【数学】备战中考数学旋转解答题压轴题提高专题练习附答案解析
更新时间:2023-04-11 06:50:01 阅读量: 实用文档 文档下载
- 如何备战中考数学推荐度:
- 相关推荐
一、旋转真题与模拟题分类汇编(难题易错题)
1.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG.
(1) 求证:EG=CG;
(2) 将图①中△BEF 绕B 点逆时针旋转 45°,如图②所示,取DF 中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3) 将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).
【答案】解:(1)CG=EG
(2)(1)中结论没有发生变化,即EG=CG.
证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,
∵ AD=CD,∠ADG=∠CDG,DG=DG,
∴△DAG≌△DCG.
∴ AG=CG.
在△DMG与△FNG中,
∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴△DMG≌△FNG.
∴ MG=NG
在矩形AENM中,AM=EN.
在Rt△AMG 与Rt△ENG中,
∵ AM=EN, MG=NG,
∴△AMG≌△ENG.
∴ AG=EG
∴ EG=CG.
(3)(1)中的结论仍然成立.
【解析】
试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明
△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
(3)结论依然成立.还知道EG⊥CG;
试题解析:
解:(1)证明:在Rt△FCD中,
∵G为DF的中点,
∴,
同理,在Rt△DEF中,,
∴CG=EG;
(2)(1)中结论仍然成立,即EG=CG;
连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:
在△DAG与△DCG中,
∵AD=CD,∠ADG=∠CDG,DC=DC,
∴△DAG≌△DCG,
∴AG=CG,
在△DMG与△FNG中,
∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,
∴△DMG≌△FNG,
∴MG=NG,
在矩形AENM中,AM=EN.,
在Rt△AMG与Rt△ENG中,
∵AM=EN,MG=NG,
∴△AMG≌△ENG,
∴AG=EG,
∴EG=CG,
(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N,如图所示:
由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,
又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,
∴∠FEC+∠FEM=90°,即∠MEC=90°,
∴△MEC是等腰直角三角形,
∵G为CM中点,
∴EG=CG,EG⊥CG。
【点睛】本题解题关键是作出辅助线,且利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质,难度较大。
2.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.
(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.
①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长
(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.
【答案】(1)①补图见解析;②;(2)
【解析】
(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和
Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;
(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.
解:(1)①补全图形如图所示;
②如图,连接BD、CD
∵△BCP沿射线CA方向平移,得到△DAE,
∴BC∥AD且BC=AD,
∵∠ACB=90°,
∴四边形BCAD是矩形,∴CD=AB=6,
∵BP=3,∴DE=BP=3,
∵BP⊥CE,BP∥DE,∴DE⊥CE,
∴在Rt△DCE中,;
(2)证明:如图所示,
当C、P、M、N四点共线时,PA+PB+PC最小
由旋转可得,△AMN≌△APB,
∴PB=MN
易得△APM、△ABN都是等边三角形,
∴PA=PM
∴PA+PB+PC=PM+MN+PC=CN,
∴BN=AB=6,∠BNA=60°,∠PAM=60°
∴∠CAN=∠CAB+∠BAN=60°+60°=120°,
∴∠CBN=90°
在Rt△ABC中,易得
∴在Rt△BCN中,
“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.
3.如图,正方形ABCD中,点E是BC边上的一个动点,连接AE,将线段AE绕点A逆时针旋转90°,得到AF,连接EF,交对角线BD于点G,连接AG.
(1)根据题意补全图形;
(2)判定AG与EF的位置关系并证明;
(3)当AB=3,BE=2时,求线段BG的长.
【答案】(1)见解析;(2)见解析25
.
【解析】
【分析】
(1)根据题意补全图形即可;
(2)先判断出△ADF≌△ABE,进而判断出点C,D,F共线,即可判断出△DFG≌△HEG,得出FG=EG,即可得出结论;
(3)先求出正方形的对角线BD,再求出BH,进而求出DH,即可得出HG,求和即可得出结论.
