ABSTRACT Leakage Power Modeling and Optimization in Interconnection Networks
更新时间:2023-06-04 13:20:01 阅读量: 实用文档 文档下载
- abstract推荐度:
- 相关推荐
Power will be the key limiter to system scalability as interconnection networks take up an increasingly significant portion of system power. In this paper, we propose an architectural leakage power modeling methodology that achieves 95-98 % accuracy agains
LeakagePowerModelingandOptimizationin
InterconnectionNetworks
XuningChenandLi-ShiuanPehDept.ofElectricalEngineering,PrincetonUniversity,NJ08544{xuningc,peh}@ee.princeton.edu
ABSTRACT
Powerwillbethekeylimitertosystemscalabilityasinter-connectionnetworkstakeupanincreasinglysigni cantpor-tionofsystempower.Inthispaper,weproposeanarchitec-turalleakagepowermodelingmethodologythatachieves95-98%accuracyagainstHSPICEestimates.Whenappliedtointerconnectionnetworks,combinedwithpreviousproposeddynamicpowermodels,wegainvaluableinsightsontotalnetworkpowerconsumption.Ourmodelingshowsrouterbu erstobeaprimecandidateforleakagepoweroptimiza-tion.Wethusinvestigatethedesignspaceofpower-awarebu erpolicies,proposeasuiteofpolicies,andexploretheimpactofvariouscircuitsmechanismsonthesepolicies.Simulationsshowpower-awarebu erssavingupto96.6%oftotalbu erleakagepower.
CategoriesandSubjectDescriptors
C.2.1[Computer-CommunicationNetworks]:Networkarchitectureanddesign
GeneralTerms
Measurement,Design
Keywords
Leakagepower,interconnectionnetworks,poweroptimiza-tion
1.INTRODUCTION
Aspowerbecomesthedominantconstraintinmanycom-putersystems,researchintopower-e cientsystemshasthrived.Inmanyofthesesystems,thenetworkfabricisasigni cantconsumerofpower.Thishasresultedinresearchersmodel-ing[9]andoptimizing[8,10]thedynamicpowerconsump-tionofinterconnectionnetworks.Astechnologyscalestodeepsub-micronprocesses,leakagepowerbecomesincreas-inglysigni cantascomparedtodynamicpower.Thereis
Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforpro torcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthe rstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspeci cpermissionand/orafee.
ISLPED’03,August25–27,2003,Seoul,Korea.
Copyright2003ACM1-58113-682-X/03/0008...$5.00.
thusagrowingneedtocharacterizeandoptimizenetworkleakagepoweraswell.
Inthispaper,weproposeanewarchitecturalmethodologyforestimatingleakagepowerthatdistinguishestechnology-dependentfromtechnology-independentvariables,provid-ingthe exibilityofanarchitecture-levelpowermodelwherearchitecturalparameterssu ce,togetherwiththerigorousaccuracyofalow-levelmodel.Anaccuratemodelallowsarchitectstorapidlyestimateleakagepowerastheyiterateacrossalternativedesigns.Weappliedourmethodologytobothon-chipandchip-to-chipinterconnectionnetworks,andvalidatedourestimatesagainstHSPICE,obtaining95-98%accuracy.
Bycombiningourproposedleakagepowermodelwithadynamicpowermodel[9],wewereabletogatherinsightsonthetotalpowerconsumptionofnetworks,characteriz-ingthepowerbreakdownofvariousnetworkcomponentsastechnologyscales.Ourmodelingguidedustoinvestigateandproposepower-awarebu ersasaleakagepoweropti-mizationtechnique.Wethenexplorethedesignspaceofarchitecturalpoliciesforpower-awarebu ers,andproposeasuiteoftechniquesthatareabletosaveupto96.6%oftotalbu erleakagepower.
2.
