Measurement of Lagrangian velocity in fully developed turbulence
更新时间:2023-08-21 12:50:01 阅读量: 高等教育 文档下载
We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold
MeasurementofLagrangianvelocityinfullydevelopedturbulence
N.Mordant(1),P.Metz(1),O.Michel(2),J.-F.Pinton(1)
CNRS&LaboratoiredePhysique,´EcoleNormaleSup´erieure,
46all´eed’Italie,F-69007Lyon,FranceLaboratoired’Astrophysique,Universit´edeNice
ParcValrose,F-06108,Nice,France
(1)
(2)
arXiv:physics/0103084v2 [physics.flu-dyn] 30 Jul 2001
WehavedevelopedanewexperimentaltechniquetomeasuretheLagrangianvelocityoftracerparticlesinaturbulent ow,basedonultrasonicDopplertracking.ThismethodyieldsadirectaccesstothevelocityofasingleparticleataturbulentReynoldsnumberRλ=740.Itsdynamicsisanalyzedwithtwodecadesoftimeresolution,belowtheLagrangiancorrelationtime.Weobserve
2
thattheLagrangianvelocityspectrumhasaLorentzianformEL(ω)=u2rmsTL/(1+(TLω)),inagreementwithaKolmogorov-likescalingintheinertialrange.Theprobabilitydensityfunction(PDF)ofthevelocitytimeincrementsdisplaysachangeofshapefromquasi-Gaussianaintegraltimescaletostretchedexponentialtailsatthesmallesttimeincrements.Thisintermittency,whenmeasuredfromrelativescalingexponentsofstructurefunctions,ismorepronouncedthanintheEulerianframework.
PACSnumbers:47.27.Gs,43.58.+z,02.50.Fz
Lagrangiancharacteristicsof uidmotionareoffun-damentalimportanceintheunderstandingoftransportandmixing.Itisanaturalapproachforreacting owsorpollutantcontaminationproblemstoanalyzethemotionofindividual uidparticles[1].Anothercharacteristicofmixing owsistheirhighdegreeofturbulence.Forprac-ticalreasons,mostoftheexperimentalworkconcerninghighReynoldsnumber grangianmeasurementsarechal-lengingbecausetheyinvolvethetrackingofparticletra-jectories:enoughtimeresolution,bothatsmallandlargescales,isrequiredtodescribetheturbulent uctuations.EarlyLagrangianinformationhavebeenextractedfromthedispersionofparticles,followingTaylor’sap-proach.Recentlynumericalandexperimentalstudieshavefocusedonresolvingthemotionofindividual uidortracerparticles.Theemergingpictureisasfollows.Theone-componentvelocityauto-correlationfunctionisquasi-exponentialwithacharacteristictimeoftheorderoftheenergyinjectionscale[2,3,4].ThevelocitypowerspectrumisexpectedtohaveascalingEL(ω)∝ω 2,asrecentlyreported[5,6]andexpectedfromaKolmogorovsimilarityarguments.Inthesamespirit,thesecondor-L
derstructurefunctionshouldscaleasD2(τ)=C0 τ,where isthethepowerdissipation.Measurementsofatmosphericballoons[7]havegivenC0=4±2andalimitC0→7hasbeensuggestedinstochasticmodels[8].Recentexperiments[9,usinghighspeedopticaltech-niqueshaveshownthatthestatisticsoftheLagrangianaccelerationarestronglynon-Gaussian.