【详解】
(1)补全图形如图所示,
(2)连接DF,
由旋转知,AE=AF,∠EAF=90°,
∵四边形ABCD是正方形,
∴AB∥CD,AD=AB,∠ABC=∠ADC=BAD=90°,∴∠DAF=∠BAE,
∴△ADF≌△ABE(SAS),
∴DF=BE,∠ADF=∠ABC=90°,
∴∠ADF+∠ADC=180°,
∴点C,D,F共线,
∴CF∥AB,
过点E作EH∥BC交BD于H,
∴∠BEH=∠BCD=90°,DF∥EH,
∴∠DFG=∠HEG,
∵BD是正方形ABCD的对角线,
∴∠CBD=45°,
∴BE=EH,
∵∠DGF=∠HGE,
∴△DFG≌△HEG(AAS),
∴FG=EG
∵AE=AF,
∴AG⊥EF;
(3)∵BD是正方形的对角线,
∴22,
由(2)知,在Rt△BEH中,22,∴2
由(2)知,△DFG≌△HEG,
∴DG=HG,
∴HG=1
2
DH=
2
2
,
∴BG=BH+HG=22+2
2=
52
2
.
【点睛】
此题是四边形综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性
质,勾股定理,作出辅助线是解本题的关键.
4.如图①,在ABCD中,AB=10cm,BC=4cm,∠BCD=120°,CE平分∠BCD交AB于点E.点P从A点出发,沿AB方向以1cm/s的速度运动,连接CP,将△PCE绕点C逆时针旋转60°,使CE与CB重合,得到△QCB,连接PQ.
(1)求证:△PCQ是等边三角形;
(2)如图②,当点P在线段EB上运动时,△PBQ的周长是否存在最小值?若存在,求
出△PBQ周长的最小值;若不存在,请说明理由;
(3)如图③,当点P在射线AM上运动时,是否存在以点P、B、Q为顶点的直角三角形?
若存在,求出此时t的值;若不存在,请说明理由.
(1)(2)
(3)
【答案】(1)证明见解析;(2)存在,理由见解析;(3)t为2s或者14s.
【解析】
分析:(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可;
(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到
△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;
(3)根据点的移动的距离,分类讨论求解即可.
详解:(1)∵旋转
∴△PCE≌△QCB
∴CP=CQ,∠PCE =∠QCB,
∵∠BCD=120°,CE平分∠BCD,
∴∠PCQ=60°,
∴∠PCE +∠QCE=∠QCB+∠QCE=60°,
∴△PCQ为等边三角形.
(2)存在
∵CE平分∠BCD,
∴∠BCE=60?,
∵在平行四边形ABCD 中,
∴AB∥CD
∴∠ABC=180°﹣120°=60°
∴△BCE为等边三角形
∴BE=CB=4
∵旋转
∴△PCE≌△QCB
∴EP=BQ,
∴C△PBQ=PB+BQ+PQ
=PB+EP+PQ
=BE+PQ
=4+CP
∴CP⊥AB时,△PBQ周长最小
当CP⊥AB时,CP=BCsin60°=
∴△PBQ周长最小为4+
(3)①当点B与点P重合时,P,B,Q不能构成三角形
②当0≤t<6时,由旋转可知,
∠CPE=∠CQB,
∠CPQ=∠CPB+∠BPQ=60°
则:∠BPQ+∠CQB=60°,
又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°
∴∠CBQ=180°—60°—60°=60°
∴∠QBP=60°,∠BPQ<60°,
所以∠PQB可能为直角
由(1)知,△PCQ为等边三角形,
∴∠PBQ=60°,∠CQB=30°
∵∠CQB=∠CPB
∴∠CPB=30°
∵∠CEB=60°,
∴∠ACP=∠APC=30°
∴PA=CA=4,
所以AP=AE-EP=6-4=2
÷=s
所以t=212
③当6<t<10时,由∠PBQ=120°>90°,所以不存在
④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,
而∠BPC>0°,
∴∠BPQ>60°
∴∠BPQ=90°,从而∠BCP=30°,
∴BP=BC=4
所以AP=14cm
所以t=14s
综上所述:t为2s或者14s时,符合题意。
点睛:此题主要考查了旋转图形变化的应用,结合平行四边形、等边三角形、全等三角形的判定与性质,进行解答即可,注意分类讨论思想的应用,比较困难.
