奥数基础 - 一次函数(含解答)-
更新时间:2024-01-04 21:41:02 阅读量: 教育文库 文档下载
- 奥数基础入门推荐度:
- 相关推荐
一次函数
例题剖析
例1 (2006年“信利杯”全国初中数学竞赛(广西赛区))已知直线L?经过(2,0)和(0,4),把直线L沿x轴的反方向向左平移2个单位,得到直线L′,则直线L′的解析式为_______.
例2 (2000年全国初中数学竞赛试题)一个一次函数图象与直线y=
595x+平行,44?与x轴、y轴的交点分别为A、B,并且过点(-1,-25),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( ).
(A)4个 (B)5个 (C)6个 (D)7个
例3 (2005年富阳市初二数学竞赛)不论k为何值,解析式(2k-1)x-(k+3)y-?(k-11)=0表示的函数的图象经过一定点,则这个定点是_______.
例4 (2006年全国初中数学竞赛(浙江赛区)复赛试题)设0 1(1-x),当1≤x≤2时的最大值是( ) k111 (A)k (B)2k- (C) (D)k+ kkk函数y=kx+ 例5 (1997年江苏省初中数学竞赛试题)有一个附有进、出水管的容器,?每单位时间进、出的水量都是一定的.设从某时该开始5min内只进水不出水,?在随后的15min内既进水又出水,得到时间x(min)与水量y(L)之间的关系如图.若20min后只放水不进水,则这时(x≥20时)y与x的函数关系是________. 例6 (2006年全国初中数学竞赛(海南赛区))在平面直角坐标系中,已知A(2,?-2),点P是y轴上一点,则使AOP为等腰三角形的点P有( ) (A)1个 (B)2个 (C)3个 (D)4个 - 1 - 例7 (2005年宁波市蛟川杯初二数学竞赛)某个游泳池有2个进水口和一个出水口,每个进水口的进水量与时间的关系如图(1)所示,?出水口的出水量与时间的关系如图(2)所示,某天早上5点到10点,该游泳池的蓄水量与时间的关系如图(3)所示. 在下面的论断中:①5点到6点,打开进水口,关闭出水口; ②6点到8点,同时关闭两个进水口和一个出水口; ③8点到9点,关闭两个进水口,打开出水口; ④10点到11点,同时打开两个进水口和一个出水口. 可能正确的是( ) (A)①③ (B)①④ (C)②③ (D)②④ 例8 (2006年四川省数学竞赛初二初赛试题)平面直角坐标系内有A(2,-1),B(3,3)两点,点P是y轴上一动点,求P到A、B距离之和最小时的坐标. 例9 (2006年全国初中数学竞赛(海南赛区)某房地产开发公司计划建A、B?两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,?且所筹资金全部用于建房,两种户型的建房成本和售价如下表: (1)该公司对这两种户型住房有哪几种建房方案? (2)该公司选用哪种方案建房获得利润最大? (3)根据市场调查,每套B型住房的售价不会改变,每套A?型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大? - 2 - A B 成本(万元/套) 25 28 售价(万元/套) 30 34 巩固练习 一、选择题: 1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为( ) (A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3 2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过( ) (A)一象限 (B)二象限 (C)三象限 (D)四象限 3.直线y=-2x+4与两坐标轴围成的三角形的面积是( ) (A)4 (B)6 (C)8 (D)16 4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为( ) (A)y1>y2 (B)y1=y2 (C)y1 5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是( ) 6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第( )象限. (A)一 (B)二 (C)三 (D)四 7.一次函数y=kx+2经过点(1,1),那么这个一次函数( ) (A)y随x的增大而增大 (B)y随x的增大而减小 (C)图像经过原点 (D)图像不经过第二象限 - 3 - 8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 9.要得到y=- 33x-4的图像,可把直线y=-x( ). 22 (A)向左平移4个单位 (B)向右平移4个单位 (C)向上平移4个单位 (D)向下平移4个单位 10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为( ) (A)m>- 11 (B)m>5 (C)m=- (D)m=5 44 11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是( ). (A)k< 111 (B) 作( ) (A)4条 (B)3条 (C)2条 (D)1条 13.已知abc≠0,而且 a?bb?cc?a??=p,那么直线y=px+p一定通过( ) cab (A)第一、二象限 (B)第二、三象限 (C)第三、四象限 (D)第一、四象限 14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是( ) (A)-4 15.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则 符合条件的点P共有( ) (A)1个 (B)2个 (C)3个 (D)4个 16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴 于(?0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为( ) (A)0 (B)1 (C)2 (D)无数 - 4 - 17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k 的交点为整点时,k的值可以取( ) (A)2个 (B)4个 (C)6个 (D)8个 18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为 整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取( ) (A)2个 (B)4个 (C)6个 (D)8个 19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a 1a米/分,下山的速度是2b米/2分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),?