An experimental investigation and correlation on buoyant gas
更新时间:2023-03-29 06:34:01 阅读量: 建筑文档 文档下载
- angelababy推荐度:
- 相关推荐
AppliedThermalEngineering51(2013)246e254
ContentslistsavailableatSciVerseScienceDirect
AppliedThermalEngineering
journalhomepage:www.elsevi
http://www.77cn.com.cn/locate/apthermeng
Anexperimentalinvestigationandcorrelationonbuoyantgastemperaturebelowceilinginasloppingtunnel re
L.H.Hua,*,L.F.Chena,L.Wua,Y.F.Lib,J.Y.Zhangc,N.Menga
a
StateKeyLaboratoryofFireScience,UniversityofScienceandTechnologyofChina,Hefei230026,Anhui,ChinaCollegeofArchitectureandCivilEngineering,BeijingUniversityofTechnology,Beijing100124,Chinac
ChinaAcademyofBuildingResearch,Beijing100013,China
b
highlights
<Experimentsarecarriedoutinareducedscalemodeltunnel.
<Gastemperaturedatabeneaththeceilinginasloppingtunnel reisobtained.<Tunnelslopefactorisincludedintothecurrentequations.<Modi edequationsagreewellwiththemeasureddata.
articleinfo
Articlehistory:
Received18January2012Accepted18July2012
Availableonline7September2012Keywords:Tunnel reSlope
MaximumtemperatureTemperaturedecayCeiling
abstract
Theeffectoftunnelslopeonthe reinducedhotgastemperaturepro lebeneaththeceilinghasnotbeenclari ednorincludedinexistingmodels.Thus,inthispaperexperimentsarecarriedoutinareducedscalemodeltunnelwithdimensionsof6m(length)Â1.3m(width)Â0.8m(height),whichispositionedwithina72mlongwindtunnel.Theslopesofthemodeltunnelarevariedatthreetypicaldifferentdegrees,0%,3%and5%.ALPGporousgasburnerisusedas resource.Boththemaximumgastemperatureandthetemperaturedistributionalongthetunnelceilingaremeasuredandcomparedwithpreviousmodels.Resultsshowthatthosemodelsoverestimatesthemaximumtemperaturebeneaththeceilingofasloppingtunnel re.Thegastemperaturedecaysfasteralongtheceilingfortunnelswithhigherslope.Empiricalcorrelationsarethenproposedtomodifythecurrentmodelstoincludethetunnelslopefactor.Thepredictionsbythemodi edequationsofthisworkagreewellwiththemeasureddatainboththemaximumtemperatureandtemperaturedecaybeneaththeceilingofthetunnelwithdifferentslopes.
Ó2012ElsevierLtd.Allrightsreserved.
1.Introduction
Firesintunnelshaveattractedincreasingattentioninrecentyearsduetoitscatastrophicconsequence,suchasthe reofHokurikurailwaytunnelinJapanwith30peoplekilledand715hurt,thatinMont-BlanctunnelAustriain1999andDagueKoreain2003killed41and198peoplerespectively.Thehotgas owspreadsalongthetunnelceilingdrivenbybuoyancyinducedbythe reandatthesametimetransportspoisonouscombustionprod-uctstolongdistanceaway.Studyonbuoyantgas owtemperaturedistributionalongtheceilinginatunnelisfundamentalin rescience,andalsocriticalin resafetyengineeringduetothefollowingfacts[1e17]:
*Correspondingauthor.Tel.:þ(86)5513606446;fax:þ(86)5513601669.E-mailaddress:hlh@http://www.77cn.com.cn(L.H.
Hu).1359-4311/$eseefrontmatterÓ2012ElsevierLtd.Allrightsreserved.http://www.77cn.com.cn/10.1016/j.applthermaleng.2012.07.043
1.Thetunnelhasmuchlargerlength-to-heightaspectratiothantheordinarycompartment.Thismakescommonzonetypemodels,whichassumesthegastemperaturespatiallyuniformbeneaththeceiling,isnotapplicableinsuchastructure[1e12].TheaccuracyoftheCFDsimulationdependsontheaccuracyofthephysicalmodelsemployedintheCFDcodes.CFDsimulationoftunnel res,wherecomplexinteractionbetweenlongitudinalventilationair owandcombustionoccurs,isstillatthedevel-opmentstageandphysicsinsideisnotyetgoodenoughsolved.Weneedequationmodelstopredictthegastemperatureatanydistanceawayfromthe reinengineeringapplications.