ANARCHITECTURALLEAKAGEPOWERMODELINGMETHODOLOGY
Leakagecurrenthas vebasiccomponents:reversebiasedpnjunctioncurrent,sub-thresholdleakagecurrent,gatedin-duceddrainleakage,punchthroughcurrentandgatetun-nelingcurrent.Theseleakagecurrentcomponentshaveanalmostlinearrelationwithtransistorwidth.Forinstance,subthresholdcurrentIsubwhichcurrentlydominatesleakagecurrentisde nedasfollows[1]:
I1 exp( Vds
V)exp(VV gs th Vsub=I0
off)tnV(1)
t
IW
0=µ
qεsi·NDEPL
2ΦVt
2
(2)
s
Foragivencircuittypeiandinputstatesatapro-cesstechnology,subthresholdcurrentisalmostproportionaltothetransistorwidthW.Although,di erentcomponentswillhavedi erentimpactonleakagecurrentastechnologyscales,e.g.gatedinduceddraincurrentwillbecomemoreandmoresigni cant,thetotalleakagecurrentstillkeepsanalmostlinearrelationwithtransistorwidth.
Power will be the key limiter to system scalability as interconnection networks take up an increasingly significant portion of system power. In this paper, we propose an architectural leakage power modeling methodology that achieves 95-98 % accuracy agains
Sotoderiveanarchitecturalleakagepowermodel,we
cantransistorseparateprocesstechnology:
widththefromtechnology-independentthosethatstayinvariantvariablesforasuchspeci casIleak(i,s)=
W(type(i,s))L
·I
leak(i,s)
(3)
whereIleakagecurrent.I
leakistotalleakisleakagecur-rentperunittransistorwidthoverlength.W(type(i,s))referstothetransistorwidthofNMOSwhenNMOSdeter-minestheleakagecurrent(i.e.type(i,s)isN),orPMOS(whentype(i,s)isP).Astransistorwidthhasanegligi-blee ectonI
leak(i,s),Ileak(i,s)is xedforagivencircuittypeandinputstateundercertaintechnologyandature.Withthisapproximation,armedwithI
temper-leakforvar-iouskindsofcircuitcomponentsatdi erentinputstates,architectscanestimatetheleakagepowerforarchitecturalunitscomposedfromthesecircuitcomponents.Ourpro-posedmodelingmethodologyisasfollows:
1.Identifythefundamentalcircuitcomponents,andde-riveI
leak(i,s)foreachatdi erentinputstates.Exam-plesaresingleNMOSandPMOStransistors,NANDgates,inverters,etc.2.De nemajorarchitecturalbuildingblocks.Forinter-connectionnetworks,typicalbuildingblockswillbebu ers,crossbars,arbitersandlinks[9].Formicro-processors,suitablebuildingblockswillbecachelines,adders,etc.3.Identifythedistributionoftheinputstatesbasedonoperationcharacteristicsorsimulationandderivear-chitecturalequationsthatestimatetheleakagepowerforeachbuildingblock.Webelievethisisthe rstleakagepowermodelingmethod-ologythattrulyseparatestechnology-dependentandinde-pendentvariables.In[2],asinglekdesignisusedtore ectthecompositionofdevicetypes(N/P),geometries(W/L),states(on/o ),andstackingfactors.Asaresult,kdesignisextremelysensitivetochangesinanyofthevariablesandtheimpactofarchitecturalparametershardtoisolate.In
[6],Pleaklib
=χlib·CellsSlib
isusedtoestimatetheleak-agepowerinanASICdesignenvironment,whereχlib,Slibaretechnology-dependentparametersderivedthroughex-perimentsand”Cells”isthenumberofcellsinthedesign.Thismodeltargetsalaterdesignstagethenthearchitec-turalstage,whendesignersexplorevariouscircuitdesignsforaselectedarchitecture.
2.1DerivationofI
leak
Foreachcomponenti,wesimulateI
leak(i,s)usingHSPICEandtheBerkeleyPredictiveTechnologyModel[1]fortherangeofprocesstechnologiesandassociatedparametersinTable1.Table2liststheI
listed
leak(i,s)simulatedforeachfun-damentalcircuitcomponenti(Leakagecurrentsdi ersatdi erentstatesduetostakingandbodybiase ects).Cir-cuitstructurescanthenbehierarchicallycomposedfromthesefundamentalcircuitcomponents.
Table1:Parametersforvarioustechnologies.
th0dd
Table2:Ileak(i,s)foreachfundamentalcircuitcompo-
nentiatdi erentinputstatessattemperature80oC.Type(i,s)indicatesiftheNMOSorPMOStransistorisdominantindeterminingleakagecurrent.