Wehavedevelopedanewexperimentalmethod,basedonsonartechniques[11],inordertostudyinalaboratoryexperimenttheLagrangianvelocityacrosstheinertialrangeoftimescales.Weobtainthe rstmeasurementofsingleparticlevelocityfortimesuptothe owlargescaleturnovertime,athighReynoldsnumber.InthisLetter,wereporttheresultsofthismeasurementsandcomparewithpreviousobservationsandnumericalpredictions.Ourtechniqueisbasedontheprincipleofacontinu-ousDopplersonar.Asmall(2mm×2mm)emittercon-tinuouslyinsoni esthe owwithapuresinewave,atfrequencyf0=2.5MHz(inwater).Themovingparticlebackscatterstheultrasoundtowardsanarrayofreceiv-ingtransducers,withaDopplerfrequencyshiftrelatedtothevelocityoftheparticle:2π f=q.v.Thescatter-ingwavevectorqisequaltothedi erencebetweentheincidentandscattereddirections.Anumericaldemod-ulationofthetimeevolutionoftheDopplershiftgivesthecomponentoftheparticlevelocityalongthescat-teringwavevectorq.Itisperformedusingahighresolu-tionparametricmethodwhichreliesonanApproximatedMaximumLikelihoodschemecoupledwithageneralizedKalman lterThestudyreportedhereismadewithasinglearrayoftransducerssothatonlyoneLagrangianvelocitycomponentismeasured.
Theturbulent owisproducedinthegapbetweentwocounter-rotatingdiscs[12].Thissetuphastheadvan-tagetogenerateastrongturbulenceinacompactregionofspace,withnomeanadvection.Inthisway,parti-clescanbetrackedduringtimescomparabletothelargeeddyturnovertime.DiscsofradiusR=9.5cmareusedtosetwaterintomotioninsideacylindricalvesselofheightH=18cm.Toensureinertialentrainment,thediscsare ttedwith8bladeswithheighthb=5mm.Inthemeasurementreportedhere,thepowerinputis =25W/kg.Itismeasuredontheexperimentcool-ingsystem,fromtheinjection-dissipationbalance.TheintegralReynoldsnumberisRe=R2 /ν=6.5104,where istherotationfrequencyofthediscs(7.2Hz),andν=10 6m2/sisthekinematicviscosityofwa-ter.AconventionalturbulentReynoldsnumbercanbecomputedfromthemeasuredrmsamplitudeofveloc-
We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold
ity uctuations(urms=0.98(λ=
m/s)andanestimateoftheTaylormicroscaleν/ =0.2ms)
issmaller,sothatwedonotexpecttoresolvethedis-sipativeregion.Thestatisticalquantitiesarecalculatedfrom3×106velocitydatapoints,takenatasamplingfrequencyequalto6500Hz.Theacousticmeasurementzoneisincentralregionofthe ow,10cmthickintheaxialdirectionandalmostspanningthecylindercross-section.Inthisregionthe owisagoodapproximationtoisotropicandhomogeneousconditions:atallpoints,themeanvelocityisnonzero,butequaltoaboutonetenthofitsrmsvalue.
We rstconsidertheLagrangianvelocityauto-correlationfunction:
RL(τ)=
v(t)v(t+τ) t
2
1+(T(2)
Lω)2
.WeobserveaclearrangeofpowerlawscalingEL(ω)∝ω 2.ThisisinagreementwithaKolmogorovK41pic-tureinwhichthespectraldensityatafrequencyωisadimensionalfunctionofωand :EL(ω)∝ ω 2.Toourknowledge,thisisthe rsttimethatitisdirectlyob-servedathighReynoldsnumberandinalaboratoryex-
periment,althoughithasbeenreportedinoceanicstud-ies[5]andinlowerReynoldsnumberdirectnumericalsimulations[6].DeparturefromtheKolmogorovbehav-iorisobservedatlowfrequenciesinagreementwiththeexponentialdecayoftheauto-correlation.Athighfre-quencies,thespectrumdeviatesfromtheLorentzianformduetotheparticleresponse.NoteinFig.1bthatthemeasurementismadeoveradynamicalrangeofabout60dB.
Wenowconsiderthesecondorderstructurefunction
We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold
ofthevelocityincrement
DL2(τ)= (v(t+τ) v(t))2 t= ( τv)2 .
(3)
Weemphasizethatthesearetimeincrements,andnot
spaceincrementsasintheEulerianstudies.Thepro leDLauto-correlation2(τ)isshownintheinsetofFig.2.byDtimesoneobservesthe2(τ)=2u2trivialscalingrms Itislinked1 RL
(τ) totheL:atsmall
DL
(τ)∝τ2andatlargetimesDL
2
2(τ)saturatesat2u2rms(asv(t)andv(t+τ)areuncorrelated).