2.Themaximumgastemperaturebeneaththeceilingabovethe reisacriticalparameterindesigningandevaluationofthe re-proofmaterialperformanceofthetunnelceiling[13e15].Italsodiffersfromthatofthecompartment re,asthelongi-tudinalventilationair owinatunnelde ectsthe ameand
L.H.Huetal./AppliedThermalEngineering51(2013)246e254247
Fig.1.Dimensionsofthemodeltunnel.
plume.Suchinteractionbetweentheinertialforceofthelongitudinalventilationair owandthebuoyancystrengthofthe resourceneedstobequanti edtopredictthemaximumgastemperaturebeneaththeceilinginatunnel.
3.Thebuoyancystrengthofthegas owdecaysduetoitstemperaturedecreasealongthetunnel.Thiswillresultinacriticalsituationthatatadistanceawayfromthe resource,thebuoyancyforceisweakerthantheinertialforceofthelongitudinalventilationair owleadingtothelossofthehot-gas-cool-airstrati cationstructure[16,17].Thisisaverydangeroussituationforthepeopleinevacuationbelowthegas ow.So,knowingthegastemperatureatanydistanceawayfromthe reisveryimportantforthisevaluationofthestabilityofthestrati cation.Thegastemperatureatanydistanceawayfromthe resourcecanbepredictedifweknow:a)themaximumtemperaturebeneaththeceilingrightabovethe resource;andb)howthegastemperaturedecayswithdistancealongthetunnel.
Oka[18,19]conductedexperimentstocharacterizetheeffectsoflongitudinalventilationon amepropertiesincaseoftunnel reanddevelopedempiricalcorrelationmodelsfor ametilt-angle,maximumtemperatureofsmokelayerundertheceilinganditsposition.Forthemaximumgastemperaturebeneaththeceilingabovethe re,Kurioka[13]proposedfollowingempiricalequationbasedonthecorrelationofscalemodelexperimentalresults:
Table1
Experimentalconditions.
Testno.Tunnelslope(%)Ventilationvelocity(m/s)Heatreleaserate(kW)1e50
0204060901206e100.32040609012011e150.62040609012016e200.92040609012021e251.22040609012026e303
02040609012031e350.32040609012036e400.62040609012041e450.92040609012046e501.22040609012051e555
02040609012056e600.32040609012061e650.62040609012065e700.92040609012071e75
1.2
20
40
60
90
120
DT max
*2=3!3
Ta
¼g
Q_Fr(1)
Q
_*2=3=Fr1=3<1:35;g¼1:77;3
¼6=5Q
_*2=3=Fr1=3!1:35;g¼2:54;3
¼0
whereQ_*isthedimensionlessheatreleaserateofthe rede nedas:
Q
_*¼Q
_raCpT5=2
(2)
ag1=2Hd
FristheFroudenumbergivenby:
2Fr¼
u(3)
d
top surface
middle layer
Fig.2.Porousgasburner resource.
248L.H.Huetal./AppliedThermalEngineering51(2013)246e254
Fig.3.Changeoftunnelslopeandpositionsofthe
thermocouples.
whereraistheambientairdensity,Taistheambientairtemper-ature,Hdistheheightfromthe resourcetothetunnelceilinganduisthelongitudinalair owspeedinthetunnel.Li[15]obtainedanotherequationtopredictthemaximumexcessgastemperaturebeneaththeceilingbasedonaxisymmetric replumetheoryandmodel-scaleexperiments:
8>>>>Q_>u>0:19
DT<ur1=3H5=3dmax¼
>>(4)
>>:17:5_2=3>QH5=3u 0:19
d
where
u0¼
uu(5)
Q_!1=3
u*¼
cg(6)
apa
ristheradiusofthe resource,Q_c
istheconvectiveheatreleaserateof resource.
Forthegastemperaturedecayalongthetunnel,ithasbeenbuilt[19e23]thatthedecreaseofthegas owtemperaturealongthetunnel,withneglectofairentrainmentatthehot-gas-airlayerinterface,followsanexponentialdecay
http://www.77cn.com.cnparisonofexperimentaldatawithpredictionsbyKuriokamodel(Eq.(1)
).