I(i,s)
i
s(i,s)1P4.0e-99.7e-980.4e-901N7.9e-910.8e-946.0e-910N4.7e-95.1e-944.0e-911P8.1e-919.4e-9159.5e-901P3.6e-95.9e-945.3e-910P4.3e-99.7e-977.5e-911
P
0.9e-90.7e-9
5.9e-9
Figure1:AFIFObu erwith1readportand1write
port(adaptedfrom[4]).Tcisthepre-chargingtransis-tor,Twdthewordlinedriver,Tbdthewritebitlinedriver,Tmthememorycellinverter,andTprandTpwthepasstransistorsconnectingreadandwriteportstomemorycellsrespectively.
2.2Leakagepowermodelingofrouterbuffers
Weappliedourmethodologytothemajorbuildingblocksofinterconnectionnetworksasidenti edin[9]–bu ers,crossbars,arbiters,andlinks.Here,wewalkthroughourmodelingofrouterbu erstodemonstratethemethodology.Fig.1sketchesthecircuitstructureofarouterbu erpoolwithB it1bu ers,eachFbitswide,withPrreadportsandPwwriteports.ItshowsaFIFObu erthatiscomposedofthefundamentalcircuitcomponentsofPMOS,NMOStransistorsandinverters.Dimensionsofthecircuitstruc-turesuchashcell,wcell,dwareestimatedbyOrion[9]fromarchitecturalparameters.
Inputstateprobabilisticanalysis.Next,weanalyzetheprobabilitydistributionofeachinputstateofacircuitcomponentbyexamininghowarchitecturalunitsfunction.Forinstance,thewordlineinverterTwdisset(s=0)wheneverthatbu er/rowisreadorwritten.Thus,atanypointintime,onlyoneoutofBwordlineinverterswillbe
set.Hence,Ileak(Twd)=1W(type(INV,0))
·I leak(INV,0)+B 1W(type(INV,1)) ·Ileak(INV,1).Basically,giventheseI
leak(i,s),andtheprobabilitiesof1
segmentA itisofshortapacket.
for owcontrolunit,andisa xed-length
Power will be the key limiter to system scalability as interconnection networks take up an increasingly significant portion of system power. In this paper, we propose an architectural leakage power modeling methodology that achieves 95-98 % accuracy agains
eachblockinputstatePI=
rob (i,s),theleakagecurrentforabuilding
Prob(i,s)
W(type(i,s))leakis:
(Block)·I leak(i,s)(4)
i
s
L
whereW(type(s))referstothetransistorwidthofNMOS(when
type(s)isN)orPMOS(whentype(s)isP).
throughInputnetworkstatesimulation.simulation.
InputstatescanalsobetrackedIleak(Block,t)=
W(type(i,s(t)))L·I
leak(i,s(t))
(5)
i
where,Ileak(Block,t)istheleakagecurrentattimet,and
s(t)isthestateofcircuittypeiattimetwithinthiscircuitblock.
Finally,wecanestimatethetotalleakagecurrentofarouterbu er(Eq.6)whileitsleakagepowerisleakagecur-rentmultipliedbysupplyvoltage(Eq.7).
Ileak(buffer)=(Pr+Pw)BIleak(Twd)+2PwFIleak(Tbd)+2BFIleak(Tc)+2BFIleak(Tm)
+2BF(PwIleak(Tpw)+Pr·Ileak(Tpr))
(6)Pleak(buffer)=Ileak(buffer)·Vdd
(7)
2.3Validation
WevalidatedourmodelwithHSPICEsimulationofeachcompletefunctionalunitofachip-to-chiprouter(crossbar,arbiter,andbu ers)in0.07µmtechnology.Leakagecur-rentsunderdi erentinputstateswereestimatedwithourmodelandcomparedwiththeleakagecurrentsobtainedfromHSPICEsimulationforthesamefunctionalunitwiththesameinputstates,theexactstructureandfeaturesizes.Forinstance,a5-by-5matrixcrossbarunithas5datain-putsand25controlsignals.Thecombinationoftheirvaluesdeterminetheinputstateofthecrossbarandthustheleak-agecurrent.Forsuchfunctionalunitswithavastnumberofpossibleinputstates,weselectarandomsampleoftyp-icalinputstatesforvalidation.Theaccuracyofourmodelforthesefunctionalunitsiscomputedbyaveragingacrossdi erentinputstates.Table3showsmeanandstandardde-viationofourmodel’serrorin0.07µmtechnologycomparedwithHSPICEsimulation.Sinceleakagecurrentislargeat0.07µm,weexpectthemagnitudeoferrortobelargerthanthatinearlierprocesstechnology.
