Nonlinear Least Squares Optimisation of Unit Quaternion Functions for Pose Estimation from
更新时间:2023-06-09 06:40:01 阅读量: 实用文档 文档下载
- nonlinear推荐度:
- 相关推荐
Pose estimation from an arbitrary number of 2-D to 3-D feature correspondences is often done by minimising a nonlinear criterion function using one of the minimal representations for the orientation. However, there are many advantages in using unit quatern
InProc.14thInt.Conf.PatternRecognition,Brisbane,Australia,pp.425-427,August1998.
NonlinearLeastSquaresOptimisationofUnitQuaternionFunctionsforPose
EstimationfromCorrespondingFeatures
AleˇsUde
JoˇzefStefanInstitute,DepartmentofAutomatics,BiocyberneticsandRobotics
Jamova39,1000Ljubljana,Slovenia,E-mail:ales.ude@ijs.si
Abstract
Poseestimationfromanarbitrarynumberof2-Dto3-Dfeaturecorrespondencesisoftendonebyminimisinganonlinearcriterionfunctionusingoneoftheminimalrep-resentationsfortheorientation.However,therearemanyadvantagesinusingunitquaternionstorepresenttheori-entation.Unfortunately,astraightforwardformulationoftheposeestimationproblembasedonquaternionsresultsinaconstrainedoptimisationproblem.Inthispaperweproposeanewmethodforsolvinggeneralnonlinearleastsquaresoptimisationproblemsinvolvingunitquaternionfunctionsbasedonunconstrainedoptimisationtechniques.Wedemonstratetheeffectivenessofourapproachforposeestimationfrom2-Dto3-Dlinesegmentcorrespondences.
1.Introduction
Theobjectposeisde nedasthedisplacementoftheco-ordinateframerigidlyattachedtotheobjectfromitsini-tialposition,whereitisalignedwiththeworldcoordinateframe,toitscurrentposition.Thereexistanalyticalandlin-earsolutionstotheproblemofposeestimationfrom2-Dto3-Dfeaturecorrespondences[1,2],buttheyaresensitivetonoise.Inthepresenceofnoise,whichisunavoidableinreal-worldapplications,algorithmsbasedonnonlinearop-timisationmethodsgivemoreaccurateresults.
Nonlinearoptimisationtechniqueshavebeenusedforposeestimationbymanyresearchersinthepast.Agoodoverviewisgivenin[1].Inmostoftheseapproaches,Eu-ler’sangleswereusedtoparameterisethegroupofrotationsSO(3)oftheEuclideanspace.However,itiswellknownthatSO(3),whichisathreedimensionalmanifold,cannotbegloballyembeddedinthethreedimensionalEuclideanspace.Itfollowsthatiftherotationgroupisrepresentedbythreerealparameters,theEuclideanmetrictopologyin
Currently,
theauthoriswiththeKawatoDynamicBrainProject,ER-ATO,JapanScienceandTechnologyCorporation,2-2HikaridaiSeika-cho,Soraku-gun,Kyoto619-0288,Japan,e-mail:ude@erato.atr.co.jp.
R3doesnotinduceaglobaltopologyandmetricstructureinSO(3).Thissuggeststhatcommonsolutionsusingminimalrepresentationsoftherotationgrouparenotideal.
Therepresentationoftherotationgroupbyunitquater-nions,whichformasphereS3inR4,hasmanyadvantagesoverminimalrepresentations.Methodsforposeestimationbasedonthequaternionrepresentationoftheorientationhavebeenproposedintheliteraturebefore[1],buttheposeestimationproblemhasbeenformulatedasanoptimisationprobleminR4ratherthanonS3intheseapproaches.
2.Preliminaries
3
Inthefollowingweshallneedtheexponentialmapexp:R→S3,which isgivenexp(r)=
by
cos( r ),sin( r )
r
,r=0.(1)(1,0,0,0),r=0
r
Theexponentialmaptransformsatangentvectorr∈R3T∈S3≡1(S3)intoq,whereqisapointatdistance r from1alongageodesiccurvestartingfrom1inthedirectionofr[3].Geodesicsarede nedasshortestpathsconnectinganytwopointsonamanifold3(sphereS3).Itturnsoutthatforanyotherpointq∈Sandforanyr∈T3S)3≡R3andtheexponentialq∈Tmapatq(S3),rq,expq qT(S3)1(S→,havingtheabovepropertiesisgivenby
q:qexpq(rq)=exp(rq q) q,
(2)
where denotesthequaternionmultiplication.
