52-2014.11.15-Gene苎麻根侵染线虫转录组测序分析
更新时间:2023-07-22 03:11:01 阅读量: 实用文档 文档下载
- 522014-01故障码推荐度:
- 相关推荐
北京百迈客苎麻根侵染线虫转录组测序分析
Gene552(2014)67–74
ContentslistsavailableatScienceDirect
Gene
journalhomepage:/locate/gene
Genome-widetranscriptional
changesoframie(BoehmerianiveaL.Gaud)inresponsetoroot-lesionnematodeinfection
SiyuanZhu,ShouweiTang ,QingmingTang,ToumingLiu
InstituteofBastFiberCropsandCenterofSouthernEconomicCrops,ChineseAcademyofAgriculturalSciences,Changsha410205,China
articleinfoabstract
Ramie berextractedfromstembarkisoneofthemostimportantnatural bers.Theroot-lesionnematode(RLN)Pratylenchuscoffeaeisamajorramiepestandcauseslarge beryieldlossesinChinaannually.TheresponsemechanismoframietoRLNinfectionispoorlyunderstood.Inthisstudy,weidenti edgenesthatarepotentiallyinvolvedintheRLN-resistanceinramieusingIlluminapair-endsequencingintwoRLN-infectedplants(Inf1andInf2)andtwocontrolplants(CO1andCO2).Approximately56.3,51.7,43.4,and45.0millionsequencingreadsweregeneratedfromthelibrariesofCO1,CO2,Inf1,andInf2,respectively.Denovoassemblyforthese196millionreadsyielded50,486unigeneswithanaveragelengthof853.3bp.Atotalof24,820(49.2%)parisonofgeneexpressionlevelsbetweenCOandInframierevealed777differentiallyexpressedgenes(DEGs).Theexpressionlevelsof12DEGswerefurthercon rmedbyreal-timequantitativePCR(qRT-PCR).Pathwayenrichmentanalysisshowedthatthreepathways(phenylalaninemetabolism,caroten-oidbiosynthesis,andphenylpropanoidbiosynthesis)werestronglyin uencedbyRLNinfection.Aseriesofcan-didategenesandpathwaysthatmaycontributetothedefenseresponseagainstRLNinramiewillbehelpfulforfurtherimprovingresistancetoRLNinfection.
©2014PublishedbyElsevierB.V.
Articlehistory:
Received11July2014
Receivedinrevisedform27August2014Accepted5September2014
Availableonline8September2014Keyword:
Root-lesionnematodeRamie
IlluminasequencingTranscriptome
Differentiallyexpressedgenes
1.Introduction
Plantparasiticnematodesaremajoragriculturalpestsandcancauseupto20%lossesinawidevarietyofcropsworldwide.Annuallossesof125billionUSDhaveoccurredbecauseofnematodeinfestations(Chitwood,2003).Root-lesionnematode(RLN,PratylenchusFilipjev)isoneofthethreemostdevastatingplantparasiticnematodes.Itisdis-tributedworldwideandhasabroadhostrange,includingseveralim-portanttropicalandtemperatecropspecies.RLNisamigratory,endoparasiticnematode.Itdevelopsmainlyinthecorticalparenchymawhereitcausessevererootdamageandhinderstheabsorptionofwaterandnutrientsfromthesoil,resultingintheinhibitionofplantgrowth.Thereare97describedspeciesofRLN(Yuetal.,2012).
ToimprovethetoleranceofcropstoRLN,itisessentialtominedisease-resistancegenesandtoelucidatedefenseresponsemechanismsofcropstoRLNinfection.However,fewRLN-resistancegeneshavebeenidenti edandnonehavebeencharacterized(Yuetal.,2012).AmongtheRLN-resistancegenesreported,mostwerediscoveredusingthe
Abbreviations:RLN,root-lesionnematode;Inf,plantinfectedwithP.coffeae;CO,controlplants;DEG,differentiallyexpressedgene;qRT-PCR,real-timequantitativePCR;COG,TheClustersofOrthologousGroupsdatabase;GO,TheGeneOntologydatabase;KEGG,TheKyotoEncyclopediaofGenesandGenomesdatabase;RPKM,readsperkilobaseofexonmodelpermillionmappedreads;ROS,reactiveoxygenspecies. Correspondingauthors.
E-mailaddresses:zhusiy2015@(S.Zhu),cesc2012@(S.Tang),cstqm@(Q.Tang),liutouming@(T.Liu).geneticmappingmethodinwheat(Schmidtetal.,2005;Williamsetal.,2002;Zwartetal.,2005,2006,2010),barley(Sharmaetal.,2011),andbanana(Sundararaju,2010).TheseresistancegenescanbedirectlyusedtoimprovetheRLN-toleranceofplantsbymarker-assistedselectionincropbreeding.However,thesegenesarenothelpfulindeterminingdefensemechanismsofplantstoRLNinfectionbecausetheyhavenotbeenclonedandtheirmolecularfunctionsareunknown.