DTx¼TxÀTa
(7)
0T0a
¼eÀKxThisexponentialpro lewasveri edbyHu[21e23]byfullscaleexperiments.
However,inallthoseformerresearches,theslopeoftunnelwasnotconsidered.Infact,itiscommonthattransportationtunnel
has
a
b
http://www.77cn.com.cnparisonofexperimentaldatawithpredictionsbyLimodel(Eq.(4)).
L.H.Huetal./AppliedThermalEngineering51(2013)246e254249
Fig.6.Correlationofcorrectioncoef cientwithtunnelslopeforamendingmaximumgastemperatureriseequationbasedonKurioka
model.
aslope.Inlongmountainoustransportationtunnels,thisslopeisusuallylessthan5%.Suchaslopewillalterboththemaximumgastemperaturebeneaththeceilingbychangingthetiltingangleofthe replumerelativetothetunnel;aswellasthegastemperaturedecayalongthetunnelastheentrainmentintothehotgas owatitsinterfacewiththebelowambientair owchangesduetothechangeoftherelativegravitationalforcedirectiontothegas owfromperpendicularinahorizontalcase.Ko[24]investigatedtheeffectsoftunnelslopeonthecriticalvelocityintunnel resbytheexperimentsandPalazzi[25]developedamathematicalmodeltoobtainthecriticalventilationvelocityinthecaseofaslopedtunnel.Intheformerstudies[e.g.,Ref.[26],]onthecriticallongitudinalventilationvelocity,ithasbeenshownthatsuchcriticalventilationair owvelocity(representingthebalanceoftheinertialforceofthelongitudinalventilationair owandthebuoyancyforceoftheupstreamgas ow)changeswithtunnelslopeandalinearcorrectionmodelhasbeenempiricallyproposedtoaccountforthetunnelslopeeffect,
ucðbÞ¼ucð0Þ½1À0:014b
(8)
whereuc(0)isthecriticallongitudinalventilationair owvelocityforahorizontaltunnel,andbisthetunnelslopeindegrees(%)whichisnegativeforadownhilltunnelandpositivefortheuphillcase.Ithasalsobeenshown[14]thatthemeasuredmaximumgastemperaturesbeneaththeceilingissomelowerinuphillsloppingtunnelsthanthosepredictedbyEq.(1).Thefocusofourworkisonhowtheslopeofthetunnelaffectsboththemaximumgastemperaturebeneaththeceilingandthetemperaturedecaypro leinatunnel re.However,thishasnotbeenclari edinthelitera-ture,ataskundertakeninthispaper.
Aseriesofexperimentswereconductedinalaboratoryscalemodeltunnelinthispaperwithdifferent rebuoyancyreleaserates,longitudinalventilationair owvelocitiesandtunnelslopesasdescribedinSection2.TheexperimentalresultswereanalyzedandcorrelatedtomodifytheaboveequationstoincludethetunnelslopefactorinSection3followedbyasummaryofmajor ndingsofthiswork.2.Experimental
Areduced-scaleexperimentalmodeltunnelisconstructedtostudythegastemperaturebeneaththeceilingasshowninFig.1.
a
b
Fig.7.Correlationofcorrectioncoef cientwithtunnelslopeforamendingmaximumgastemperatureriseequationbasedonLi
model.
Themodeltunnelhasdimensionsof6m(length)Â1.3m(width)Â0.8m(height),withitsceilingand oorcoveredwith re-proofgypsumboard.Itssidewallsaremadeoftoughenedglassresistanttohightemperaturetoallowforvisualobservationof
the
http://www.77cn.com.cnparisonofexperimentaldatawithpredictionsofmodi edmodelsonmaximumgastemperaturebeneathtunnelceiling(Eq.(12)).
250L.H.Huetal./AppliedThermalEngineering51(2013)246e254
combustionandsmokemovementphenomenon.Theslopeofthemodeltunnelcanbechangedbyadjustingtheheightatitsend.Inthisstudy,threetypicalslopesof0%,3%and5%areconsidered.Themodeltunnelispositionedinsideabiggersizewindtunneltoallowforuniformlongitudinalair owvelocitypassingthroughthemodeltunnelcanbemaintainedatdesignedlevels.Thelongitu-dinalventilationair owvelocityismonitoredandmeasuredbyadigitalhot-wireanemometeratthecenterlineofthetunnelentrance.Inthisstudy, vekindsoflongitudinalventilationair owvelocities,0m/s,0.3m/s,0.6m/s,0.9m/sand1.2m/swereconsidered.Total75testswerecarriedoutassummarizedinTable1.
