理数的乘法法则正确进行计算. 难点
有理数乘法法则的探索过程及对法则的理解.
一、创设情境,导入新课
师:由于长期干旱,水库放水抗旱,每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
生:26米
师:能写出算式吗? 生:??
师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题. 二、小组探索,归纳法则
13
1.(1)教师出示以下问题,学生以组为单位探索. a.观察下面的乘法算式,你能发现什么规律吗? 3×3=9,
规律:随着后一乘数逐次递减1,________.
b.要使这个规律在引入负数后仍然成立,那么应有: 3×(-1)=-3,
c.观察下面的算式,你又能发现什么规律? 3×3=9,
0×3=0.
规律:________________.
d.要使c中的规律在引入负数后仍成立,那么应有: (-1)×3=________,
(2)以小组为单位对以上问题从符号和绝对值两个角度进行观察总结归纳,得出正数乘正数,正数乘负数,负数乘正数的规律.
(3)利用(2)中的结论计算下面的算式,你又发现了什么规律? (-3)×3=________,
(-3)×0=________.
规律:________________
(4)按照(3)中的规律,填充下格,并总结归纳. (-3)×(-1)=________,
结论:负数乘负数________________
2.师生共同归纳总结有理数的乘法法则,并用文字叙述. 3.运用法则计算,巩固法则.
教师出示教材例1,师生共同完成,学生口述,教师板书,要求学生能说出每一步依据. 练习:教材30页练习第1题. 教师出示例2,引导学生完成. 练习:教材30页练习2,3题. 三、讨论小结,使学生知识系统化 同号 得正 (-2)+(-3)=-5 异号 得负 把绝对值相乘 (-2)×3=-6 用较大的绝对值减较小的绝对值 任何数与零 四、布置作业
习题1.4第2,3题.
14
有理数乘法 取相同的符号 把绝对值相乘(-2)×(-3)=6 取绝对值大的加数的符号 (-2)+3=1 得零 有理数加法 把绝对值相加 得任何数 本节课在引入时采用形象生动的多媒体课件,先激起学生的兴趣,使学生能在兴趣的指引下逐步开展探究.在引例中把表示具有相反意义量的正负数在实际问题中求积的问题,与小学算术乘法相结合,通过直观演示与多媒体结合,采用小组讨论合作学习的方式得出法则.
第2课时 相关运算律
1.掌握多个有理数连续相乘的运算方法.
2.正确理解乘法交换律、结合律和分配律,能用字母表示运算律的内容. 3.能运用运算律较熟练地进行乘法运算.
重点 1.了解多个有理数连续相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算.
2.运用有理数的乘法解决问题.
难点
运用有理数的乘法解决问题.
一、创设情境,导入新课
教师出示投影,计算以下各题,并观察其结果的符号情况.
2×3×4×(-5) 2×3×(-4)×(-5) 2×(-3)×(-4)×(-5) (-2)×(-3)×(-4)×(-5) 0×(-2)×(-3)×(-4)×(-5)
几个不等于0的数相乘,你发现结果的符号与哪些因素有关?几个数相乘,如果其中一个因数是0,结果又是多少?
学生讨论交流归纳结果,师生共同得出教材31页的归纳,同时完成31页的思考问题. 二、推进新课,巩固提高
1.教师出示例3.师生共同完成,教师注意讲解归纳方法. “先确定积的符号,然后再把它们的绝对值相乘.” 2.练习:教材32页练习.
学生分组练习,板演,互相纠错与全班纠错相结合,注意提示学生方法的运用. 三、再次创设情境,导入运算律
1.提出问题,激发学生探索的欲望和学习积极性. 计算(-5)×89.2×(-2)的过程能否使用简便方法.这样做有没有依据.小学里数的运算律在有理数中是否适用?
2.导入运算律:
(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5. (2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.
(3)用公式的形式表示为:ab=ba.
这里的a,b表示有理数,讲解“a×b→a·b→ab”的过程.
(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论,归纳出乘法结合律.
(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式.