Letsconsidertheproblemofposeestimationfrom2-Dto3-Dlinesegmentcorrespondences.Letm(x1k,x2
k=
k),k=1,...,N,betheend-pointsofthek-th3-Dlinesegmentbelongingtotheobject’smodelandletAj,j=1,...,M,betheprojectivemappingontothej-thimageplane.Thesemappingsshouldbemadeavailablebyacameracalibrationprocedure.Letfdenotethemappingwhichtransformstheend-pointrepresentationofa2-Dlinesegmentintoitsmid-point f(v,vvTT
representation T12)=1+v22,arctan
y2 y1
x2 x1
,(3)
Pose estimation from an arbitrary number of 2-D to 3-D feature correspondences is often done by minimising a nonlinear criterion function using one of the minimal representations for the orientation. However, there are many advantages in using unit quatern
wherevl=[xl,yl]T.Thelengthofalinesegmentisex-cludedfromthismappingbecauseitismorenoisythanothermid-pointparameters.3Weencodetheposepbya3-Dvectort∈Randbyaquaternionq∈S3.Letgjk:R3×S3→R3bethefollowingmappingsgjk(p)=f(Aj(q
x1k
q+t),Aj(q
x2k
q+t)).(4)
Eachgjkmapsthek-th3-Dmodelsegmentontothe2-D
imagesegmentobtainedbymovingthemodelsegmentbyp=(q,t)andbyprojectingtheresultingsegmentontothej-thimageplane.
Weassumenowthatthecorrespondencesbetweenmeasuredimagesegmentsyjk=[uTT
the
andthemjk, jk]
modelsegmentsobjectposekaregiven.Theoptimalestimateforthecurrentcanbecalculatedbyminimisingthefollowingnonlinearcriterionfunction
1 M N
2y jk gjk(t,q) Σ jk
1
yjk g jk(t,q)j=1
k=1=13
MN
2
hk(t,q)2,(5)k=1
whereΣjkarethecovariancesofthemeasuredsegments.Theminimisationof(5)overtandqwouldbeaclassicnonlinearleastsquaresoptimisationproblemifwecouldtreatqasanelementofR4andnotofS3.Sincethisisnotthecase,theclassicapproachwouldbetoaddthecon-straint|q|=1totheabovecriterion.Inthenextsectionweproposeabettersolution.
3.Leastsquaresoptimisationonunitsphere
Letsconsidertheminimisationofsumofsquaresofgen-eralunitquaternion functions
1
n qminF(q)=fk(q)2=1f(q)Tf(q).(6)∈S3
2k=1
2Denotingthen×4Jacobianmatrixoff(q)asJ(q),the
gradient F(q)andtheHessian 2F(q)aregivenby F(q)=J(q)Tf(q), 2
F(q)=
J(q)T
J(q)+
n(7)
fk(q) 2
fk(q).
(8)
k=1
Letqibethecurrentapproximationfortheminimumof(6).
TheTaylorseriesexpansionforthevectorfunction F(q)around F(qi)isgivenby
F(q)≈ F(qi)+ 2
F(qi)(q qi)
(9)
Usingtheaboveexpansionandthefactthat F(q)=0attheminimumofF,thenextapproximationforthemini-mumcanbecalculatedasfollows
qi+1=qi ( 2F(qi)) 1 F(qi).
(10)
IfweassumethatthevalueofFissmallforallqbelongingtotheneighbourhoodofthesolution,i.e.fk,weobtainthefollowingapproximationfork(theq)≈Hessian0forallintheneighbourhoodofthesolutionbasedonEq.(8)
2F(q)≈J(q)TJ(q).
(11)
WritingthisapproximationfortheHessianin(10),wear-rivetotheGauss-Newtoniteration,whichisveryeffectiveprovidedagoodstartingpointisknown
qi+1=qi (J(qi)TJ(qi)) 1JT(qi)f(qi).