Asthelongitudinalair owwillposecomplexeffectonthecombustionbehaviorandsoasheat/buoyancyreleaserateofsolidandliquidfuels[1,3],gaseousfuelisburnedas resource.Aporousgasburnerisdesignedas resourceasshowninFig.2.Thegasburner,whichisweldedbysteelplateswiththicknessof2mm,hasasquaretopsurfacewithadimensionof0.3mÂ0.3mÂ0.03m.Total361smallholesaredrilledwithinasquareregionof0.27mÂ0.27monthetopsurfaceofthegasburner.Theintervalbetweentheholesis1.5cm.Thegasburnerissetatthecentralaxisofthetunnelentrance.Lique edPetroleumGas(LPG)isusedasfuel.Gas owratemeter,withaccuracyof0.1m3/h,isinstalledtomonitorandcontrolsthegasfuel owrate.Theheatreleaserateiscalculatedbyfuelsupply owratemulti-pliedbytheheatofcombustionofthefuel.Fivebuoyant/heatreleaseratesof20kW,40kW,60kW,90kW,and120kWwereconsidered.
K-typesheathedthermocoupleswithdiameterof1.0mmareinstalledtomeasurethegastemperaturebeneaththeceiling,upto1200 C.Twosetsofthermocouplesaremounted0.03mbelowthecentralaxisoftheceilinglongitudinallyalongthemodeltunnel.The rstsethas8K-thermocoupleswiththe rstandthelastthermocoupleat0mand1.4mfromthe resource,eachat0.2mintervals.Thesecondsetconsistsof14K-thermocoupleswiththe rstandthelastoneat1.7mand5.6mdownstreamawayfromthe resource,eachat0.3mintervals.Thetotalnumberofthether-mocouplesis22,asshowninFig.3
.
a
b
Fig.9.Exponential ttingofthenormalizedgastemperaturerisedistributionalongtunnelceiling.
L.H.Huetal./AppliedThermalEngineering51(2013)246e254251
3.Resultsanddiscussion
3.1.Maximumgastemperaturebeneaththeceiling
ThemaximumexcessgastemperaturesmeasuredbeneaththeceilingarecomparedwithKurioka’sequation(Eq.(1))inFig.4andcomparedwithLi’sequation(Eq.(4))inFig.5,respectively.Itcanbeobservedthat:a)thepredictionsbythesetwoequationsagreewellwiththemeasureddataforslopeof0%,butareobviouslyhigherforslopesof3%and5%;b)themaximumgastemperaturedecreasesasthetunnelslopeincreases.Afactoroftunnelslopeisthenincludedtomodifythecurrentequationsasdescribedbelow.
Proposingacoef cientfactorKctoaccountforthetunnelslopeeffect,themaximumexcessgastemperaturebeneaththeceilingcanbeexpressedas:
0DTmax
DTmax¼
8_KcQ>>>>5=3><ur1=3Hd>_2=3>KcQ>>>:17:55=3;
Hd
u>0:19
(9b)
u 0:19
basedonKurioka’sequationandLi’sequation,respectively.Thecoef cientKcisthendeducedempiricallyfromtheexperimentalresultsforeachtestcase:
Kc¼
0DTmaxmax
(10)
Ta
or
*2=3!3
_Q
¼Kcg
Fr(9a)
0whereDTmaxisthemeasuredvalueandDTmaxisthatcalculatedby
Eq.(1)or(4).
Thededucedvaluesofcoef cientKcarethencorrelatedlinearlywiththetunnelslopeforageneralengineeringapplication,asthesamewaywetreatthecriticallongitudinalventilationvelocityforsloppingtunnels(Eq.(8)),asshowninFigs.6and7.The
correlation
cd
Fig.9.(continued).