15
(6)分组计算、比较,5×[3+(-7)])与5×3+5×(-7)的结果,讨论归纳出分配律. (7)全班交流、规范分配律的两种表达形式:文字语言、公式形式. 四、感受运算律在乘法运算中的运用 教师出示例4,用两种方法计算. 111
(+-)×12 462
师生共同完成.
练习:教材33页练习.教师可布置学生板演,小组交流等形式,来发现学生的问题,及时反馈.
五、作业
习题1.4第7(1)~(3),14题.
新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析问题.
1.4.2 有理数的除法(2课时)
第1课时 有理数的除法
1.了解有理数除法的定义.
2.经历有理数除法法则的探索过程,会进行有理数的除法运算. 3.会化简分数.
重点
正确运用法则进行有理数的除法运算. 难点
怎样根据不同的情况来选取适当的方法求商.
一、复习导入
1.有理数的乘法法则;
2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律; 3.倒数的意义.
学生回答以上问题. 二、推进新课
(一)有理数除法法则的推导 师提出问题:1.怎样计算8÷(-4)呢? 2.小学学过的除法的意义是什么?
学生进行讨论、思考、交流,然后师生共同得出法则. 除以一个不等于0的数,等于乘这个数的倒数. 可以表示为: 1
a÷b=a·(b≠0)
b
师指出,将除法转化为乘法以后类似的除法法则我们有:
16
两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.
教师点评:(1)法则所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);(2)法则揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.
(二)有理数除法法则的运用 教师出示教材例5. 计算:(1)(-36)÷9; (2)(-
123
)÷(-). 255
师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值. 教师出示教材例6.
-12-45化简下列分数:(1);(2). 3-12
教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,
在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.
教师出示教材例7. 5
计算:(1)(-125)÷(-5);
751
(2)-2.5÷×(-).
84教师分析,学生口述完成. 三、课堂练习
教材第36页上方练习 四、课堂小结
小结:谈谈本节课的收获. 五、布置作业
教材习题1.4第4~6题.
学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用。让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象,并应该讲清楚除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解.2.在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法。然后统一用乘法的运算律解决问题.
第2课时 有理数的混合运算
1.掌握有理数加、减、乘、除运算的法则,运算顺序,能够熟练运算. 2.能运用法则解决实际问题.
如何按有理数的运算顺序,正确而合理地进行计算.
一、创设情境,导入新课
17
上节课我们学习了有理数的除法,你可以说一说有理数的除法法则吗? 二、合作交流,解读探究
教师投影出示教材第35页例7. 你能尝试解决这两个问题吗?
学生尝试解决,然后交流,师生再共同分析.
教师提出问题,进行有理数的加减乘除混合运算,运算顺序是怎样的? 学生讨论后回答.
三、应用迁移,巩固提高
教师投影展示教材例8.
教师先示范(1),然后学生口述,教师板书师生共同完成(2).过程中注意联系讲解法则的运用.
教师出示例9.
例9:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
提示,可记盈利为正数,亏损为负数.
本例题教师可让学生上黑板板演,以便发现学生的问题,及时讲解和纠正.
教师布置学生练习:教材36页下方练习题.
学生独立完成,然后同学交流,教师安排学生板演.
布置自学任务,使用计算器进行计算,教师布置学生互相交流,然后完成教材37页练习. 四、小结与作业
小结:说说你本节课的收获.
作业:习题1.4第7,8,10,11题.
对于七年级学生来说,这节是重点更是难点。在练习过程中,学生所表现出来的问题比较多,一是运算顺序出现问题;二是混淆了加和乘的运算,尤其是两个负数相加经常和乘法中的负负得正弄乱,异号相加也出现问题。究其原因还是因为没有完全熟练,没有达到理解进而形成能力,故此当所有的知识综合在一起的时候就难以应付。要教给学生分析的方法和思路,还要着重强调易错点。
1.5 有理数的乘方
1.5.1 乘方(2课时) 第1课时 有理数的乘方
通过现实背景,使学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算,并让学生经历探索乘方的有关规律的过程.
重点
理解有理数乘方的意义和表示,会进行乘方运算.
难点
1.幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.
2.用乘方知识解决有关实际问题.
18
一、创设情境,导入新课
师:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的面积为2×2×2=8(cm2).
2×2,2×2×2都是相同因数的乘法.