(12)
Unfortunately,qi+1givenbyiteration(12)doesnotnec-essarilylieontheunitsphere.Thisisduetothefactthatthisiterationsearchesfortheminimumof(6)intheR4-neighbourhoodandnotintheS3-neighbourhoodofqde neaniterationontheunitsphereweobservethati.TotheneighbouringpointsofqqiinS3aregivenbyexp(ω) i,ω∈R3.Hencewecanwritecriterion(6)asn
n
Gi(ω)
=1 2fk(exp(ω) qi)2
=1 ik=1
2gk(ω)2
=
1k=1
2
gi
(ω)Tgi(ω).(13)
GicanbeviewedasamappingfromR3toR.Eq.(2)
guaranteesusthatinthiswaywecoverthewholetangentspaceTqi(S3)or,inotherwords,alldirectionsstartingfromqasqi.Wewanttocalculatethenextapproximateqωthepropertiesofithe+1exponentiali+1=exp(map,i) qsuchqi.Becauseofthecurrentapproximatei+1liesalongthegeodesiccurvestartingatqexponentialmappreservesiinthedirectionofωi qi.Sincethedistances,thelengthofthesteponthesphereisequaltothenormofωTodetermineωwetakezeroasaninitialapproxima-i.tionfortheminimumi,ofcriterion(13).Wedenotethen×3Jacobianmatrixofgiatω=0asJi.Inthesecircum-stances,onestepoftheGauss-Newtoniteration(12)resultsinthefollowingapproximationfortheminimumofcrite-rion(13)
ωi= (JTiJi) 1JTigi
(0).(14)ThustheGauss-Newtoniterationontheunitspherecanbe
summarisedasfollows:(i)Initialisation:
q0←initialapproximation.
(ii)Loop:
q
i+1=exp
(JT 1JT
iJi)
igi
(0) qi.
(iii)Convergencetest:
Gi(0) = JTigi
(0) <ε.
Pose estimation from an arbitrary number of 2-D to 3-D feature correspondences is often done by minimising a nonlinear criterion function using one of the minimal representations for the orientation. However, there are many advantages in using unit quatern
Figure1.Stereoimagepairshowingthelineseg-mentsextractedfromoneimageandtheedgesofthelocalisedobjectsprojectedontotheotherimageOurgoalistodevelopamethodfortheminimisationof(5)over(t,q)∈R3×S3.Toachievethiswewrite(5)as
13 MN2hk(ti+d,exp(ω) qi)2=1
gi(d,ω)Tgi(d,ω).k=1
2(15)
Usingthesameapproachasinthecaseofpureunitquater-nionfunctions,theGauss-NewtoniterationonR3×S3canbeformulatedasfollows
ti+1
=ti+di,
qi+1=exp(ωi) qi,
(16)
dTi
ωi
T
T=
(JTiJi)
1JTigi
(0,0),whereJiistheJacobianofgiat(0,0).Thisiterationgen-eratesasequencewhichisguaranteedtolieinthesearch
spaceR3×S3.Sincetherearenoconversionsoforien-tationinsomeforeignform,suchasEuler’sangles,toaquaternionform,thenon-uniquenessofthequaternionrep-resentationdoesnotcauseanyproblems.SincethemetricstructureofSO(3)isthesameastheoneofS3,theaboveiterationmaybeviewedasaniterationinR3×SO(3).
4.Experimentalresultsandconclusions
Tovalidatetheproposedmethodexperimentally,weuseditforthecalculationofobjects’posesfromlineseg-mentcorrespondencesinasystemforobjectrecognitionandlocalisation(seeFig.1).TheconvergenceofthemethodisshowninTab.1.Evenwhenthestartingpointwasveryinaccurate,theGauss-Newtonmethodconvergedtothetrueobjectposeprovidedthefeaturecorrespondenceswerecorrect.HencethereisnoneedtousemorerobusttechniquesliketheLevenberg-Marquardtmethodforposeveri cationincalibratedstereoimages.Assumingthatfea-turecorrespondencesarecorrectandthemeasurementnoiseismoderate,thecriterionfunction(15)tendstozerointheneighbourhoodofthesolutionandtheconvergenceofthemethodisnearlyasgoodastheconvergenceoftheNewton-Raphsoniteration.
Table1.Convergenceofthemethod.TheEuclideanandtheangularmetricwereusedtomeasurethechangeinthepositionandorientation,respectively.