5.(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.
(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);
(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).
【答案】(1)相等和垂直;(2)成立,理由见试题解析;(3).
【解析】
试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据
∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;
(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;
(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.
试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.
∵BF=DF,∴∠DBF=∠BDF.
∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.
同理得:∠CFE=2∠CBF,
∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.
∴DF=CF,且DF⊥CF.
(2)(1)中的结论仍然成立.证明如下:
如图,此时点D落在AC上,延长DF交BC于点G.
∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.
∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.
∵AD=DE,∴AD=GB.
∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.
∵∠ACB=90°,∴△DCG是等腰直角三角形.
∵DF=GF,∴DF=CF,DF⊥CF.
(3)如图,延长DF交BA于点H,
∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.
∴∠AED=∠ABC=45°.
∵由旋转可以得出,∠CAE=∠BAD=90°,
∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.
∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.
∵AC=,在Rt△ABC中,由勾股定理,得AB=4.
∵AD=1,∴ED=BH=1.∴AH=3.
在Rt△HAD中,由勾股定理,得DH=,
∴DF=,∴CF=.
∴线段CF的长为.
考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.
6.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.
(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;
(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;
(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.
【答案】(1)证明见解析;(2)45°或135°;(3).
【解析】
试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出
∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.
(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.
(3)根据和求解即可.
试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.
∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.
∴∠BAE=∠DAG..
∴△ABE≌△ADG(SAS).
∴BE=DG..
(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.
(3)如图3,连接GB、GE.
由已知α=45°,可知∠BAE=45°.
又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.
∵,∴GE =8.
∴.
过点B作BH⊥AE于点H.
∵AB=2,∴. ∴..
设点G到BE的距离为h.
∴.
∴.
∴点G到BE的距离为.
考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.
7.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.
(1)求边DA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;
(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.
【答案】(1);(2);(3)不变化,证明见解析.
【解析】
试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.
(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.
(3)延长BA交DE轴于H点,通过证明和可得结论.
(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.
∴DA在旋转过程中所扫过的面积为.
(2)∵MN∥AC,∴,.
∴.∴.
又∵,∴.
又∵,∴.
∴.∴.
∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为. (3)不变化,证明如下:
如图,延长BA交DE轴于H点,则
,
, ∴
. 又∵
.∴. ∴
. 又∵
, ,∴. ∴
.∴. ∴
. ∴在旋转正方形ABCD 的过程中,值无变化.
考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.
8.小明合作学习小组在探究旋转、平移变换.如图△ABC ,△DEF 均为等腰直角三角形,各顶点坐标分别为A (1,1),B (2,2),C (2,1),D (2,0),E (22, 0),F (322
,22-). (1)他们将△ABC 绕C 点按顺时针方向旋转450得到△A 1B 1C .请你写出点A 1,B 1的坐标,并判断A 1C 和DF 的位置关系;
(2)他们将△ABC 绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线2y 22x bx c =++上.请你求出符合条件的抛物线解析式;
(3)他们继续探究,发现将△ABC 绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线2
y x =上,则可求出旋转后三角形的直角顶点P 的坐标.请你直接写出点P 的所有坐标.
【答案】解:(1
)
22c 0{b c 222+=?++= ??
. A 1C 和DF 的位置关系是平行.
(2)∵△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,
∴①当抛物线经过点D 、E
时,根据题意可得:
(
2
2c 0{c 0++=++=
,解得b 12{c =-=
∴2y 12x =-+
②当抛物线经过点D 、F
时,根据题意可得:
22c 0{b c 222++=?++= ??
,解得b 11{c =-=
∴2y 11x =-+
③当抛物线经过点E 、F
时,根据题意可得:(
22c 0{c ++=+=??