Table3:Validationofourmodelvs.HSPICEsimula-tionforeachmajorbuildingblockofarouter.
3.
DYNAMICANDLEAKAGEPOWERCH-ARACTERIZATIONOFINTERCONNE-CTIONNETWORKS
CombinedwithOrion,anarchitecturaldynamicpowermodelfornetworks[9],wecharacterizedthetotalpowerconsumptionofbothanon-chipnetworkandachip-to-chip
network.Theon-chipnetworkisparameterizedasin[3],witha4-by-4meshnetworkona12mm2chip,eachnodeclockedat1GHz,with5input/outputports(oneofwhichistheinjection/ejectionport),64 itbu ersperinputport(each it128bitswide),connectedwitha5-by-5matrixcrossbarand55:1arbiters.Therouterinthechip-to-chipnetworkhas256128-bit itbu ersperinputportinstead,otherparametersremainingthesameasthatintheon-chipnetwork.ThefeaturesizeofthetransistorsisderivedbyOrion[9]fromarchitecturalparametersbasedonthetimingdelayrequirementsandassumingminimumarea.
E ectofprocesstechnology.Tables4and5showtheestimatesforarouterinachip-to-chipandon-chipnetworkrespectivelyat50% itarrivingratein1sat80oC.Astech-nologyscales,leakagepowerbecomesincreasinglysigni -cant,startingfrom2.5%oftotal(leakage+switching)poweratcurrent0.18µmtechnology,toahefty60%at0.07µmtechnologyifclockfrequencyiskeptinvariantforthechip-to-chipnetwork.Evenassumingdoublingclockfrequenciesaswescaleprocesstechnology,leakagepowerremainsasig-ni cant27%at0.07µm.Thoughtheon-chipnetworkhasfewerstorageelements,leakagepowerstillrisestoasigni -cant21%at0.07µm,assumingclockfrequencydoubleseachprocessgeneration.
Table4:Dynamicandleakagepowerestimatesofa
routerinachip-to-chipnetwork.
power(W)power(W)Distributionofleakagepowerbetweenrouterandlinks.FromTable5,itisevidentthatfull-swingon-chiplinkdriversandwiresconsumesubstantialdynamicpower,overwhelmingthatoftheroutercorein0.10and0.07µmpro-cesses.However,whenyoulookatleakagepowerconsump-tionofroutervs.links,theconverseistrue.Aswiresdonotdissipateleakagepower,theleakagepowerconsumptionofjustthedriversisminimal,comparedtothatoftheroutercore.Thispromptedustodelveintoaleakagepowerbreak-downofvariousfunctionalunitswithinanon-chiprouter.Breakdownofleakagepowerwithinarouter.Fig.2showstheleakagepowerconsumedbythevariousmajorfunctionalunitsofanon-chiprouteranditslinksatdif-ferentprocesstechnologies.Itshowsbu ersconsumingap-proximately64%percentleakagepowerofthetotalnode(router+link)forallprocesstechnologies,standingasthelargestleakagepowerconsumer.Ourcharacterizationhigh-lightsrouterbu ersasaprimecandidateforleakagepoweroptimization.
4.POWER-AWAREBUFFERS
Asinterconnectionnetworksexperiencesigni canttem-poralandspatialvarianceinworkloadthatleadstohighlyvaryingbu erutilization,weproposepower-awarebu ersasanarchitecturaltechniqueforleakagepoweroptimizationininterconnectionnetworks–i.e.bu ersthatregulatetheirownleakagepowerconsumptionbasedonactualutilization.
Power will be the key limiter to system scalability as interconnection networks take up an increasingly significant portion of system power. In this paper, we propose an architectural leakage power modeling methodology that achieves 95-98 % accuracy agains
Table5:Dynamicandleakagepowerestimatesofanon-chiprouteranditslinks.
Figure2:Leakagepowerdistributionacrossthemajor
functionalunitsofanon-chiprouter:bu ers,arbiters,
crossbarandlinks.Arbiterleakagepowerisnegligibleandnotvisibleinthe gure.
