交通工程学课后习题答案

更新时间:2023-07-26 12:40:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

交通工程学课程习题答案

《交通工程学》习题解

习题2-1

解:⑴ 小时交通量:

Q 201 208 217 232 219 220 205 201 195 210 190 195 2493辆/h

⑵ 5min高峰流率:

Q5 232

605

2784辆/h

⑶ 15min高峰流率:

Q15 (232 219 220)

6015

2684辆/h

⑷ 15min高峰小时系数: PHF15

习题2-2 解:已知:

AADT 50000 辆/d,C1 1500辆/h,x 30K 17.86x

1.3

2493671 4

0.929

0.082 17.86 30

1.3

0.082 0.1326 13.26%

设计小时交通量:

DHV AADT K 50000 0.1326 6630辆/h 车道数: n

DHVC1

66301500

4.42

该道路需修6车道。

注:此题KD 0.5。 如果KD 0.6,n 5.3。 习题2-3 解: Q

1006

60 1000

辆/h

车头时距:ht 3600/Q 3600/1000 3.6 s/辆

交通工程学课程习题答案

车头间距:hs

V3.6

ht

203.6

3.6 20

m/辆

车流密度:K 1000/hs 1000/20 50 辆/km 第一辆车通过时间:t 习题2-4 解:

t

1

16

SV

2420

1.2 h

ni 11 (4.8 5.1 4.9 5.0 5.2 5.0 4.7 4.8 5.1 5.2 4.9 5.3 5.4 4.716

4.6 5.3) 5s

ti

V

S

ns

n

16 10080

20m/s 72km/h

ti

i 1

V

t

Vini 11 (75.0 70.6 73.5 72.0 69.2 72.0 76.6 75.0 70.6 69.2 73.5 67.916

66.7 76.6 78.3 67.9)1 1154.6 72.16km/h16

1

16

习题3-1

解:已知:t东=2.0 min, t西=2.0 min,

X东=29.0 辆, Y东=1.5 辆 X西=28.6 辆, Y西=1.0 辆

1、先计算向东行情况:

q东

X西 Y东t西 t东

Y东q东

21.8

28.6 1.52 21.57.525

7.525辆/min 451.5辆/h 1.8min

t东 t东

v东

lt东

2.0

60 66.67km/h

交通工程学课程习题答案

2、再计算向西行情况:

q西

X东 Y西t东 t西

Y西q西

29.0 1.02 21.07.5

7.5辆/min 450辆/h

t西 t西 v西

lt西

2.0 2

1.867min

1.867

60 64.27km/h

习题3-4

解:总停驶车辆数 = 28 + 25 + 38 + 33 = 124 辆 总延误 = 124×15 = 1860 辆 s

每辆停车的平均延误 = 总延误/停车辆数

= 1860/113 = 16.46 s

交叉口引道上每辆车的平均延误 = 总延误/引道上总交通量 = 1860/(113+119)= 8.02 s

停车的百分数 = 停车辆数/引道上交通量 = 113/232 = 48.7% 取置信度90%,则K= 2.70,于是 停车百分比的容许误差 =

(1 0.487) 2.700.487 232

11.07%

2

取置信度95%,则K2 = 3.84,于是 停车百分比的容许误差 =

(1 0.487) 3.840.487 232

13.2%

习题4-2

解:已知:畅行速度Vf 82km/h;阻塞密度Kj 105辆/km; 速度与密度为线性关系模型。 ⑴ 最大流量:

因 Km Kj2 1052 52.5辆/km

Vm Vf2 822 41 km/h

∴ Qm Km Vm 52.5 41 2152.5 辆/h。 ⑵ 此时所对应的车速: V Vm 41 km/h。 习题4-4

g

kj fj

解:已知:N = 56,m

j 1

173 3

.09

交通工程学课程习题答案

2

对于泊松分布,把Fj小于5的进行合并,并成6组,可算出

j 1

2

6

fj

Fj

N

11

2

10.421

14

2

12.163

11

2

12.527

9

2

9.677

5

2

5.981

6

2

5.145

56 0.932

由DF=6-2=4,取 0.05,查表得: 02.05 9.488 2 可见此分布符合泊松分布。

习题4-5

解:已知:交通流属泊松分布,则车头时距为负指数分布。

交通量Q 1200辆/h, Q3600 12003600 13辆/s。

⑴ 车头时距t 5s的概率:

P(h 5) e

t

e

5 0.19

⑵ 车头时距t 5s时出现的次数: P(h 5) P(h 6) e 0.1353 ∴次数为:1200 0.1353 162.4(辆/h)。 t 5s 63

∴平均值:

交通工程学课程习题答案

16

t

m

j 6

j

fj

1162

N

(46 6 33 7 23 8 3 14 2 15 6 16) 8.444

习题4-9

解:已知:Q=1500辆/h,每个收费站服务量为600辆/h。 1.按3个平行的M/M/1系统计算

1500/3

3600363600 5/365 1,系统稳定。

1/66

5

辆/s,

600

16

辆/s,

n (1 ) 5辆,q n 4.17辆,d n 36s/辆, w d 30s/辆

而对于三个收费站系统

n 5 3 15辆,d 4.17 3 12.5辆,d 36s/辆,w 30s/辆

2.按M/M/3系统计算

15003600

512

辆/s, 52

60036005/23

3

2

56

16

辆/s

5/121/6

2

1

N

1,系统稳定。

P(0)

k 0

(52)k!

4

k

(52)

1

6.625 15.625

0.04494

3! (1 5/6)

2

q

(5/2)3! 3

0.04494(1 5/6)

3.5辆

n q 3.5 2.5 6辆 w q

3.55/12

8.4s/辆

习题4-10

解:已知:V1=50km/h,Q1=4200辆/h,V2=13km/h,Q2=3880辆/h,

V3=59km/h,Q3=1950辆/h,t =1.69h

1. 计算排队长度

k1=Q1/V1=4200/50=84 辆/km,k2=Q2/V2=3880/13=298.5 辆/km Vw=(Q2–Q1)/(k2–k1)=( 3880–4200)/(298.5–84)= –1.49 km/h L=(0×1.69+1.49×1.69)/2=1.26 km 2. 计算阻塞时间 ⑴ 排队消散时间t′ 排队车辆为:

交通工程学课程习题答案

(Q1–Q2)×1.69=(4200–3880)×1.69=541 辆 疏散车辆数为:

Q2–Q1=1950–3880 = –1930 辆/h 则排队消散时间:t'

(Q1 Q2) 1.69

Q3 Q2

5411930

0.28h

⑵ 阻塞时间:t= t′+1.69 = 0.28 + 1.69 = 1.97 h

习题5-1

解:已知:AADT 45000veh/d,大型车占总交通量的30%,KD 0.6, K 0.12,平原地形。 查表5-3,EHV 1.7

fHV

1

1 PHV(EHV 1)

1

1 0.3(1.7 1)

0.8264

取设计速度为100km/h,二级服务水平,(V/C)2 0.71

CB 2000pcu/h,fW 1.0,fP 1.0 一条车道的设计通行能力:

C1 CB (V/C)2 N fW fHV fP

2000 0.71 1 1 0.8264 1

1173.5veh/h

车道数: n

AADTC1

K100

KD100

2

450001173.5

0.12 0.6 2 5.5

故该高速公路修成6车道。 习题5-2 解:

已知:L1=300m、R=0.286、VR=0.560、V=2500 pcu/h L2=450m、R=0.200、VR=0.517、V=2900 pcu/h 第一段:

计算非约束情况下的交织车速SW及非交织车速SnW

SW或SnW 24.1

80.47

1 a(0.3048)(1 VR)(V/N)/L

d

b

c

d

非约束情况下型式B的常数值如下: a b c d SW 0.1 1.2 0.77 0.5 SnW 0.02 2.0 1.42 0.95

SW 24.1

80.47

1 0.1(0.3048)

0.5

(1 0.56)

1.2

(2500/3)