252L.H.Huetal./AppliedThermalEngineering51(2013)246e254
resultssuggestthefollowinglinearequationforthemodi cationofthecurrentmodels:
FortheKuriokamodel,
Kc¼1À0:077b Kc
FortheLimodel,
(11a)
However,itshouldbenotedthatthevalueofbshouldbenegativewhenthetunnelslopeisdownhill.Fig.8showsacomparisonofexperimentalresultsofmaximumexcessgastemperaturebeneaththetunnelceilingwiththosepredictedbyaboveequations.Itisshownthatpredictionsbythemodi edequationsagreewelltheexperimentalvalues.
1À0:067b;u0>0:191À0:061b;u0 0:19
(11b)
3.2.Gastemperaturedecayalongthetunnelceiling
whichgivethemodi edequationsbasedonKurioka’sandLi’sequation,respectively.
DT max
*2Ta
¼ð1À0:077bÞÂg
Q
_=3!3
Fr1=3
8>>>>>ð1À0:067bÞQ_u>0:19DTmax
¼<ur1=3Hd>>>>>:ð1À0:061bÞ17:5Q_2=3H;u 0:19d
Fig.9.(continued).
Fig.9presentsthevariationofnormalizedtemperaturerisebythemaximumtemperaturerisewithdistancedownstreamfrom(12a)
the resourceandthecollapsebyanexponentialfunctionbasedonEq.(7).Itcanbeobservedthat:
1.Overall,thetemperaturepro lealongthetunnelceilingcanbewellcollapsedbytheexponentialfunction,asinconsistent(12b)
withthetheoreticalequationsintheliterature.
2.Thegastemperaturedecaysabitfasterwithdistancecorre-spondingtoahigherabsolutevalueoftheexponentialpowerindexcoef cientwhenthelongitudinalventilationair owvelocityislower,butalmostindependentofthebuoyancy/heatreleaserateofthe resource.
3.Thegastemperaturedecaysmuchfasterwithdistancewhenthetunnelslopeishigher.Thisisduetothehigherentrainmentatthegaslayerinterface.Whenthetunnelishorizontalandthegravitationalforceisperpendiculartothegas owdirection,theentrainmentofcoolairintotheupperhotgas owisonlycausedbythesheeringeffectanddispassionattheirinterface.However,whenthetunnelhasaslope,thebuoyancyinducedentrainmentduetogravitationalforcewillmakeconsiderablecontribution.Asthecoolairentrainmentintothegas owisenhanced,thedecayofgastemperaturewithdistanceisfaster.So,thefunctionongastemperaturedecayalongtunnelceilingreportedintheliteratureonhorizontaltunnelsneedstobemodi edtoincludethetunnelslopefactor.Alinearcorrelationisproposedtoincludethetunnelslopeeffectintothecoef cientofxintheexponentialfunctionpowerindex:
DTxTxÀT0¼a
¼eÀKcKx(13)
0T0a
ThevaluesofK0c
arecorrelatedwithtunnelslopesinFig.10showingagoodlinearrelationship,suggestingthefollowingfunctiontoaccountforthetunnelslopeeffectonthegastemper-aturedecayalongthetunnelceiling,
K0c¼1þ0:09b
(14)
or
DTxTxÀTmax¼a
Tmax¼eÀð1þ0:09bÞKx
(15)
a
So,thegastemperaturebeneaththeceilingatanydistanceawayfromthe resourcecanbepredictedbycombiningEq.(12)andEq.(15).Itshouldbenotedthatthevalueofbshouldbepositivewhenthetunnelslopeisuphill,butnegativewhendownhill.Fig.11comparesthepredictionsbythemodi edequa-tionswithallthemeasuredvalues.Itcanbeseenthattheyareingoodagreement.
However,duetotheheightlimitationofthewindtunnelwherethemodeltunnelispositioned,themodeltunnellengthisonly
7.5
L.H.Huetal./AppliedThermalEngineering51(2013)246e254253
Fig.10.Correlationofexponentialgastemperaturedecaypowerindexcorrectioncoef cientwithtunnelslope.