Toexplorethepotentialofpower-awarebu ers,we rstcharacterizenetworkbu erutilizationwiththetra cmodelproposedin[8],withPoissontaskinter-arrivalrate,andself-similarpacketinter-arrivalrateswithineachtaskses-sion.Thisworkloadexhibitsthehightemporalandspatialvariancepresentinmanyreal-lifenetworks.Wesimulatethechip-to-chipnetworkdescribedinSec.3(2virtualchan-nelsperport).Fixed-lengthpacketsof20 itsareassumed.Fig.3graphstheaverageandminimumnumberofidlebu ersastra cincreases.Asexpected,alargenumberofbu ersisleftidleatlowinjectionrates.Interestingly,whiletherearerouterswhosebu ersarefully-occupied(minimumnumberofidlebu ers=0)athighnetworkload,averagebu erutilizationremainsratherlow,withabout85%idlebu ers.Thisisre ectiveofthehighvarianceinthework-loadthatresultsinalargegapbetweenaverageandmax-imumnetworkutilizationthatisinherentinmanyactualworkloads.Clearly,placingtheseidlebu ersinaninactivemodethatuseslessleakagepowerwillresultinsigni cantleakagepowersavings.
4.1Power-awarebufferpolicydesign
Arouterbu erisutilizedinastream-likefashion.Whena itentersarouter,itgetswrittenintoanunoccupiedbu er,andsitstherewhileaseriesofrouteroperationsistriggered:routing,virtual-channelallocationandswitchal-location.Whenitisscheduledtoleavetherouter,the itisreadfromthebu erpool,andthebu eristhenmarkedasunoccupiedandreleasedbacktothefreelist,readytobereusedwhenanew itenterstherouter.
Wetermapolicythatturnsabu ertoinactivemodeonlywhenit’sunoccupiedsingleandonethatswitchesabu ertoinactivemodeanytimeit’snotbeingaccessed,i.e.whenit’sbothunoccupiedandoccupied,double.Toevalu-atethee ectivenessofanypolicy,weneedayardstick–wede netwotheoreticallyideal,thoughunachievable,policies:
Figure3:Averageandminimumnumberofidlebu ers
outof128 its/bu er.
Ideal-Single,thatreducesleakagepowertozeroinstantlyforbu ersthatareunoccupiedwithnoadditionalpowerover-head,andIdeal-Double,thatdoessosimilarlyforbu erswhentheyarebothunoccupiedandnotbeingaccessed.Apower-awarebu erpolicycanbeoblivious,i.e.itdoesnottakecurrentbu erutilizationorworkloadintoaccount;oradaptive,tuningthepolicyaccordingtocurrentutiliza-tion.Itcanalsobeconservative,makingsurenetworkper-formanceisnotimpacted,vs.aggressive,targetingasmuchleakagepowersavingsaspossible,evenifthiscomesattheexpenseofnetworkperformance.
Fig.4showsthedesignspaceofpower-awarebu erpoli-ciesthatweenvision,andseveralsimplepoliciesthatweproposeateachdesignpoint.Eachpolicycantargeteithersingleordoubleleakagepowersavings.First,weproposeaconservativepolicy,Lookahead,thatobliviouslyplacesbu ersinlow-leakagemodeandwakesthemupNcyclesbeforetheyareaccessed.Whena itisreadfromthebu erqueue,thatbu erwillbeswitchedtothelow-leakagein-activemode(iftherearemorethanNfreebu ers),andwhena itarrivesandiswrittenintoarouterbu eratthetailofthequeue,thebu erthatisNcellsaheadwillbeswitchedtonormaloperatingmode.Thepolicyisconser-vativeasitsetsthelookaheadwindowofNtothenumberofcyclesneededtoswitchabu erfrominactivetoactivemode(transitiondelay),soafreebu erwillalwaysbeavail-ablewhen itsarrive,andnetworkperformancewillneverbea ected.Clearly,ifthebu ersizeBislessthanN,ourpolicywillresultinnoleakagepowersavings.Anaggres-sivevariantofthispolicy,Lookahead-AggsimplyshortensNtolessthanthetransitiondelay,tradingo performanceforhigherleakagepowersavings.OurimplementationofLookaheadinsertsanewlyfreedbu erbackattheheadofthefreelist,soanactivebu erhasthehighestchanceofreuse,minimizingtheimpactonnetworkperformancesigni cantly.Asimpleadaptivepolicy,wecallPredictive,usespriorbu erutilizationhistorytopredictfutureusage,adjustingthelookaheadwindowNaccordingly.Weusea
Power will be the key limiter to system scalability as interconnection networks take up an increasingly significant portion of system power. In this paper, we propose an architectural leakage power modeling methodology that achieves 95-98 % accuracy agains
AdaptiveOblivious
Conservative
Aggressive
Figure4:Designspaceofpower-awarebu erpolicies.simplestatistic–whentherearemorewritesthanreadstoabu erinatimewindowW,Nisincrementedtillithitsanupper-boundNhigh.Otherwise,itisdecrementedtoalower-boundNlow.Theintuitionisthatwhenbu erwritesoutnumberreads,thebu erpoolisbuildingup,withfewerandfewerfreebu ers,soanadaptivepolicyshouldbelessaggressiveinswitchingbu erstoinactivemodeinordertoenhancenetworkperformance.Conversely,whenmore itsareleavingratherthanenteringtherouter,anadaptivepol-icycanmoreaggressivelyswitcho bu ers,guessingthatfewerwillbeneeded.
