【数学】备战中考数学旋转解答题压轴题提高专题练习附答案解析

更新时间:2023-04-11 06:50:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一、旋转真题与模拟题分类汇编(难题易错题)

1.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG.

(1) 求证:EG=CG;

(2) 将图①中△BEF 绕B 点逆时针旋转 45°,如图②所示,取DF 中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

(3) 将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).

【答案】解:(1)CG=EG

(2)(1)中结论没有发生变化,即EG=CG.

证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

在△DAG与△DCG中,

∵ AD=CD,∠ADG=∠CDG,DG=DG,

∴△DAG≌△DCG.

∴ AG=CG.

在△DMG与△FNG中,

∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,

∴△DMG≌△FNG.

∴ MG=NG

在矩形AENM中,AM=EN.

在Rt△AMG 与Rt△ENG中,

∵ AM=EN, MG=NG,

∴△AMG≌△ENG.

∴ AG=EG

∴ EG=CG.

(3)(1)中的结论仍然成立.

【解析】

试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.

(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明

△AMG≌△ENG,得出AG=EG;最后证出CG=EG.

(3)结论依然成立.还知道EG⊥CG;

试题解析:

解:(1)证明:在Rt△FCD中,

∵G为DF的中点,

∴,

同理,在Rt△DEF中,,

∴CG=EG;

(2)(1)中结论仍然成立,即EG=CG;

连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:

在△DAG与△DCG中,

∵AD=CD,∠ADG=∠CDG,DC=DC,

∴△DAG≌△DCG,

∴AG=CG,

在△DMG与△FNG中,

∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,

∴△DMG≌△FNG,

∴MG=NG,

在矩形AENM中,AM=EN.,

在Rt△AMG与Rt△ENG中,

∵AM=EN,MG=NG,

∴△AMG≌△ENG,

∴AG=EG,

∴EG=CG,

(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。

过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N,如图所示:

由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,

又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC

∵∠FEC+∠BEC=90°,

∴∠FEC+∠FEM=90°,即∠MEC=90°,

∴△MEC是等腰直角三角形,

∵G为CM中点,

∴EG=CG,EG⊥CG。

【点睛】本题解题关键是作出辅助线,且利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质,难度较大。

2.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.

(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.

①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长

(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.

【答案】(1)①补图见解析;②;(2)

【解析】

(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和

Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;

(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.

解:(1)①补全图形如图所示;

②如图,连接BD、CD

∵△BCP沿射线CA方向平移,得到△DAE,

∴BC∥AD且BC=AD,

∵∠ACB=90°,

∴四边形BCAD是矩形,∴CD=AB=6,

∵BP=3,∴DE=BP=3,

∵BP⊥CE,BP∥DE,∴DE⊥CE,

∴在Rt△DCE中,;

(2)证明:如图所示,

当C、P、M、N四点共线时,PA+PB+PC最小

由旋转可得,△AMN≌△APB,

∴PB=MN

易得△APM、△ABN都是等边三角形,

∴PA=PM

∴PA+PB+PC=PM+MN+PC=CN,

∴BN=AB=6,∠BNA=60°,∠PAM=60°

∴∠CAN=∠CAB+∠BAN=60°+60°=120°,

∴∠CBN=90°

在Rt△ABC中,易得

∴在Rt△BCN中,

“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.

3.如图,正方形ABCD中,点E是BC边上的一个动点,连接AE,将线段AE绕点A逆时针旋转90°,得到AF,连接EF,交对角线BD于点G,连接AG.

(1)根据题意补全图形;

(2)判定AG与EF的位置关系并证明;

(3)当AB=3,BE=2时,求线段BG的长.

【答案】(1)见解析;(2)见解析25

.

【解析】

【分析】

(1)根据题意补全图形即可;

(2)先判断出△ADF≌△ABE,进而判断出点C,D,F共线,即可判断出△DFG≌△HEG,得出FG=EG,即可得出结论;

(3)先求出正方形的对角线BD,再求出BH,进而求出DH,即可得出HG,求和即可得出结论.

【详解】

(1)补全图形如图所示,

(2)连接DF,

由旋转知,AE=AF,∠EAF=90°,

∵四边形ABCD是正方形,

∴AB∥CD,AD=AB,∠ABC=∠ADC=BAD=90°,∴∠DAF=∠BAE,

∴△ADF≌△ABE(SAS),

∴DF=BE,∠ADF=∠ABC=90°,

∴∠ADF+∠ADC=180°,

∴点C,D,F共线,

∴CF∥AB,

过点E作EH∥BC交BD于H,

∴∠BEH=∠BCD=90°,DF∥EH,

∴∠DFG=∠HEG,

∵BD是正方形ABCD的对角线,

∴∠CBD=45°,

∴BE=EH,

∵∠DGF=∠HGE,

∴△DFG≌△HEG(AAS),

∴FG=EG

∵AE=AF,

∴AG⊥EF;

(3)∵BD是正方形的对角线,

∴22,

由(2)知,在Rt△BEH中,22,∴2

由(2)知,△DFG≌△HEG,

∴DG=HG,

∴HG=1

2

DH=

2

2

∴BG=BH+HG=22+2

2=

52

2

【点睛】

此题是四边形综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性

质,勾股定理,作出辅助线是解本题的关键.