0.77

/750

0.5

74.08km/h

交通工程学课程习题答案

SnW 24.1

80.47

1 0.02(0.3048)

0.95

(1 0.56) (2500/3)

21.42

/750

0.95

81.15km/h

利用式(5-8)计算

NW N[0.085 0.703VR (71.57/L) 0.011(SnW SW)]

3 [0.085 0.703 0.56 (71.57/750) 0.011(81.15 74.08)] 1.49 NWmax 3.5

核查交织区段诸限制值:

VW 1400 3000,V/N 2500/3 833.3 1900,VR 0.56 0.8 R 0.286 0.5,L 750 760 确定服务水平:查表5-10

SW 74.08 80km/h, 属于二级,

SnW 81.17 86km/h, 属于二级。

第二段:

计算非约束情况下的交织车速SW及非交织车速SnW

SW 24.1 SnW 24.1

80.47

1 0.1(0.3048)

0.5

(1 0.517)

1.2

(2900/3)

2

0.77

/450/450

0.5

67.51km/h

80.47

1 0.02(0.3048)

0.95

(1 0.517) (2900/3)

1.420.95

69.34km/h

利用式(5-8)计算

NW N[0.085 0.703VR (71.57/L) 0.011(SnW SW)]

3 [0.085 0.703 0.517 (71.57/450) 0.011(69.34 67.51)] 1.76 NWmax 3.5

核查交织区段诸限制值:

VW 1500 3000,V/N 2900/3 966.67 1900,VR 0.517 0.8 R 0.200 0.5,L 450 760 确定服务水平:查表5-10

SW 67.51 72km/h, 属于三级,

SnW 69.34 77km/h

, 属于三级。

交通工程学课程习题答案

交通工程学课程习题答案

解:已知 T=60s,三相式固定周期。 大车﹕小车 = 2﹕8,βl = 0.1。 由题意分析可知,交叉口各进口 道的车行道区分为专用左转和直右两

种。

⑴ 计算直行车道的设计通行能力, 用公式(5-23)。取t0=2.3s,φ=0.9。 绿灯时间tg=(60-2×3)/3=18s。 据车种比例2﹕8,查表5-32,得

ti=2.65s。将已知参数代入公式(5-23),则 Cs

3600T

(

tg t0

t

1)

360060

(

18 2.32.65

1) 0.i

⑵ 计算直右车道的设计通行能力,用公式(5-24):

Csr Cs 374pcu/h

⑶ 各进口属于设有专用左转车道而未设右转专用车道类型,其设计通行能力用公式(5-30)计算:

Cel ( Cs Csr)/(1 l) (374 374)/(1 0.1) 831pcu/h

⑷ 该进口专用左转车道的设计通行能力,用公式(5-31)计算: Cl Cel l 831 0.1 83pcu/h ⑸ 验算是否需要折减

因T = 60s,所以n = 3600/60 = 60,不影响对面直行车辆行驶的左转交通量:

4 60 240pcu/h Cle

240pcu/h,不折减。 本题进口设计左转交通量Cle Cl 83pcu/h Cle

⑹ 交叉口的设计通行能力

交叉口的设计通行能力等于四个进口设计通行能力之和。因本题四个进口相同,故该交叉口的设计通行能力为:

C 831 4 3324pcu/h

对于图2,南北进口的设计通行能力计算如下: ⑴ 计算直右车道的设计通行能力, 用公式(5-24):⑸

Csr Cs 374pcu/h ⑵ 计算直左车道的设计通行能力,

用公式(5-25): 西

⑶ 验算北进口左转车是否影响南进口车 的直行

Csl Cs(1 l /2)

374(1 0.1/2) 355.3pcu/h

Ce Csr Csl 374 355.3 729.3pcu/h

240pcu/hCle Ce l 729.3 0.1 73pcu/h Cle

⑷ 交叉口的设计通行能力

交叉口的设计通行能力等于四个进口设计通行能力之和。因本题东西进口相同,南北进口相同,故该交叉口的设计通行能力为:

C 831 2 729 2 3120pcu/h

本文来源:https://www.bwwdw.com/article/la4m.html

Top