,解得b 13{c =-=
∴2y 13x =-+
(3)在旋转过程中,可能有以下情形:
①顺时针旋转45°,点A 、B 落在抛物线上,如答图1所示,
易求得点P 坐标为(0
,12
). ②顺时针旋转45°,点B 、C 落在抛物线上,如答图2所示,
设点B′,C′的横坐标分别为x 1,x 2,
易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b . 联立y=x 2与y=x+b 得:x 2=x+b ,即2x x b 0--=,∴1212x x 1x x b +==-,. ∵B′C′=1,∴
根据题意易得:12x x -=,∴()2121x x 2-=,即
()212121x x 4x x 2
+-=. ∴114b 2+=,解得1b 8=-.
∴21x x 08-+=,解得x =或x =.
∵点C′的横坐标较小,∴2x 4=
.
当2x 4=时,23y x 8-==.
∴P ③顺时针旋转45°,点C 、A 落在抛物线上,如答图3所示,
设点C′,A′的横坐标分别为x 1,x 2.
易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y x b =-+. 联立y=x 2与y x b =-+得:2x x b =-+,即2x x b 0+-=,
∴1212x x 1x x b +=-=-,.
∵C′A′=1,∴根据题意易得:12x x 2
-=,∴()2121x x 2-=,即()212121x x 4x x 2
+-=. ∴114b 2+=,解得1b 8=-.
∴21x x 08++=,解得2x 4-+=x 或2x 4
-=.
∵点C′的横坐标较大,∴2x 4-=
.
当2x 4-+=时,23y x 8-==.
∴P ). ④逆时针旋转45°,点A 、B 落在抛物线上.
因为逆时针旋转45°后,直线A′B′与y 轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在.
⑤逆时针旋转45°,点B 、C 落在抛物线上,如答图4所示,
与③同理,可求得:P ).
⑥逆时针旋转45°,点C、A落在抛物线上,如答图5所示,
与②同理,可求得:P(22
4
+
,
322
+
).
综上所述,点P的坐标为:(0,12
-
),(
22
-
,
322
-
),P(
22
-+
,
322
-
,(22
+
,
322
+
).
【解析】
(1)由旋转性质及等腰直角三角形边角关系求解.
(2)首先明确△ABC绕原点按顺时针方向旋转45°后的三角形即为△DEF,然后分三种情况进行讨论,分别计算求解.
(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A和点B、点B和点C、点C和点D三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解.
考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.
正在阅读:
【数学】备战中考数学旋转解答题压轴题提高专题练习附答案解析04-11
2016-2022学年第二学期研究生三助岗位设置一览表04-06
18套试卷合集山东省德州庆云县联考2019年中考化学第三次练兵模拟试卷 - 图文10-17
801作业指导书05-18
济宁市物业质量保修金管理办法12-30
领导案例11-22
精美英语文章6篇06-09
高三英语单项选择1000题01-26
数控机床中伺服系统应用前景展望08-20
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 数学
- 压轴
- 答题
- 备战
- 中考
- 旋转
- 解析
- 练习
- 答案
- 提高
- 专题
- 信息技术与学科教学深度融合实施方案
- 谷歌明确新的定向广告计划,对你意味着什么?_0305
- 七年级生物上册 3_5_2 绿色植物的呼吸作用导学案(新版)新人教版
- 高一上学期语文期中考试试卷及答案
- TRA(毒理学风险评估)教案资料
- 广东省小学语文三年级下册:第五单元试卷
- 隆回县职称论文发表网-小学高年级:自信心创新论文选题题目
- 人教版小学数学六年级下册总复习测试卷(三)课时练试卷习题
- 急性肾损伤的定义、诊断及治疗
- 成绩考核的内容与方式
- 24种味型(材料特制)
- 我国报关行业存在的问题及对策
- 新教材人教版高中英语选择性必修第一册Unit 4 Body Language重点
- 三年级语文下册质量检测分析报告.doc
- 淮北人社职改办职称论文发表网-市政路桥工程现场施工难点管理措
- LCD点级维修培训资料
- 公安基础知识标准化题库2.doc
- 羁旅诗、边塞诗 习题及答案
- 耳罩和耳塞的使用和注意事项标准范本
- 2022年成都市中考英语仿真试题及答案