4.如图①,在ABCD中,AB=10cm,BC=4cm,∠BCD=120°,CE平分∠BCD交AB于点E.点P从A点出发,沿AB方向以1cm/s的速度运动,连接CP,将△PCE绕点C逆时针旋转60°,使CE与CB重合,得到△QCB,连接PQ.

(1)求证:△PCQ是等边三角形;

(2)如图②,当点P在线段EB上运动时,△PBQ的周长是否存在最小值?若存在,求

出△PBQ周长的最小值;若不存在,请说明理由;

(3)如图③,当点P在射线AM上运动时,是否存在以点P、B、Q为顶点的直角三角形?

若存在,求出此时t的值;若不存在,请说明理由.

(1)(2)

(3)

【答案】(1)证明见解析;(2)存在,理由见解析;(3)t为2s或者14s.

【解析】

分析:(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可;

(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到

△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;

(3)根据点的移动的距离,分类讨论求解即可.

详解:(1)∵旋转

∴△PCE≌△QCB

∴CP=CQ,∠PCE =∠QCB,

∵∠BCD=120°,CE平分∠BCD,

∴∠PCQ=60°,

∴∠PCE +∠QCE=∠QCB+∠QCE=60°,

∴△PCQ为等边三角形.

(2)存在

∵CE平分∠BCD,

∴∠BCE=60?,

∵在平行四边形ABCD 中,

∴AB∥CD

∴∠ABC=180°﹣120°=60°

∴△BCE为等边三角形

∴BE=CB=4

∵旋转

∴△PCE≌△QCB

∴EP=BQ,

∴C△PBQ=PB+BQ+PQ

=PB+EP+PQ

=BE+PQ

=4+CP

∴CP⊥AB时,△PBQ周长最小

当CP⊥AB时,CP=BCsin60°=

∴△PBQ周长最小为4+

(3)①当点B与点P重合时,P,B,Q不能构成三角形

②当0≤t<6时,由旋转可知,

∠CPE=∠CQB,

∠CPQ=∠CPB+∠BPQ=60°

则:∠BPQ+∠CQB=60°,

又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°

∴∠CBQ=180°—60°—60°=60°

∴∠QBP=60°,∠BPQ<60°,

所以∠PQB可能为直角

由(1)知,△PCQ为等边三角形,

∴∠PBQ=60°,∠CQB=30°

∵∠CQB=∠CPB

∴∠CPB=30°

∵∠CEB=60°,

∴∠ACP=∠APC=30°

∴PA=CA=4,

所以AP=AE-EP=6-4=2

÷=s

所以t=212

③当6<t<10时,由∠PBQ=120°>90°,所以不存在

④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,

而∠BPC>0°,

∴∠BPQ>60°

∴∠BPQ=90°,从而∠BCP=30°,

∴BP=BC=4

所以AP=14cm

所以t=14s

综上所述:t为2s或者14s时,符合题意。

点睛:此题主要考查了旋转图形变化的应用,结合平行四边形、等边三角形、全等三角形的判定与性质,进行解答即可,注意分类讨论思想的应用,比较困难.

5.(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.

(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);

(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;

(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).

【答案】(1)相等和垂直;(2)成立,理由见试题解析;(3).

【解析】

试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据

∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;

(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;

(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.

试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.

∵BF=DF,∴∠DBF=∠BDF.

∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.

同理得:∠CFE=2∠CBF,

∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.

∴DF=CF,且DF⊥CF.

(2)(1)中的结论仍然成立.证明如下:

如图,此时点D落在AC上,延长DF交BC于点G.

∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.

∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.

∵AD=DE,∴AD=GB.

∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.

∵∠ACB=90°,∴△DCG是等腰直角三角形.

∵DF=GF,∴DF=CF,DF⊥CF.

(3)如图,延长DF交BA于点H,

∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.

∴∠AED=∠ABC=45°.

∵由旋转可以得出,∠CAE=∠BAD=90°,

∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.

∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.

∵AC=,在Rt△ABC中,由勾股定理,得AB=4.

∵AD=1,∴ED=BH=1.∴AH=3.

在Rt△HAD中,由勾股定理,得DH=,

∴DF=,∴CF=.

∴线段CF的长为.

考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.

6.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.

(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;

(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;

(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.

【答案】(1)证明见解析;(2)45°或135°;(3).

【解析】

试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出

∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.

(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.

(3)根据和求解即可.

试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.

∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.