4.2Circuit-levelmechanisms
Power-awarebu ersrequirecircuit-levelmechanismsthatallowbu erstobeputintoinactivemodeforleakagepowersavings.Severalcircuit-levelmechanismshavebeenpro-posedforleakagepowersavingsinSRAMs[4,7],targetedformicroprocessorcaches.Sincerouterbu ersareusuallyconstructedwithSRAMs,thesecanbereadilyappliedtopower-awarebu ers.
Thecharacteristicsofcircuit-levelmechanismsthatarecriticaltopower-awarebu ersare:(1)transitiondelay-thetimeittakestoswitchabu erbetweenthenormalop-eratingmodeandtheinactivemode;(2)transitionenergy-thedynamicenergyincurredeachtimetoe ectatran-sition;(3)leakagepowersavings-thedi erencebetweentheleakagepowerincurredatnormaloperatingmodeandthatatinactivemode;and(4)datapreservation-whethertheinactivemodepreservesthecontentsoftheSRAMs,i.e.whetherthiscircuittechniquecanbeappliedtobothsingleanddoublepower-awarebu erpolicies.
Inthispaper,wechoosetwocircuit-levelmechanismswithfairlydi erentcharacteristics–Drowsy[4],andGatedVddSRAMs[7].DrowsySRAMshavefastertransitiondelaysthanGatedSRAMs,preservesdatacontent,butdeliverslessleakage2energysavingsintheinactivemodeasshowninTable6.Bothtechniqueshavenegligiblee ectontheaccesstime.
5.EXPERIMENTALRESULTS
WeextendaC++networksimulatortoinvestigatethepower-performanceofpower-awarebu ers[5].Thesamesetofrouterparametersasthatinsection3withan8-by-8meshin0.07µmtechnologyisused.Hereaveragelatency,tencyreferstothetimefromthecreationofthe rst itofthepackettilltheejectionofitslast itfromthenetworkatthedestination,throughputreferstotheinjectionrateatwhichaveragenetworklatencyexceedstwicethelatencyatzeronetworkload,andleakage2
asWhileweassumedthecharacteristicsofitpublished,thatitdoesnotpreservedataGatedininactiveVddSRAMSmode,poorercanbetransitionsizedtodelay.
ensuredatapreservationthoughwithapowersavingsisexpressedasapercentageofthetotalleak-agepowerconsumedbyrouterbu ers.Simulationsarerunfor1millioncycles.
LeakagepowersavingsofLookaheadpolicy.Fig.5comparesthee ectivenessoftheconservativeLookaheadpolicy(N=10forGatedVdd,and1forDrowsycells)againsttheidealpolicies.Ideal-Doublesavescloseto100%ofbu erleakagepower,sinceitonlykeepsabu eractiveduringaccesses.Ideal-SinglegetssavingsclosetothatofIdeal-Doubleatlowtra cworkloadsas itsdonotstayinbu ersforlong.Astra cincreases,however,notshut-tingbu erso whentheyareoccupiedin-betweenwritesandreadsresultinalmost10%lessleakagepowersavings.Asimilardi erenceisobservedbetweenLookahead-SingleandLookahead-DoublewithDrowsycells.