Step(trans.)Step(orien.)4.962116e+012.827351e-011.095884e+01
7.604011e-022.851983e-012.920441e-037.462760e-041.835331e-052.017427e-06
1.241607e-07
Furtherexperimentsshouldbecarriedouttotestthemethodforthecasewhenonlyonecameraisavailable.Thepresentedmethodisgeneralandworkswithanykindoffea-tures.Theusageoflineorpointcorrespondencesrequiresonlyarede nitionoffunctionf,whichisde nedforthecaseoflinesegmentsinEq.(3).
ComparingourapproachwiththeoneofPhongetal.[4],whoalsousedquaternionstorepresenttheorientation,ouriterationhastheadvantagethatitsearchesfortheoptimalorientationdirectlyinS3andnotinR4asthemethodofPhongetal.Phongetal.hadtointroduceapenaltytermtoforcetheminimumoftheircriteriontotendtowardsS3.However,thispenaltytermrequiresthesettingofauser-de nedparameterwhichisatbestarbitraryandcancauseproblemswiththeconvergenceoftheiteration.Ourmethoddoesnotsufferfromthisproblem.Moreover,itispossibletodeterminethesearchdirectionusingthetrustregionap-proachofPhongetal.inouriterationandthusmakeitlesssensitivetothequalityofastartingpointandwrongcorre-spondences.Thiswasnotnecessaryforourapplication.Acknowledgment:ThemeasurementsweretakenwhiletheauthorwaswiththeInstituteforReal-TimeComputerSystemsandRobotics,UniversityofKarlsruhe,Germany.
References
[1]R.L.CarceroniandC.M.Brown.Numericalmethodsfor
model-basedposerecovery.TechnicalReport659,ComputerScienceDepartment,TheUniversityofRochester,Rochester,NewYork,August1997.
[2]B.K.P.Horn.Closed-formsolutionofabsoluteorientation
usingunitquaternions.J.Opt.Soc.Am.A,4(4):629–642,1987.
[3]M.-H.Kyung,M.-S.Kim,andS.-J.Hong.Anewapproach
tothrough-the-lenscameracontrol.GraphicalModelsandImageProcessing,58(3):262–285,May1996.
[4]T.Q.Phong,R.Horaud,A.Yassine,andD.T.Pham.Object
put.Vis.,15:225–243,1995.
- 1Computation of Complex Scorer Functions
- 2Unit1 Lesson2 Wheres she from
- 3Risk assessment models and uncertainty estimation
- 422.Nonlinear Controllability and Observability
- 5DETERMINANT EXPRESSIONS FOR HYPERELLIPTIC FUNCTIONS IN GENUS THREE
- 6拍照如何摆姿势POSE大全 - 图文
- 7ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS ON ESTIMATION OF THE ORIENTATI
- 8Nonlinear pricing with self-control preferences
- 9Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joints
- 10新人教版高一必修3 Unit5 The true north from Toronto to Montreal
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Optimisation
- Quaternion
- Estimation
- Nonlinear
- Functions
- Squares
- Least
- Unit
- Pose
- Implementation of Multi-Linear Gain Prior to Image Compression System...(IJIGSP-V7-N3-8)
- 八年级下unit4 Section B
- 安德路甲36楼门窗施工方案
- ch6 微生物在自然界物质转化和分解中的作用
- 优化评价机制对促进高中健美操教学的实践研究
- 第十三章30年代小说沈从文
- 2005b The primate amygdala neuronal representations of the viscosity, fat texture, grittine
- 岩石破裂过程的数值模拟研究
- 双门楼宾馆6、7号楼及附属用房改造装饰工程施工组织设计
- 华中科技大学出版社六年级下册信息技术教案
- AD9833程序,信号发生器,正弦波,方波,三角波输出程序
- 航海王启航乔巴属性技能怎么样 乔巴属性技能详细解析
- 东莞市主要客运站场一览表
- CAD2008第四讲基本绘图命令
- 游戏活动:好玩的气球
- 油库施工作业危险源辨识评价汇总表
- 导数与函数的极值、最值
- 有机合成化学试题 2
- 上海市崇明区小学数学六年级上学期期末数学试卷
- 药物过敏性休克应急预案演练脚本