∴∠BAE=∠DAG..

∴△ABE≌△ADG(SAS).

∴BE=DG..

(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.

(3)如图3,连接GB、GE.

由已知α=45°,可知∠BAE=45°.

又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.

∵,∴GE =8.

∴.

过点B作BH⊥AE于点H.

∵AB=2,∴. ∴..

设点G到BE的距离为h.

∴.

∴.

∴点G到BE的距离为.

考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.

7.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.

(1)求边DA在旋转过程中所扫过的面积;

(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;

(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.

【答案】(1);(2);(3)不变化,证明见解析.

【解析】

试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.

(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.

(3)延长BA交DE轴于H点,通过证明和可得结论.

(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.

∴DA在旋转过程中所扫过的面积为.

(2)∵MN∥AC,∴,.

∴.∴.

又∵,∴.

又∵,∴.

∴.∴.

∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为. (3)不变化,证明如下:

如图,延长BA交DE轴于H点,则

, ∴

. 又∵

.∴. ∴

. 又∵

, ,∴. ∴

.∴. ∴

. ∴在旋转正方形ABCD 的过程中,值无变化.

考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.

8.小明合作学习小组在探究旋转、平移变换.如图△ABC ,△DEF 均为等腰直角三角形,各顶点坐标分别为A (1,1),B (2,2),C (2,1),D (2,0),E (22, 0),F (322

,22-). (1)他们将△ABC 绕C 点按顺时针方向旋转450得到△A 1B 1C .请你写出点A 1,B 1的坐标,并判断A 1C 和DF 的位置关系;

(2)他们将△ABC 绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线2y 22x bx c =++上.请你求出符合条件的抛物线解析式;

(3)他们继续探究,发现将△ABC 绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线2

y x =上,则可求出旋转后三角形的直角顶点P 的坐标.请你直接写出点P 的所有坐标.

【答案】解:(1

22c 0{b c 222+=?++= ??

. A 1C 和DF 的位置关系是平行.

(2)∵△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,

∴①当抛物线经过点D 、E

时,根据题意可得:

(

2

2c 0{c 0++=++=

,解得b 12{c =-=

∴2y 12x =-+

②当抛物线经过点D 、F

时,根据题意可得:

22c 0{b c 222++=?++= ??

,解得b 11{c =-=

∴2y 11x =-+

③当抛物线经过点E 、F

时,根据题意可得:(

22c 0{c ++=+=??

,解得b 13{c =-=

∴2y 13x =-+

(3)在旋转过程中,可能有以下情形:

①顺时针旋转45°,点A 、B 落在抛物线上,如答图1所示,

易求得点P 坐标为(0

,12

). ②顺时针旋转45°,点B 、C 落在抛物线上,如答图2所示,

设点B′,C′的横坐标分别为x 1,x 2,

易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b . 联立y=x 2与y=x+b 得:x 2=x+b ,即2x x b 0--=,∴1212x x 1x x b +==-,. ∵B′C′=1,∴

根据题意易得:12x x -=,∴()2121x x 2-=,即

()212121x x 4x x 2

+-=. ∴114b 2+=,解得1b 8=-.

∴21x x 08-+=,解得x =或x =.

∵点C′的横坐标较小,∴2x 4=

当2x 4=时,23y x 8-==.

∴P ③顺时针旋转45°,点C 、A 落在抛物线上,如答图3所示,

设点C′,A′的横坐标分别为x 1,x 2.

易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y x b =-+. 联立y=x 2与y x b =-+得:2x x b =-+,即2x x b 0+-=,

∴1212x x 1x x b +=-=-,.

∵C′A′=1,∴根据题意易得:12x x 2

-=,∴()2121x x 2-=,即()212121x x 4x x 2

+-=. ∴114b 2+=,解得1b 8=-.

∴21x x 08++=,解得2x 4-+=x 或2x 4

-=.

∵点C′的横坐标较大,∴2x 4-=

当2x 4-+=时,23y x 8-==.

∴P ). ④逆时针旋转45°,点A 、B 落在抛物线上.

因为逆时针旋转45°后,直线A′B′与y 轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在.

⑤逆时针旋转45°,点B 、C 落在抛物线上,如答图4所示,

与③同理,可求得:P ).

⑥逆时针旋转45°,点C、A落在抛物线上,如答图5所示,

与②同理,可求得:P(22

4

+

322

+

).

综上所述,点P的坐标为:(0,12

-

),(

22

-

322

-

),P(

22

-+

322

-

,(22

+

322

+

).

【解析】

(1)由旋转性质及等腰直角三角形边角关系求解.

(2)首先明确△ABC绕原点按顺时针方向旋转45°后的三角形即为△DEF,然后分三种情况进行讨论,分别计算求解.

(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A和点B、点B和点C、点C和点D三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解.

考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.

本文来源:https://www.bwwdw.com/article/lcpl.html

Top