With256 it-bu ersateachrouterinputport,Lookahead-SinglesavesmoreleakagepowerwithGatedVddratherthanDrowsycells.WhilethelongtransitiondelayofGatedVddresultsinalargeN=10,potentiallyleadingtoupto9fewerbu ersturnedinactive,thisisoverwhelmedbytheremain-ingsubstantialnumberofbu ersthatcanstillbeleveraged.Thus,withlargebu ers,thehigherleakagepowersavingsperSRAMcellofGatedVddleadstohigheroverallnetworkpowersavingsascomparedtoDrowsySRAMs.
Theconverseishowevertruewithsmallerbu ers(Fig.6).Here,thelargeNofLookahead(GatedVdd)constrainsthenumberofbu ersthatcanbeturnedinactive,andthelowtransitiondelayofDrowsycellswinover.Notethatastraf- crateincreases,however, itsoccupybu ersforalongertime,soLookahead-Single(Drowsy)isunabletoexploititsfasttransitiondelay.Lookahead-Double(Drowsy)howeverleveragesthisforhigherleakagepowersavingsathightra cinjectionrates.
Leakagepowersavingsofaggressiveandpredic-tivepolicies.WesimulatedsingleLookahead-Aggpoli-cies,withalookaheadwindowNshortenedfrom10to4and2,forGatedVdd.ThePredictivepolicysimulatedhasW=10,Nlow=1,Nhigh=2.Fig.7showsthatasexpected,Lookahead-AggimprovestheleakagepowersavingsofLooka-head,pushingsavingsupto81%atlowtra c.Predictivepushesitevenfurther,upto88%savingsatlowtra c.Evenatveryhightra cloads,Predictivestillsaves71%leakagepower,asitbetteradaptstoactualutilization.Thisshowsthatevenasimpleadaptivepolicycanoutperformobliviouspolicies.
Performanceimpactofpower-awarebu erpoli-cies.Lookahead,beingaconservativepolicy,doesnothaveanimpactonperformanceasitalwaysensurestherewillatleastbeanactivebu eravailableawaitinganarriving it.However,theaggressiveLookahead-AggandPredictivepoli-ciescanpotentiallycauseperformancepenalties.Fig.8sim-ulatesthelatency-throughputperformanceofthesetwopoli-cies,showingnegligibleperformancedegradationforbothpoliciesascomparedtoanetworkwithnopower-awarebu ers.
6.CONCLUSIONS
Wehaveproposedamethodologyformodelingleakagepoweronthearchitecturelevel.Tofacilitatetheuseof
thismethodology,wewilldistributetheI
leaktablesonline.WeherealsoincorporatedournetworkarchitecturalleakagepowermodelsintoOrion[9]soarchitectscaneasilyfactorindynamicandleakagepowerestimateswhenevaluating
Power will be the key limiter to system scalability as interconnection networks take up an increasingly significant portion of system power. In this paper, we propose an architectural leakage power modeling methodology that achieves 95-98 % accuracy agains
Figure6:LeakagepowersavingsunderLookahead-Singlepolicyfor64- itbu er.
networkarchitectures.
Bydelineatingthedesignspaceforpower-awarebu erpolicies,andexploringtheimpactofseveralsimplealterna-tives,wehopeourworkwillmotivatetheproposalofso-phisticatedpoliciesinthefuture.
Acknowledgments
TheauthorsaregratefultoK.FlautnerofUniversityofMichiganandS.KimofCarnegieMellonforprovidingde-tailedparametersofDrowsyCacheandGatedVddrespec-tively.AtPrinceton,wewishtothankHang-ShengWangforhishelpincharacterizingdynamicpowerusingOrion
Figure7:
LeakagepowersavingsunderLookahead-AggressiveandPredictivepoliciesfor64- itbu er.
Figure8:Averagelatencyunderdi erentpoliciesfor
GatedVddSRAMs.
andLiShangforassistancewiththePopNetnetworksimu-lator.ThisworkispartiallyfundedbyNSFCAREERgrantCCR-0237540.
7.REFERENCES
[1]BerkeleyPredictiveTechnologyModelandBSIM4.
Availableat
http://www-device.eecs.berkeley.edu/research.html.[2]J.AButtsandG.S.Sohi,“Astaticpowermodelfor
architects”,InProc.Intl.Symp.Microarchitecture,Califonia,Dec.2000,pp.191–201.