那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)?之间的函数关系的是( ) 2 20.若k、b是一元二次方程x+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b 中,y随x的增大而减小,则一次函数的图像一定经过( ) (A)第1、2、4象限 (B)第1、2、3象限 (C)第2、3、4象限 (D)第1、3、4象限 二、填空题 1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________. 2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围 是________. 3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一 个符合上述条件的函数关系式:_________. 4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________. - 5 - 5.函数y=-3x+2的图像上存在点P,使得P?到x?轴的距离等于3,?则点P?的坐标为 __________. 6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________. 7.y= 2x与y=-2x+3的图像的交点在第_________象限. 3 8.某公司规定一个退休职工每年可获得一份退休金,?金额与他工作的年数的算术平方 根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、?q?)表示______元. 9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,?则一次函数的解析式 为________. 10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与 两坐标所围成的图形的面积为S(2,3,??,2008),那么S1+S2+?+S2008=_______. kk=1,11.据有关资料统计,两个城市之间每天的电话通话次数T?与这两个城市的人口数m、n(单位:万人)以及两个城市间的距离d(单位:km)有T= kmn的关系(k为常数).?2d现测得A、B、C三个城市的人口及它们之间的距离如图所示,且已知A、B两个城市间每天的电话通话次数为t,那么B、C两个城市间每天的电话次数为_______次(用t表示). 三、解答题 1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内. - 6 - 2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1. (1)写出y与x之间的函数关系式; (2)如果x的取值范围是1≤x≤4,求y的取值范围. - 7 - 3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.?小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据: 第一档 第二档 第三档 第四档 40.0 74.8 42.0 78.0 45.0 82.8 凳高x(cm) 37.0 桌高y(cm) 70.0 (1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,?测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由. 4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时? - 8 - 此时离家多远?(2)求小明出发两个半小时离家多远?(3)?求小明出发多长时间距家12千米? 5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B?在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,?求正比例函数和一次函数的解析式. 6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长. - 9 - 7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少? 8.在直角坐标系x0y中,一次函数y= 2x+2的图象与x轴,y轴,分别交于A、3B两点,?点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D?两点的一次函数的解析式. - 10 - 9.已知:如图一次函数y= 1x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,20)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标. 10.已知直线y= 4x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为3P(?0,-1),Q(0,k),其中0 - 11 - 11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30?台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下: 甲型收割机的租金 乙型收割机的租金 1600元/台 1200元/台 A地 1800元/台 B地 1600元/台 (1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围. (2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,?说明有多少种分派方案,并将各种方案写出. 12.已知写文章、出版图书所获得稿费的纳税计算方法是 (1?30%),x?400?(x?800)?20%?f(x)=? 其中f(x)表示稿费为x元应缴纳 x?(1?20%)?20%?(1?30%),x?400?的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,?问张三的这笔稿费是多少元? - 12 - 13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.?又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元. (1)求x、y的关系式; (2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值. 14.某市为了节约用水,规定:每户每月用水量不超过最低限量am时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am时,除了付同上的基本费和损耗费外,超过部分每1m付b元的超额费. 