Ramie(Boehmerianivea),commonlyknownasChinagrass,isoneofthemostimportantnatural bercrops.Ramie bersarestrippedfromthestembast,withmanyexcellentcharacteristicssuchassmoothandlong,andhaveexcellenttensilestrength,whichisthereasonwhyramieiswidelycultivatedinChina,India,andotherSoutheastAsianandPaci cRimcountriesforitshigh berquality.InChina,ramieisthesecondmostimportant bercrop,withitsgrowthacreageandquantityof berproductionsecondonlytocotton.Thegrowthoframiecanbeaffectedbybothbioticandabioticfactors,includingdrought,anthracnoseinfectionandRLN-infection(Liuetal.,2011;Zhuetal.,2012).Morphologicalandphysiologicalresponsesoframietodroughtstresshavebeenextensivelystudied(Liuetal.,2005,2013a).Changesinwhole-genomeexpressioninramieunderwaterde citcon-ditionshavebeencharacterizedbyIlluminatag-sequencing(Liuetal.,2013b).Usingsuppressionsubtractivehybridization,132genesin-volvedinanthracnoseresistancehavebeenidenti edinramie(Wangetal.,2012).
Pratylenchuscoffeaeisamajorroot-lesionnematodethatinfectsramie.P.coffeaeinfectioninramiecanleadtogreatyieldlossorplant
/10.1016/j.gene.2014.09.0140378-1119/©2014PublishedbyElsevierB.V.
北京百迈客苎麻根侵染线虫转录组测序分析
68S.Zhuetal./Gene552(2014)67–74
mortality.P.coffeaecausesdamagetotheroots,whichinhibitsthegrowthofplants.Italsocausesremarkablechangesinstemshape,resultinginasigni cantdecreaseinbast beryield(Zhuetal.,2012).ElucidatingthemechanismofinhibitionofstemelongationbyRLN-infectionofrootwillbehelpfulinimprovingresistanceoframietoRLNinfectionandincreasing beryieldintheRLN-infectedramie.How-ever,uptonow,themechanismofinhibitionofgrowthbyRLN-infectionispoorlyunderstood.Inthisstudy,thegenesassociatedwithdefensemechanismsintworamieplantsinfectedwithP.coffeae(Inf)andtwouninfectedplantswhichservedascontrols(CO)were rstidenti edbyIlluminatechnology.ThisstudywillbehelpfulforfurtherelucidatingthemoleculardefensemechanismsoframietoRLNinfec-tionandimprovingRLN-resistanceoframie.2.Materialsandmethods
2.1.Plantmaterial,RLNinfection,andRNAextraction
EliteramievarietyZhongzhu1wasusedinthisstudy.Zhongzhu1isanelitevarietywithhighyieldandgood berquality.IthashadthelargestgrowthareainChinaintherecentyears.CuttageseedlingsofZhongzhu1weretransplantedtopotsinMarch2013.InMay2013,tenpotted60-day-oldplantswereusedforexperiments.Fivepottedramiewereinfected(Inf)byinoculationwith200P.coffeaeRLNperplant.Theother vepottedplantswerenotinfectedandactedascon-trols(CO).Sevendaysafterinfection,thewholeplants,excludingroots,ofthetenpottedramiewereseparatelycollected.Thetissueswereimmediatelyfrozeninliquidnitrogenandstoredat 80°Cuntiluse.TwoCOtreatmentsandInftreatmentswereeachreplicatedtwice(CO1,CO2andInf1,Inf2)forIlluminasequencing.TheotherthreeCOandInfplantswereusedastriplicateforqRT-PCR.ThetissuescollectedforeachsamplewereextractedindividuallyforRNAusingTRIzolre-agent(TransgeneCompany,IllkirchGraffenstadenCedex,France)ac-cordingtothemanufacturer'sprotocol.TheRNAwasstoredat 80°C.2.2.cDNAlibraryconstructionandsequencing
IlluminasequencingwasperformedatBiomarkerTechnologiesCO.,LTD,Beijing,China(/).Brie y,RNAfromthefoursampleswereusedseparatelytoconstructthecDNAlibrarieswithfragmentlengthsof200bp(±25bp).Paired-endsequencingwasthenperformedusingtheIlluminasequencingplatform(HiSeq 2000)accordingtothemanufacturer'sinstructions(Illumina,SanDiego,CA).TherawsequencingdataofthefoursamplesaredepositedinNCBISequenceReadArchive(SRA,http://www.ncbi.nlm.nih.gov/Traces/sra)withaccessionnumbersSRR1021565,SRR1021566,SRR1021567,andSRR1021568,respectively.2.3.Data lteringanddenovoassembly
Readsfromeachlibrarywereassembledseparately.Thetrimmingadaptersequenceswereremovedandlow-qualityreads(lessthan13bporreadswithunknownnucleotidesabove5%)were lteredwiththesoftwaredevelopedbytheBiomarkerTechnologyCompany.DenovoassemblywascarriedoutusingTrinity(Grabherretal.,2011).Trinityusesthreesoftwaremodules,Inchworm,Chrysalis,andButter y,sequentiallytoprocesslargevolumesofRNA-Seqreads.Inthe rststep,readsareassembledintocontigsbytheInchwormpro-gram.TheminimallyoverlappingcontigswereclusteredintosetsofconnectedcomponentsbytheChrysalisprogram,andthenthetran-scriptswereconstructedbytheButter yprogram(Grabherretal.,2011).Finally,thetranscriptswereclusteredbysimilarityofcorrectmatchlengthbeyondthe80%oflongertranscriptor90%ofshortertran-scriptusingthemultiplesequencealignmenttoolBLAT(Kent,2002).Theunigenewasde nedasthelongesttranscriptofeachcluster.