times(6/0.8)ofitswidth.Foralongsloppingtunnel,thebuoyancyinduced“stackeffect”cannotbeignored.Thiseffectismoreconsiderablewhenthetunnelslopeislarge.Itwillacceleratethesmokeandlongitudinalair owinsidethetunnelsomehow.Itseffectontheabovetwopointsinvestigatedinthisstudyarefurtherdiscussedbelow:
(1)Forthemaximumtemperature,itisonlyaffectedbytheheat
releaserateofthe re,tunnelheightandthelongitudinalair owspeed.Andthisparameterisonlydeterminedbythenear re eldcondition.So,itcannotbeaffectedbythelimitationofthemodeltunnellength;
(2)Forthetemperaturedecay,itismainlydominatedbytheheat
lossthroughtheboundary.Theentrainmentoffreshairintothesmoke owattheirinterfacewillalsomakesomeweakercontributiontothetemperaturedecay.The“stackeffect”accelerationwillenhancetheentrainmentatthesmoke-air owinterfacetosomeextentandthusthetemperaturedecay.Thiscannotbeansweredduetothelengthlimitationofthemodeltunnelofthecurrentstudyandwillbeinvestigatedinthefuture.
http://www.77cn.com.cnparisonofexperimentaldatawithpredictionsbymodi edmodelongastemperaturedownstreambeneathtunnelceiling(Eq.(15)
).
4.Conclusions
Aseriesofexperimentsarecarriedoutinthispapertoinves-tigatetheeffectoftunnelslopeonthegastemperaturebeneaththeceilingundervariousbuoyant/heatreleaserateofthe reanddifferentlongitudinalventilationair owspeeds.Themajor nd-ingsare:
1.TheKurioka’sandLi’sequationhavegoodpredictiononthemaximumsmoketemperaturebeneaththeceilingforahori-zontaltunnelwithslopeof0%,butbothoverestimatesthetemperatureinanuphilltunnel.
2.Themaximumgastemperaturebeneaththeceilingdecreaseswiththeincreaseinslopeofanuphilltunnel.TheequationsproposedbyKuriokaandLiaremodi edtoincludethefactoras
DT slope
max_*2=3!3
Ta¼ð1À0:077bÞÂgQ
Fr1=3
andDTmax¼8>>>>><ð1À0:067bÞQ_ur1=3H5=3u>0:19d
>>>>>:ð1À0:061bÞ17:5Q_2=3whosepredictionsare
H5=3u 0:19;d
ingoodagreementwiththemeasuredvalues(Fig.8).
3.Thegastemperaturebeneaththeceilingdecaysalongthetunnelceilingexponentiallymuchfasterwithdistanceawayfromthe resourceinanuphilltunnelthanthatinahorizontalone.TheeffectofthetunnelslopeonthegastemperaturedecaycanbeincludedintothecurrentmodelbyalinearfunctionexpressedasDTx=DTmax¼TxÀTa=TmaxÀTa¼eÀð1þ0:09bÞKx,asalsoingoodagreementwiththeexperimentalresults(Fig.10).Acknowledgements
ThisworkwasjointlysupportedbytheNationalNaturalScienceFoundationofChinaunderGrantNo.51176180,NationalKeyTechnologyR&DProgramofChina2011BAK03B02,ProgramforNewCenturyExcellentTalentsinUniversityunderGrantNo.NCET-09-0914andShenzhenMunicipalScienceandTechnologyIndustryandInformationTechnologyCommissionResearchGrantsforFundamentalResearchunderGrantNo.JC201005260236A.References
[1]G.B.Grant,D.Drysdale,Estimatingheatreleaseratesfromlargeescaletunnel
res,in:ProceedingsoftheFifthInternationalSymposiumonFireSafetyScience(1995)1213e1224.
[2]Y.Oka,G.T.Atkinson,Controlofsmoke owintunnel res,FireSaf.J.25
(1995)305e322.
[3]R.O.Carvel,A.N.Beard,P.W.Jowitt,Thein uenceoflongitudinalventilation
systemson resintunnels,Tunn.Undergr.Sp.Technol.16(2001)3e21.[4]L.H.Hu,R.Huo,H.B.Wang,Experimentalandnumericalstudiesonlongitu-dinalsmoketemperaturedistributionupstreamanddownstreamfromthe reinaroadtunnel,J.FireSci.25(2007)23e43.
[5]R.O.Carvel,A.N.Beard,P.W.Jowitt,D.D.Drysdale,Variationofheatrelease
ratewithforcedlongitudinalventilationforvehicle resintunnels,FireSaf.J.36(2001)569e596.
[6]Y.Wu,M.Z.A.Bakar,Controlofsmoke owintunnel resusinglongitudinal
ventilationsystemsdastudyofthecriticalvelocity,FireSaf.J.35(2000)363e390.[7]G.B.Grant,S.F.Jagger,C.J.Lea,Firesintunnels,Phil.Trans.R.Soc.Lond.356
(1998)2873e2906.