生思考回答,为了简便,我们可以将它们记作什么,读作什么?
同样:
(-2)×(-2)×(-2)×(-2)记作什么?读作什么? 22222
(-)×(-)×(-)×(-)×(-)记作什么?读作什么? 55555
a·a·a·a·a·a可以记作什么?读作什么? 学生讨论交流后教师进一步提出:
师:a·a·?·a,\\s\\do4(n个)) (n为正整数)呢? 生归纳总结:可以记作an,读作a的n次方.
师:对于an中的a,不仅可以取正数,还可以取0和负数,也就是说a可以取任意有理数,这就是我们今天研究的课题:有理数的乘方(板书).
二、探索新知,讲授新课
师:求n个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在an
中,a取任意有理数,n取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.an看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.
师:出示教材例1.
提出问题:怎样进行乘方的运算,你能根据乘方的意义进行上面这个例题的运算吗? 学生进行交流讨论,尝试解决.然后师生共同完成例1.
师:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律? 学生交流讨论,师生共同归纳.
负数的奇次幂是负数,负数的偶次幂是正数.
正数的任何次幂都是正数,0的任何正整数次幂都是0.
三、运用计算器进行乘方运算 师布置学生自学教材例2.
要求同桌间相互交流,不会的同学要向会使用计算器的同学请教. 四、练习与小结
练习:教材42页练习.
小结:谈谈你本节课的收获. 五、布置作业
习题1.5第1,2题.
这一节课的教学要从有理数乘方的意义,有理数乘方的符号法则的分类讨论,有理数乘
19
方的易混淆点三个方面来教学。始终给学生创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.
第2课时 有理数的综合运算
1.能较熟练地进行有理数的混合运算,培养学生的运算能力. 2.在运算中能自觉地运用运算律. 3.培养学生的探究能力.
重点
有理数的混合运算. 难点
正确而合理地进行有理数的混合运算.
活动1:创设情境,问题引入
师:一只电子跳蚤位于数轴上的原点位置,它一次可跳动两个单位长度,它先向左跳动1次,又向右跳动2次,然后向左跳动3次,然后向右跳动4次,如此周而复始,跳动2008次以后,它位于原点何处?请列出算式.
学生讨论后列出算式.(这个问题可能花的时间较长,教师可根据情况提示,向左记为负,向右记为正,然后用正负数表示它移动的距离即可)
师:这是一个有理数的混合运算,你知道怎样进行有理数的混合运算吗?
学生讨论或看书后回答. 活动2:尝试运算
师生共同得出有理数的运算顺序.
教师出示教材例3.然后让学生尝试解决,学生在下边说,教师在上边写,过程中注意结合法则和运算顺序.
然后点评易错点:①乘方运算由于不熟练而出现的错误.如33=9,-42=(-4)2等.②运算顺序上的错误.③计算的熟练程度.有些学生常将自己计算出错归结为马虎、大意等,其实这是一个熟练程度的问题.
练习:教材练习,教师安排学生板演,根据时间和学生的掌握情况,教师可适当再安排几个练习题.
活动3:探究规律解决问题 师投影出示教材例4.
学生进行观察讨论,教师引导学生注意观察方法要点:
本题是以第一行为标准进行探讨的,因此应当先观察第一行的特征,如果不考虑符号的话,第一行的数都是2的正整数次幂,由此再进行下一步的讨论.
练习:解决本节课开始的问题,探究规律,找到答案,学生进行讨论解决.
活动4:小结与作业
小结:谈谈你本节课的收获. 作业:习题1.5第3题.
在加减乘除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题,教师应告诉学生这几种运算可以分成三级:其中加减是第一级运算;乘
20
除是第二级运算;乘方是第三级运算。在教学时,要注意结合学生平时练习中出现的问题,及时纠正学生在运算上出现的问题。
1.5.2 科学记数法
利用10的乘方,进行科学记数,会用科学记数法表示大于10的数,会解决与科学记数法有关的实际问题.
重点
用科学记数法表示大于10的数. 难点
探究用科学记数法表示大于10的数的方法.