某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示: 用水量(m) 交水费(元) 9 19 33 33 3 3 一月份 9 二月份 15 三月 22 根据上表的表格中的数据,求a、b、c. - 13 - 15.A市、B市和C市有某种机器10台、10台、8台,?现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B?市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元. (1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值. (2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值. - 14 - 答案: 1.B 2.B 3.A 4.A 5.B 提示:由方程组??y?bx?a 的解知两直线的交点为(1,a+b),? ?y?ax?b而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1, 故图C不对;图D?中交点纵坐标是大于a,小于b的数,不等于a+b, 故图D不对;故选B. 6.B 提示:∵直线y=kx+b经过一、二、四象限,∴??k?0, 对于直线y=bx+k, ?b?0∵??k?0, ∴图像不经过第二象限,故应选B. b?0?7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2, ∵k=-1<0,∴y随x的增大而减小,故B正确. ∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误. ∵k<0,b=?2>0,∴其图像经过第二象限,故D错误. 8.C 9.D 提示:根据y=kx+b的图像之间的关系可知, - 15 - 将y=- 33x?的图像向下平移4个单位就可得到y=-x-4的图像. 2210.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例, ?m?5,?m?5?0,?1即?∴?1 ∴m=-,故应选C. 4?4m?1?0,?m??,?411.B 12.C 13.B 提示:∵ a?bb?cc?a??=p, cab(a?b)?(b?c)?(c?a)∴①若a+b+c≠0,则p==2; a?b?ca?b?c?②若a+b+c=0,则p==-1, cc∴当p=2时,y=px+q过第一、二、三象限; 当p=-1时,y=px+p过第二、三、四象限, 综上所述,y=px+p一定过第二、三象限. 14.D 15.D 16.A 17.C 18.C 19.C k?b??p??b??|q|??k·b<0, 20.A 提示:依题意,△=p2+4│q│>0, k??k?b?0?k?0?一次函数y=kx+b中,y随x的增大而减小?k?0???一次函数的图像一定经 b?0?过一、二、四象限,选A. 二、 1.-5≤y≤19 2.2 4.m≥0.提示:应将y=-2x+m的图像的可能情况考虑周全. 5.( 15,3)或(,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3 331515当y=3时,x=;当y=-3时,x=;∴点P的坐标为(,3)或(,-3). 3333 提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况. - 16 - 6.y=x-6.提示:设所求一次函数的解析式为y=kx+b. ∵直线y=kx+b与y=x+1平行,∴k=1, ∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6. 9?2x?,??y?x,??8得?7.解方程组? 33?y?,?y??2x?3,???4∴两函数的交点坐标为( 93,),在第一象限. 841004aq2?bp28.. 9.y=2x+7或y=-2x+3 10. 20092(bp?aq)11.据题意,有t= 50?8032k,∴k=t. 2160580?10032t5t???. 32025642因此,B、C两个城市间每天的电话通话次数为TBC=k× 三、 1.(1)由题意得:??2a?b?0?a??2 解得??b?4?b?4∴这个一镒函数的解析式为:y=-2x+4(?函数图象略). (2)∵y=-2x+4,-4≤y≤4, ∴-4≤-2x+4≤4,∴0≤x≤4. 2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数, 则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx, ?2k?p?1得? 解得k=-2,p=5, 3k?p??1?∴y与x之间的函数关系是y=-2x+5; - 17 - (2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3. ∴当1≤x≤4时,-3≤y≤3. 另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3. 3.(1)设一次函数为y=kx+b,将表中的数据任取两取, 不防取(37.0,70.0)和(42.0,78.0)代入,得?∴一次函数关系式为y=1.6x+10.8. (2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套. 4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米. (2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30), 代入得:y=15x-15,(2≤x≤3). 当x=2.5时,y=22.5(千米) 答:出发两个半小时,小明离家22.5千米. (3)设过E、F两点的直线解析式为y=k2x+b2, 由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6) 过A、B两点的直线解析式为y=k3x, ∵B(1,15),∴y=15x.(0≤x≤1),? ?2k?p?1 ?3k?p??1264(小时),x=(小时). 55264答:小明出发小时或小时距家12千米. 55分别令y=12,得x= 5.设正比例函数y=kx,一次函数y=ax+b, ∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0, ∵S△AOB=6,∴ 1AO·│yB│=6, 2∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,?得k=1. 1??0??6a?b?a??解得?把点A(-6,0)、B(-2,-2)代入y=ax+b,得?2 ?2??2a?b???b??3- 18 - ∴y=x,y=- 1x-3即所求. 26.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC, ∴OD=OA=?1,CA=CD,∴CA+CB=DB=DE2?BE2?32?42= 5. 