[8]S.R.Lee,H.S.Ryou,Anumericalstudyonsmokemovementinlongitudinalventi-lationtunnel resfordifferentaspectratio,Build.Environ.41(2006)719e725.[9]L.H.Cheng,T.H.Ueng,C.W.Liu,Simulationofventilationand reinthe
undergroundfacilities,FireSaf.J.36(2001)597e619.
[10]W.K.Chow,S.M.Jojo,Numericalstudiesonperformanceevaluationoftunnel
ventilationsafetysystems,Tunn.Undergr.Sp.Technol.18(2003)435e452.[11]K.B.McGrattan,AnthonyHamins,NumericalSimulationoftheHowardStreet
TunnelFire,Baltimore,Maryland.July2001,NISTIR6902,NationalInstituteofStandardsandTechnology,
2002.
254L.H.Huetal./AppliedThermalEngineering51(2013)246e254
[12]L.Y.Cooper,Abuoyantsourceintheloweroftwohomogeneous,stablystrati ed
http://www.77cn.com.cnbustionInstitute,Pittsburgh,PA,USA,http://www.77cn.com.cnbust.Inst.20(1984).[13]H.Kurioka,Y.Oka,H.Satoh,O.Sugawa,Firepropertiesinnear eldofsquare re
sourcewithlongitudinalventilationintunnels,FireSaf.J.38(4)(2003)319e340.[14]L.H.Hu,R.Huo,W.Peng,W.K.Chow,R.X.Yang,Onthemaximumsmoke
temperatureundertheceilingintunnel res,Tunn.Undergr.Sp.Technol.21(2003)650e655.
[15]Y.Z.Li,B.Lei,H.Ingason,Themaximumtemperatureofbuoyancy-driven
smoke owbeneaththeceilingintunnel res,FireSaf.J.46(2011)204e210.[16]D.Yang,L.H.Hu,R.Huo,Y.Q.Jiang,S.Liu,F.Tang,Experimentalstudyon
buoyant owstrati cationinducedbya reinahorizontaltunnel,Appl.Therm.Eng.30(2010)872e878.
[17]A.S.Awad,R.K.Calay,O.O.Badran,A.E.Holdo,Anexperimentalstudyofstrat-i ed owinenclosures,Appl.Therm.Eng.28(17e18)(2008)2150e2158.[18]Y.Oka,H.Kurioka,H.Satoh,Flamepropertieswithlongitudinalventilationin
atunnel redIncaseof ameswithouttouchingtunnelceiling,Bull.Jpn.Assoc.FireSci.Eng.51(2)(2001)55e56.
[19]Y.Oka,H.Kurioka,H.Satoh,O.Sugawa,Firepropertieswithlongitudinal
ventilationinatunnel,in:ProceedingsoftheFifthAsia-OceaniaSymposiumonFireScienceandTechnology(2001)156e170.
[20]M.A.Delichatsios,The owof regasesunderabeamedceiling,Combust.
Flame43(1981)1e10.
[21]L.H.Hu,R.Huo,Y.Z.Li,H.B.Wang,W.K.Chow,Full-scaleburningtestson
studyingsmoketemperatureandvelocityalongacorridor,Tunn.Undergr.Sp.Technol.20(3)(2005)223e229.
[22]L.H.Hu,R.Huo,H.B.Wang,Y.Z.Li,R.X.Yang,Experimentalstudieson re-inducedbuoyantsmoketemperaturedistributionalongtunnelceiling,Build.Environ.42(11)(2007)3905e3915.
[23]L.H.Hu,R.Huo,W.K.Chow,H.B.Wang,R.X.Yang,Decayofbuoyantsmoke
layertemperaturealongthelongitudinaldirectionintunnel res,J.Appl.FireSci.13(1)(2004e2005)49e73.
[24]G.H.Ko,S.R.Kim,H.S.Ryou,Anexperimentalstudyontheeffectofslopeon
thecriticalvelocityintunnel res,J.FireSci.28(1)(2010)27e47.
[25]E.Palazzi,B.Fabiano,R.Pastorino,G.Maschio,Tunnelventilationmodelingin
slopedtunnels,in:9thInternationalConferenceonChemicalandProcessEngineering(2009)349e354.