)ετ(/L2
D10
10
t/τ10
η
FIG.2:SecondorderstructureDLfunction.Inset:pro le2(τ)asafunctionoftime,non-dimensionalizedTL.Inthemain gurethesecondorderstructurefunctionisnon-dimensionalizedbytheKolmogorovscaling τ.
Inbetweenthesetwolimits,oneexpectsaninertialrangeofscaleswithaKolmogorov-likescaling
DL2(τ)=C0 τ,
(4)
whereC0isa‘universal’constant.Suchabehavioriscon-sistentwithdimensionalanalysisandwithanω 2scal-ingrangeinthevelocitypowerspectrum.Fig.2shows
DL2(τ)/ τ;aplateauwithaconstantC0isnotobserved.NotethatthisalsothecaseinEulerianmeasurementswhenthethird
orderstructurefunctionisrepresentedinlinearcoordinates[13].Thefunctionreachesamaximumat20τη,forwhichC0~2.9.ThisvalueisinagreementwiththeestimationC0=4±2in[7]andintherangeofvalues(between3and7)usedinstochasticmodelsforparticledispersion[14].Inourcasetheremayalsobeabiasatsmalltimesduetoparticlee ects.Howeverifweassumetheexponential tforthevelocityautocorre-lationfunctiontobevaliddowntothesmallestscales,weobtainavalueC0=3.5asanupperboundforthe
maximumofDL
(τ)/ τ.Inoursetofmeasurementsbe-tweenR2
λ=100andRλ=1100,wehaveobservedanincreaseofC0(de nedinthesameway)from0.5to4.WepointoutthatintheabsenceofanequivalentoftheK´arm´an-HowarthrelationshipfortheLagrangiantimeincrements,alimitvalueofC0isnotapriori xed.
DimensionalanalysisyieldsDL
2(τ)=C0(Re) τandsimi-larityargumentsgiveC0(Re)→const.orC0(Re)→Reαinthelimitofin niteReynoldsnumbers.
3
TofurtherdescribethestatisticsoftheLagrangianve-locity uctuations,wehaveanalyzedthestatisticsofthevelocityincrements τv.TheirPDFΠτforτcoveringtheaccessiblerangeoftimescalesisshowninFig.3.
FIG.3:PDFστΠτofthenormalizedincrement vτ/στ.Thecurvesareshiftedforclarity.Fromtoptobottom:τ=[0.15,0.3,0.6,1.2,2.5,5,10,20,40]ms.
Toemphasizethefunctionalform,thevelocityincre-mentshavebeennormalizedbytheirstandarddeviationsothatallPDFshaveunitvariance.A rstobservationisthatthePDFsaresymmetric,inagreementwiththelocalsymmetriesthis ow.AnotheristhatthePDFsal-mostGaussianatintegraltimescalesandprogressivelydevelopstretchedexponentialtailsforsmalltimeincre-ments.Atthesmallestincrement,thestretchedexpo-nentialshapeisinagreementwithmeasurementsofthePDFofLagrangianaccelerationatidenticalReynoldsnumbers[10].Inourcase,thelimitformofthevelocityincrementsPDFisnotaswideasthatoftheaccelerationbecausetheKolmogorovscaleisnotresolved.NotethatinregardsoftheevolutionofthePDF,theintermittencyisatleastasdevelopedintheLagrangianframeasitisintheEulerianone[15].
FIG.4:EvolutionoftheexcesskurtosisfactorK(τ)= ( τv)4 / ( τv)2 2 3forthePDFsofthetimevelocityincrements.
Thecontinuousevolutionwithscalecanbequanti ed
We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold
usingthe atnessfactor.WeshowinFig.4thevari-ationexcesskurtosisK(τ)= ( τv)4 / ( τv)2 2 3.ItisnullatintegralscaleasexpectedfromtheGaus-sianshapeofthePDFandincreasessteeplyatsmallscales.Belowabout5τη,theincreaseislimitedbythecut-o oftheparticle;anextrapolationofthetrendtoτηyieldsK(τη)
~40inagreementwithaccelerationmea-surementsin[10].