EMBOSSGetorfSoftwarewasusedtopredictitscodingregions(http://emboss.bioinformatics.nl/cgi-bin/emboss/getorf).2.4.Geneannotationandanalysis
Forannotationofunigenesusingvariousbioinformaticsapproaches,theunigeneswere rstsearchedagainsttheNr,theClustersofOrthologousGroups(COG)database,theSwiss-Protproteindatabase,andtheKyotoEncyclopediaofGenesandGenomes(KEGG)databaseusinglocalBLASTxwithanE-valuecutoffof10 5.WithNrannotation,theBlast2GOprogram()wasusedtogettheGeneOntology(GO)annotationaccordingtomolecularfunction,bi-ologicalprocess,andcellularcomponentontologies(Conesaetal.,2005).TheWEGOsoftware(/cgi-bin/wego/index.pl)wasthenusedtoperformGOfunctionalclassi cationofallunigenesandDEGstoviewthedistributionofgenefunctions.ThesequenceofallunigenesandDEGswerealsoalignedtotheCOGda-tabasetopredictandclassifypossiblefunctions.2.5.Digitalgeneexpressionanalysis
GeneexpressionlevelsweremeasuredintheRNA-Seqanalysisasreadsperkilobaseofexonmodelpermillionmappedreads(RPKM)(Mortazavietal.,2008).TheDEseqsoftwarewasusedtoidentifydiffer-entiallyexpressedgenesinpair-wisecomparisons(AndersandHuber,2010),andtheresultsofallstatisticaltestswerecorrectedformultipletestingwiththeBenjamini–Hochbergfalsediscoveryrate(FDRb0.01).Sequencesweredeemedtobesigni cantlydifferentiallyexpressediftheadjustedPvalueobtainedbythismethodwasb0.001andtherewasatleastatwofoldchange(N1orb 1inlog2ratiovaluewhichwerecalculatedbytheaverageRPKMvalueoftwoInflibrariesdividedbytheaverageRPKMvalueoftwoCOlibraries).TherawdatawasdepositedattheGeneExpressionOmnibuswithaccessionnumberGSE51900(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51900).
2.6.PathwayenrichmentanalysisofDEGs
PathwayenrichmentanalysisbasedonKEGG(KanehisaandGoto,2000)(KyotoEncyclopediaofGenesandGenomespathwaydatabase,http://www.genome.jp/kegg)wasusedtoidentifymarkedlyenrichedmetabolicpathwaysorsignaltransductionpathwaysindifferentiallyexpressedgenescomparedwiththewholegenomebackground.Theformulaforcalculationis:
M
N M mp¼X 11
i
ni¼0
N i;
n
where,NisthenumberofallgeneswithKEGGannotation,nisthenum-berofDEGsinN,Misthenumberofallgenesannotatedtospeci cpath-ways,andmisnumberofDEGsinM.