[26]G.T.Atkinson,Y.Wu,Smokecontrolinslopingtunnels,FireSaf.J.27(1996)
335e341.
Nomenclature
Cp:speci cheatofairatconstantpressure(kJ/kgK)Fr:dimensionlessFroudenumberg:gravitationalacceleration(m/s2)
HQ:
_d:heightfrom resourcetotunnelceiling(m)heatreleaserateofQ_ resource(kW)Dc
:convectiveheatreleaserate(kW)Tmax:maximumexcessgastemperature(K)Ta:ambientairtemperature(K)
u:longitudinalventilationair owvelocity(m/s)u*:characteristicKc;K0velocity(m/s)
c
:modi edcoef cientfortunnelslopeeffectTx:temperatureatxmetersfromthereferenceposition(m)To:temperatureatreferenceposition(K)r:radiusof resource(m)Greekrsymbols
ga:ambientairdensity(kg/m3):coef cientinEq.(1)
3b:
coef cientinEq.(1)
:percentageofthetunnelslope
正在阅读:
An experimental investigation and correlation on buoyant gas03-29
提高火焰检测系统可靠性的方法07-18
2015年无纸化学法系统考试普法考试题库答案(云南)04-25
跨境电商岗位及职位能力分析03-21
毛概结课的学习体会04-24
宁夏小学三年级健康教育教学教案计划07-18
注册监理工程师聘用合同104-30
初一基数词序数词用法和练习题(含答案)11-18
报表系统功能规格说明书04-30
- 1Lensed CMB power spectra from all-sky correlation functions
- 2Observation of Phase Separation in a Strongly-Interacting Imbalanced Fermi Gas
- 3Mass-transport-deposits-and-gas-hydrate-occurrences-in-the-U
- 4Poster 1039-Investigation the effect of different methods of
- 5Liquid-phase microextraction–gas chromatography–mass spectrometry for the determination
- 6Measurement and correlation of critical heat flux in two-pha
- 7半导体厂GAS系统基础知识 - 图文
- 81The overall effects of road works on global warming gas emissions
- 9Investigation of three-liquid-phase extraction systems for the separation of Ti(IV), Fe(III)
- 10On Stationary, Self-Similar Distributions of a Collisionless, Self-Gravitating, Gas
- 在担当责任中培养主人翁意识
- 疫苗信任危机下的自我救赎
- 2015年湖南省农村信用社招考复习资料
- 《草原》课外阅读:五月的青岛(老舍)
- 最低生活保障申请审批流程
- 2015年中央财经大学保险硕士考研经验汇总@才思
- 司法考试必备—民法笔记(4)
- 2012初级会计实务讲义--行政事业单位会计
- 论东北三省跨界民族非物质文化遗产保护方式
- M4735A-SHANGHAI除颤仪
- 《那一年,面包飘香》
- word上机操作基础试题
- 用双脚弹钢琴的人
- 关于学会感恩的作文
- 2014年一月货币基金BR收益排名
- 二年级语文下册《画风》教学设计及教学反思
- 公因数和最大公因数 0
- 水产用药常识及注意事项
- 通用电气对中国的借鉴意义
- 龙年束姓女孩大气雅致取名大全
- investigation
- experimental
- correlation
- buoyant
- gas
- 高精度数字温度传感器ds1624及其应用
- 股票模拟交易实验报告
- 什么是科学发展观
- FTP工具CuteFTP 8 Professional配置与使用简要指南
- 高二4班班主任工作计划兰青青
- 电子通信工程学院毕业生离校须知
- 高中英语语法 全英详解
- 胎盘早剥的护理
- 裕兴新概念英语第二册笔记_第50课_课文讲解.
- 400字作文稿纸A4打印模板
- 首届中国食品行业企业营销策划案例
- 电视大学 艺术学概论小抄版
- 2013局域网组建与管理期末试题有答案
- 【2018新】竞选心理委员演讲稿【精美PPT模板幻灯片】
- 地球的新生教学反思
- 2016年电大职业技能实训平台形成性考核(人力资源管理)答案
- 低甲醇酿酒酵母的选育与酿造酒的发酵
- 人体解剖复习要点A
- 从现代舞看金星的女性意识
- 新车磨合期后高速行驶要点 拉高速有讲究