10
L
q
D10
10
DL
10
FIG.5:ESSplotsofthestructurefunctionvariation(indou-blelogcoordinates).Thesolidcurvesarebestlinear tswith
slopesequaltoξL
q=0.56±0.01,1.34±0.02,1.56±0.06,1.8±0.2forp=1,3,4,5fromtoptobottom.Coordinatesinarbitraryunits.
Moregenerally,onecanchoosetodescribetheevolu-tionofthePDFsbythebehavioroftheirmoments(or
‘structurefunctions’)DL
changeofq(τ)= |δτv|q .Indeed,acon-sequenceoftheshapeofthePDFswithscaleisthattheirmoments,asthe atnessfactorabove,varywithscale.ClassicallyintheEulerianpicture,oneex-pectsscalingintheinertialrange,DE
q(r)∝rζq,atleastinthelimitofverylargeReynoldsnumbers.Atthe -niteReynoldsnumberwheremostexperimentsaremade,thelackofatrueinertialrangeisusuallycompensatedbystudyingtherelativescalingofthestructurefunc-tions–theESSansatz[16].Weusethesecondorderstructurefunctionasareference.Indeedthedimensional
estimationofDL2(asthatofDE
3)dependslinearlyontheincrementandonthedissipation.Fig.5showsthat,asintheEulerianframe,arelativescalingisobservedfortheLagrangianstructurefunctionsoforders1to5,DLq(τ)∝DL2(τ)ξq.Weobservethattherelativeexpo-nentsfollowasequencecloseto,butmoreintermittentthanthecorrespondingEulerianquantity.Indeed,we
obtain:ξLL
L/ξLξ1/ξ3=0.42,ξ3=0.75,ξL/ξLL3=1.17,5
/ξL
2
43=1.28tobecomparedtothecommonlyac-4
ceptedEulerianvalues[17]ξEξ1/ξE3=0.36,ξE2/ξE
3=0.70,E4/ξE3=1.28,ξE5/ξE
3=1.53.
Inconclusion,usinganewexperimentaltechnique,wehaveobtainedaLagrangianvelocitymeasurementthatcoverstheinertialrangeofscales.OurresultsareconsistentwithKolmogorov-likedimensionalpredictionsforsecondorderstatisticalquantities.Athigherorders,theobservedintermittencyisverystrong.HowtheLagrangianintermittencyisrelatedtothestatisticalpropertiesoftheenergytransfersisanopenquestion.Fromadynamicalpointofview,theNavier-StokesequationinLagrangiancoordinatescouldbemodeledusingstochasticequations.WorkiscurrentlyunderwaytocomparethedynamicsoftheLagrangianvelocitytopredictionsofLangevin-likemodels.
acknowledgements:WethankBernardCastaingforinterestingdiscussionsandVermonCorporationforthedesignoftheultrasonictransducers.Thisworkissup-portedbygrantACINo.2226fromtheFrenchMinist`eredelaRecherche.
[1]PopeS.B.,Annu.Rev.FluidMech.,26,23,(1994).
[2]VirantM.,DracosT.,Meas.Sci.Technol.,8,1539,
(1997).
[3]SatoY.,YamamotoK.,J.FluidMech.,175,183,(1987).[4]YeungP.K.,PopeS.B.,J.FluidMech.,207,531,(1989).[5]LienR-C.,D’AsaroE.A.,DairikiG.T.,J.Fluid.Mech.,
362,177,(1998).
[6]YeungP.K.,J.FluidMech.,427,241,(2001).[7]HannaS.R.,J.Appl.Meteorol.,20,242,(1981).[8]SawfordB.L.,Phys.Fluids,A3,1577,(1991).
[9]VothG.A.,SatyanarayanK.,BodenschatzE.,Phys.Flu-ids,10,2268,(1998).
[10]LaPortaA.,VothG.A.,CrawfordA.,AlexenderJ.,Bo-denschatzE.,Nature,409,1017,(2001).