[3]W.J.DallyandB.Towles.“Routepackets,notwires:
On-chipinterconnectionnetworks”,InProc.DesignAutomationConference,LasVegas,June2001
[4]K.Flautner,N.S.Kim,S.Martin,D.Blaauw,andT.
Mudge,“Drowsycaches:simpletechniquesforreducingleakagepower”,puterArchitecture,Alaska,May2002,pp.219-230.
[5]http://www.ee.princeton.edu/~lshang/popnet.html
[6]R.Kumar,C.P.Ravikumar,“Leakagepowerestimation
fordeepsubmicroncircuitsinanASICdesigninvironment”,InProc.ASP-DAC/VLSIDesign,Bangalore,India,2002.pp.45-50.
[7]M.Powell,S.-H.Yang,B.Falsa ,K.Roy,andT.N.
Vijaykumar,“Gated-Vdd:acircuittechniquetoreduceleakageindeep-submicroncachememories”,InProc.Intl.Symp.LowPowerElectronicsandDesign,Italy,July,2000,pp.90-95.
[8]L.Shang,L.-S.Peh,andN.K.Jha,“Dynamicvoltage
scalingwithlinksforpoweroptimizationofinterconnectionnetworks”,InProc.Intl.Symp.onHigh-PerformanceComputerArchitecture,California,Jan.2003,pp.79-90.[9]H.Wang,X.Zhu,L.-S.Peh,andS.Malik,“Orion:a
power-performancesimulatorforinterconnectionnetworks”,InProc.Intl.Symp.Microarchitecture,Istanbul,Turkey,Nov.2002,pp.294-305.
[http://www.ee.princeton.edu/~peh/orion.html]
[10]F.Worm,P.Ienne,P.ThiranandG.D.Micheli,“An
adaptivelowpowertransmissionschemeforon-chip
networks”,InProc.Intl.Symp.SystemsSynthesis,Kyoto,Japan,October2002,pp.92-100.
正在阅读:
ABSTRACT Leakage Power Modeling and Optimization in Interconnection Networks06-04
关于成功的作文议论文07-03
质量管理体系审核检查表05-28
2012年呼和浩特市中考试卷语文05-20
web服务器搭建03-19
高考地理二轮专题复习练习:第十七章_世界地理含解析(1)03-08
电网建设指导意见(35kV、110kV线路和中低压配网部分)10-09
匀变速直线运动专题复习06-09
朝鲜族婚礼习俗01-05
- 1Algebraic Topological Modeling for Cyberworld Design
- 2POWER - ABNORMAL告警
- 3POWER - ABNORMAL告警
- 4Abstract Electronic Auctions with Private Bids
- 5Petrel 2014 Fracture modeling裂缝建模
- 6Modeling the Kinematics and Dynamics of Compliant Contact
- 7Power Protocol reducing power dissipation on off-chip data buses
- 8Abstract Attribute-Based Prediction of File Properties
- 9Abstract Supervised fuzzy clustering for the identification of fuzzy classifiers
- 10Supporting MPEG video VBR traffic in wireless networks
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Interconnection
- Optimization
- ABSTRACT
- Modeling
- Networks
- Leakage
- Power
- 2007 AMJ Upper echelons theory--An update
- New solutions of relativistic wave equations in magnetic fields and longitudinal fields
- 政府职能及实现途径
- 第5章 数据透明传输技术
- 第三章 资金流转--电子商务支付
- 中学数学组教研工作计划
- 高级会计学练习题(2014.11.21)
- 中国通货膨胀的惯性变化及其货币政策含义
- 班主任基本功竞赛初赛2
- 2010三级辽宁省建造师考试市政实务考试题库
- iOS开发学习之iOS多线程和RunLoop
- 现代汉语词典违法了吗
- 无线网络故障诊断维护_2014-04-22-16-25-55
- 别墅基坑支护工程喷射砼面层施工方法
- 浅谈高校图书馆做好新生入馆培训工作的重要性
- 简单方法帮助女人
- 梦幻西游手游狮驼新技能连环击解析 连环击使用技巧
- 考勤及休假管理制度
- 八年级下册生物(人教版)复习提纲(2013年最新整理)
- 企业即时通信UcSTAR统一通信平台产品说明