一、创设情境,导入新课 师出示投影1,
310的底数是________,指数是________;103的底数是________,指数是________. (1)102=________;103=________;104=________;105=________. (2)100=10×10=________;(写成幂的形式,下同)1 000=________;10 000=________;100 000=________.
学生独立完成,然后同学间交流.
出示投影2.
光的传播速度是目前所知所有物质中最快的,每秒钟可传播300 000 000米,你能快速准确地读出这个数字并把它写出来吗?
师引导:通过刚才对较大的数字的读和写,感觉怎么样?请同学们畅谈感受,并进行归纳:对大数进行读和写确实比较麻烦和困难,容易搞错.
二、推进新课
师:既然大数的读和写都比较麻烦和困难,那么能否想办法解决这个问题呢?也就是说能否用另外的比较适当的方法来直接表示大数呢?
小组讨论,尝试用适当的方法将100 000 000这个数字快速而准确地表示出来,使得这个数字的读和写比较简单、明了和直观.
学生分小组进行讨论,教师可适当加以引导,然后师生归纳出科学记数法的概念.
教师出示例5.用科学记数法表示下列各数:
(1)1 000 000;(2)57 000 000;(3)-123 000 000 000
师生共同完成,师进一步提出问题,观察以上各式的结果,你发现了什么? 学生讨论,归纳结果:
用科学记数法表示一个n位整数,其中10的指数是n-1. 补例:
下列用科学记数法表示的数,原来各是什么数? ①1×105;②5.18×103;③7.04×106. 学生练习,独立完成,然后同学交流.
三、巩固练习
投影展示:1.分析下列各题用科学记数法表示是否正确,并说明原因. (1)36 000=36×103;(2)567.8=5.678×103. 2.用科学记数法表示下列各数:
21
(1)3 000 000;(2)-67 000 000;(3)961.34.
3.下列用科学记数法表示的数,原来各是什么数? (1)1×107;(2)3.96×104;(3)-7.80×104. 练习:教材练习. 四、小结与作业
小结:谈一谈本节课的收获. 作业:习题1.5的第4,5题.
让学生在生动具体的情境中理解和认识科学记数法表示大数的意义及方法,使学生在自主探索和合作交流中获得成功的体验.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.
1.5.3 近似数
1.理解精确度和近似数的意义.
2.能准确地说出精确位及按要求进行四舍五入取近似数.
重点
近似数和精确度的意义. 难点
由给出的近似数求其精确度,按给定的精确度求一个数的近似数.
一、创设情境,导入新课
师:生活中我们会遇到许多与数字有关的问题. 问题:
(1)七(4)班有42名同学;
(2)每个三角形都有3个内角.
这里的42,3都是与实际完全符合的准确数.我们还会遇到这样的问题:
(3)我国的领土面积约为960万平方千米; (4)王强的体重约是49千克.
960万,49是准确数吗?这里的960万,49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.
二、推进新课
我们把像960万,49这些与实际数很接近的数称为近似数.
在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也就是精确度的问题.
我们都知道,π=3.14159?.
我们对这个数取近似数:
如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位; 如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫做精确到0.1); 如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫做精确到0.01); 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位. 师:出示例题.
例6 按括号内的要求,用四舍五入法对下列各数取近似数:
22
(1)0.0158;(精确到0.001) (2)304.35;(精确到个位) (3)1.804;(精确到0.1) (4)1.804.(精确到0.01) 解:(1)0.0158≈0.016; (2)304.35≈304; (3)1.804≈1.8; (4)1.804≈1.80.
注意:表示近似数时,不能简单地把1.80后面的“0”去掉.
补充例题:下列由四舍五入法得到的近似数,各精确到哪一位? (1)132.4;(2)0.0572;(3)2.40万. 解:(1)132.4精确到十分位; (2)0.0572精确到万分位; (3)2.40万精确到百位. 三、课堂练习
练习:教材46页练习题.
小结:谈谈你对近似数的认识. 四、布置作业 习题1.5第6题.
结合学生小学的基础,让学生在复习的过程中接近新课,在认真的自学中了解新课,在系统的联系中掌握新知,在激烈的讨论中提高应用.充分调动了学生的有利因素,让学生在愉快的环境中得到知识,提高了能力,教学效果比较明显.