[11]MordantN.,MichelO.,PintonJ.-F.,submittedtoJASA,
(2000)andArXiv:physics/0103083.[12]MordantN.,PintonJ.-F.,Chill`aF.,J.Phys.IIFrance,
7,1729-1742,(1997).[13]Mal´ecotY.PhDThesis,Universit´edeGrenoble,(1998).[14]DuS.,SawfordB.L.,WilsonJ.D.,WilsonD.J.,Phys.
Fluids,7,3083,(1995).
[15]AnselmetF.,GagneY.,Hop ngerE.J.,AntoniaR.A.J.
FluidMech.,140,63,(1984).
[16]BenziR.,CilibertoS.,BaudetC.,Ruiz-ChavarriaG.,
TripiccioneC.,Europhys.Lett,24,275,(1993).[17]ArneodoA.etal.,Europhys.Lett,34,411,(1996).
正在阅读:
Measurement of Lagrangian velocity in fully developed turbulence08-21
健康知识讲座方案及总结04-04
南京地铁供电维护理论题库(2)06-18
干部履职尽责承诺书03-29
干部作风建设自我剖析材料02-20
《12586物联网应用技术与设计》06-22
献给母亲现代诗歌03-21
天津于家堡施工方案V3.1 - 图文06-18
关于爱情陪伴的英语句子唯美06-09
哈尔滨之旅作文800字06-23
- 1Low velocity impact behavior of composite sandwich panels
- 2第3讲PPT (Turbulence and its modelling)
- 3TL9000 Measurement Handbook.
- 4Capacitance sensor for void fraction measurement in water steam
- 5Closure of two dimensional turbulence the role of pressure gradients
- 6Closure of two dimensional turbulence the role of pressure gradients
- 7Three-Phase V-I Measurement
- 82021年高考英语 Module 2 Developing and Developed Countr
- 9Full-scale measurement of Akashi-Kaikyo Bridge during typhoo
- 10chapter 1-matter and measurement-3,4 (2)
- 2012诗歌鉴赏讲座 师大附中张海波
- 2012-2013学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一)
- 市政基础设施工程竣工验收资料
- 小方坯连铸机专用超越离合器(引锭杆存放用)
- 荀子的学术性质之我见
- 氩弧焊管轧纹生产线操作说明
- 小学科学六年级上册教案
- (商务)英语专业大全
- 外汇储备的快速增长对我国经济发展的影响
- 幼儿园中班优秀语言教案《小猴的出租车》
- 第七章 仪表与显示系统
- 身份证号码前6位行政区划与籍贯对应表
- 单位(子单位)工程验收通知书
- 浅谈地铁工程施工的项目成本管理
- 沉积学知识点整理
- 前期物业管理中物业服务企业的法律地位
- 2014微量养分营养试卷
- 地质专业校内实习报告范文(通用版)
- 内部审计视角下我国高校教育经费支出绩效审计研究
- 高次插值龙格现象并作图数值分析实验1
- Measurement
- Lagrangian
- turbulence
- developed
- velocity
- fully
- 我国家电产业进口政策效果分析及启示
- 寻求持久竞争优势_民生银行的发展战略与思考
- 2012届高三物理冲刺复习检测试题1
- 外贸业务流程
- SWOT视域下高校“新媒体团建”的现状调查与思考
- 谈作文的语言美
- 2008届高考数学概念方法题型易误点技巧总结(十一) 概率
- 几种植物的扦插方法档
- 师德师风学习心得体会文档
- 银行从业资格考试《公共基础》第三章同步练习
- 文章不厌百回改——(教育学会投稿)
- Modeling the Kinematics and Dynamics of Compliant Contact
- 浅谈基层文化站免费开放后的公众服务
- 2010年北京市全国高考理综试题及答案
- 媒介管理学邵培仁笔记详细
- 2005The future of animal models of invasive aspergillosis
- 新人教版九年级物理18.4焦耳定律
- 雨水干管设计流量计算及水力计算
- 八年级数学一次函数同步练习题
- 逆向思维与作文立意