7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1; 当x<1,y≥1时,y=x+1;当x1,y<1时,y=-x+1. 由此知,曲线围成的图形是正方形,其边长为2,面积为2. 8.∵点A、B分别是直线y= 2x+2与x轴和y轴交点, 3∴A(-3,0),B(0,2), ∵点C坐标(1,0)由勾股定理得BC=3,AB=11, 设点D的坐标为(x,0). (1)当点D在C点右侧,即x>1时, ∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD, ∴ BCCD3|x?1|?,∴ ① ?2ABBD11x?23x2?2x?1? ∴,∴8x2-22x+5=0, 211x?25151,x2=,经检验:x1=,x2=,都是方程①的根, 2424155∵x=,不合题意,∴舍去,∴x=,∴D?点坐标为(,0). 422∴x1= ??b?222??k????设图象过B、D两点的一次函数解析式为y=kx+b,?55 ?k?b?0?b?2?2?∴所求一次函数为y=- 22x+2. 5- 19 - (2)若点D在点C左侧则x<1,可证△ABC∽△ADB, ADBD|x?3|?∴,∴?ABCB11 ∴8x-18x-5=0,∴x1=-2 x2?2 ② 31515,x2=,经检验x1=,x2=,都是方程②的根. 4242511∵x2=不合题意舍去,∴x1=-,∴D点坐标为(-,0), 2441∴图象过B、D(-,0)两点的一次函数解析式为y=42x+2, 4综上所述,满足题意的一次函数为y=- 22x+2或y=42x+2. 59.直线y= 1x-3与x轴交于点A(6,0),与y轴交于点B(0,-3), 2ODOA?, OCOB∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB, ∴cot∠ODC=cot∠OAB,即∴OD= OC?OA4?6?=8.∴点D的坐标为(0,8), OB3设过CD的直线解析式为y=kx+8,将C(4,0)代入0=4k+8,解得k=-2. 22?1x????y?x?3?5解得?∴直线CD:y=-2x+8,由? 2??y??4?y??2x?8?5?∴点E的坐标为( 224,-). 5510.把x=0,y=0分别代入y= ?x?0,?x??3,4x+4得? ?3?y?4;?y?0.- 20 - ∴A、B两点的坐标分别为(-3,0),(0,4)?.? ∵OA=3,OB=4,∴AB=5,BQ=4-k,QP=k+1.当QQ′⊥AB于Q′(如图), 当QQ′=QP时,⊙Q与直线AB相切.由Rt△BQQ′∽Rt△BAO,得 BQQQ`BQQP4?kk?17?即??.∴,∴k=. BAAOBAAO5387∴当k=时,⊙Q与直线AB相切. 8 11.(1)y=200x+74000,10≤x≤30 (2)三种方案,依次为x=28,29,30的情况. 12.设稿费为x元,∵x>7104>400, ∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·∴x=7104× 417111··x=x=7104. 5510125111=8000(元).答:这笔稿费是8000元. 12513.(1)设预计购买甲、乙商品的单价分别为a元和b元, 则原计划是:ax+by=1500,①. 由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,② 再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5, ③. 由①,②,③得:??1.5x?y?10a?44, ④-⑤×2并化简,得x+2y=186. ?x?y?5a?68.5.2. 3(2)依题意有:205<2x+y<210及x+2y=186,得54 - 21 - 14.设每月用水量为xm,支付水费为y元.则y=?3 ?8?c,0?x?a ?8?b(x?a)?c,x?a由题意知:0 3 将x=15,x=22分别代入②式,得??19?8?b(15?a)?c 解得b=2,2a=c+19, ⑤. ?33?8?b(22?a)?c再分析一月份的用水量是否超过最低限量,不妨设9>a, 将x=9代入②,得9=8+2(9-a)+c,即2a=c+17, ⑥. ⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9, ∴c=1代入⑤式得,a=10. 综上得a=10,b=2,c=1. (http://www.czsx.com.cn) 15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x, 发往E市的机器台数分别为10-x,10-x,2x-10. 于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200. 又??0?x?10,?0?x?10, ??0?18?2x?8,5?x?9,??∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数). 由上式可知,W是随着x的增加而减少的, 所以当x=9时,W取到最小值10000元;? 当x=5时,W取到最大值13200元. (2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y, 发往E市的机器台数分别是10-x,10-y,x+y-10, 于是W=200x+800(10-x)+300y+700(10-y)+?400(19-x-y)+500(x+y-10) =-500x-300y-17200. ?0?x?10,?0?x?10,????0?y?10,又?0?y?10, ?0?18?x?y?8,?10?x?y?18,??- 22 - ?0?x?10,?∴W=-500x-300y+17200,且?0?y?10,(x,y为整数). ?0?x?y?18.?W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800. 当x=?10,y=8时,W=9800.所以,W的最小值为9800. 又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200. 当x=0,y=10时,W=14200, 所以,W的最大值为14200. - 23 -
正在阅读:
奥数基础 - 一次函数(含解答)-01-04
爱国主义主题教育演讲稿 风云中华02-25
保护地球家园宣传标语12-24
中英文对照_oracle_vm_virtualbox安z装系统09-04
乡镇村委会年度工作总结及下一年工作思路08-04
信用社联社支持区域经济发展情况汇报09-19
课堂教学改进目标和改进措施方案09-30
小学生阅兵作文06-15
公司年检报告书(1)08-21
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 奥数
- 一次函数
- 解答
- 基础