第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式
1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.
重点
掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点
识别单项式的系数和次数.
一、创设情境,导入新课
师:出示图片.
青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?
(2)t小时呢? 二、推进新课
23
(一)用含字母的式子表示数量关系. 师:出示第54页例1.
生:解答例1后,讨论问题,用字母表示数有什么意义?
学生经过讨论得出一定的答案,但可能不会太规范,教师总结.
师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).
师生共同完成例2,进一步体会用字母表示数的意义.
巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.
引言与例1中的式子100t,0.8p,mn,a2h,-n这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.
师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 2a2b1
0.7,-a,-3+b,,0,.
7x(三)单项式的系数,次数.
2a2b
师:提出问题,观察单项式,6a,2.5x,-n,,它们各由哪几个部分组成?
7
2
生:观察讨论得出结果.
师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.
师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?
生:举手回答.
师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?
练习:第57页练习第1题. (四)例题讲解.
例3:用单项式填空,并指出它们的系数和次数: (1)每包书有12册,n包书有________册.
(2)底边长为a,高为h的三角形面积是________.
(3)一个长方体的长和宽都是a,高是h,它的体积是________.
(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________. (5)一个长方形的长是0.9,宽是a,这个长方形的面积是________. 生:独立完成,然后举手回答.
师:针对学生的问题,进行点拨和进一步的解释.
师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?
生:自由发表意见.
师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.
生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓
24
励)
三、练习与小结
练习:第57页练习第2题.
小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.
四、布置作业 习题2.1第1题.
教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.
第2课时 多项式
1.掌握多项式的概念,进而理解整式的概念.
2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.
重点
多项式的概念及多项式的项数、次数的概念. 难点
多项式的次数.
一、创设情境,导入新课
师:出示问题(投影).
观察一列数1,4,9,16,25,?,第6个数是多少?第n个数呢?你能用含n的式子表示第n个数吗?
观察一列数2,5,10,17,26,?,第6个数是多少?第n个数呢?你能用含n的式子表示第n个数吗?
生:思考得出答案,第一列中第6个数是36,第n个数是n2,第二列中第6个数是37,第n个数是n2+1.
师:我们知道,n2是一个单项式,而n2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题.
二、推进新课
(一)多项式及多项式的项数、次数的概念
师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x+1
5y+2z,ab-πr2,x2+2x+18,有何特点?
2
生:思考讨论.
师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.
师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x-3可以叫做二项多项式,3x+5y+2x可以叫做三项多项式.
师:进一步引导学生探究多项式次数的概念.
25
正在阅读:
新人教版七年级上册数学电子教案12-01
县文体广电和旅游局疫情防控汇报03-16
2011届高考英语一轮复习讲解:主谓一致11-27
逛菜场作文500字06-24
团队游戏早会团队小游戏大全_0699文档04-30
ok 幼儿园课程论2013.706-06
《土地的誓言》课文理解及阅读答案(2)05-01
《班主任专业基本功》读书摘抄10-17
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 上册
- 人教
- 教案
- 年级
- 数学
- 电子
- 中央广播电视大学开放教育专科汉语言文学专业
- 2018年秋七年级数学上册 第一章 有理数 1.3 有理数的加减法 1.3.1 有理数的加法 第2课
- 2018年开封市小升初数学模拟试题(共8套)详细答案
- 民航气象雷达执照考试题库 - 图文
- 包装学课后习题及其答案 - -张理主编版
- 论孟德斯鸠的三权分立思想
- 2017年甘肃省兰州市西固区兰化二中中考数学模拟试卷
- 三基训练试题
- 浅谈导游讲解对旅游景区形象的影响
- 二年级下册体育教学计划
- 朱文君浅析中国中小企业为何难生存难发展
- 数据模型与决策案例分析
- jionmap使用说明
- 300MW厂用电全失处理预案(06.05.06)
- 单相桥式全控整流电路可逆电力拖动系统
- 零星物品采购合同范本模板
- 江西省执业药师2018年继续教育题目及答案
- 二年级语文下册 第五单元检测题 人教新课标
- 物理化学第二章 - 习题及答案
- 提高驾驭复杂局面的能力