2.7.Real-timequantitativePCR(qRT-PCR)analysis
TheRNAofthreeCOandInfplantswereseparatelyusedforcDNAsynthesis.Foreachsample, rst-strandcDNAswerereverse-transcribedfromRNAstreatedwithDNaseI(Fermentas,Canada)byusingM-MuLVReverseTranscriptase(Fermentas,Canada)accordingtothemanufacturer'sinstructions.qRT-PCRwasperformedusinganoptical96-wellplatewithaniQ5multicolorrealtimePCRsystem(Bio-RAD,USA).Eachreactioncontained1.0μLofcDNAtem-platefromthereverse-transcribedreactionmentionedabove,10nMgene-speci cprimers,10μLofiTaq UniversalSYBRGreensupermix(Bio-RAD,USA)ina nalvolumeof20μL.Theramieactingene,which
北京百迈客苎麻根侵染线虫转录组测序分析
S.Zhuetal./Gene552(2014)67–7469
wasreportedtodisplayawellstabilityofexpressionintheCOandtheRLN-infectedramie(Liuetal.,2014),wasselectedastheendogenouscontrol.TheprimersequenceofDEGsandactingenewerelistedinTableS1.Thethermalcycleusedwasasfollows:95°Cfor30s,followedby40cyclesof95°Cfor10s,and55°Cfor25s.qRT-PCRwasper-formedintriplicateforeachsample.Relativeexpressionlevelswerede-terminedasdescribedpreviously(LivakandSchmittgen,2001).
3.Results
3.1.Illuminapaired-endsequencinganddenovoassembly
RNAwasextractedindividuallyfromfourwholeplantbodies,ex-cludingroots(twocontrolplants,CO1andCO2,andtwoRLNinfectionplants,Inf1andInf2).RNAfromindividualplantswasusedtoconstructlibrariesofcDNAwithafragmentlengthof200bp.FragmentswerethensequencedusingIlluminapaired-endsequencingtechnology.Atotalof56.3,51.7,43.4,and45.0millionrawsequencingreadswithlengthsof90bpweregeneratedfromthelibrariesofCO1,CO2,Inf1,andInf2,respectively(Table1).Trinitysoftwarewasusedtoassemblethereadsequenceofeachsampledenovo.Sequencesnotextendedoneitherendwerede nedasunigene.Finally,36,934,34,505,32,918,and32,079unigeneswerefoundinCO1,CO2,Inf1,andInf2,respective-ly(Table1).
Allunigenesfromthefoursampleswerealignedbasedonnucleo-tidesequence.Theunigenesfromdifferentsamplesthatoverlappedmorethan35bpwereassembledfurther.Thedenovoassemblyyielded50,486non-redundantunigenes,withanaveragelengthof853.3bpandatotallengthof43.08Mb(Table1).Thelengthofassembledunigenesrangedfrom200to9911bp.Therewere15,640unigenes(31.0%)b300bp,13,578unigenes(26.9%)from301to500bp,7819unigenes(15.5%)from501to1000bp,7725unigenes(15.3%)from1001to2000bp,and5724unigenes(11.3%)N2000bp(Fig.1).
3.2.Functionalannotationandclassi cation
Forvalidationandannotationoftheassembledunigenes,sequencesimilaritysearcheswereconductedintheNr,COG,GO,KEGG,andtheSwiss-ProtproteindatabasewithanE-valuethresholdof10 5.There-sultsindicatedthat,outof50,486unigenes,24,463(48.9%),20,198(40.0%),21,302(42.2%),5137(10.2%),and8541(16.9%)unigenesshowedsigni cantsimilaritytoknownproteinsintheNr,SwissProt,GO,KEGG,andCOGdatabases,respectively(Fig.2).Together,24,820(49.2%)unigenesshowedsimilaritytoknownproteinsinthese veda-tabases(Fig.2).
TheGOdatabaseisaninternationalstandardizedgenefunctionalclassi cationsystem,andithasthreeontologies:molecularfunction,cellularcomponent,andbiologicalprocess.GOfunctionalclassi cationfortheseunigenesassembledshowedthat21,302unigenes(40.0%)withBLASTmatchestoknownproteinswereassignedtoGOclasseswith240,800functionalterms.Ofthese,assignmentstothebiologicalprocessontologymadeupthemajority(123,002;51.1%),followedbycellularcomponent(85,686;35.6%)andmolecularfunction(32,112;13.3%)ontologies(Fig.3).
Table1
SummaryoftranscriptomesassembledbyIlluminasequencing.SampleReadnumberUnigenenumberTotallengthMeanlength(million)assembled(Mb)(bp)CO156.336,93434.90944.8CO251.734,50533.76978.4Inf143.432,91832.34982.6Inf245.032,07931.58984.3Total
196.4
50,486
43.08
853.3
parisonofgeneexpressionlevelsbetweenCOramieandInframieTodeterminetheexpressionlevelsofthe50,486unigenesassem-bleddenovo,allsequencingreadswererealignedtotheunigenes.Thenumberofreadsalignedtoaunigeneappearinginthelibrarywasusedtoestimateitsexpressionlevelusingthenormalizedvalueofthegene'suniquelyalignedreadcountsperkilobaseofexonmodelpermil-lionreads(RPKM).DifferencesinreadfrequenciesbetweentheCOandInflibrarieswereusedtodeterminechangesingeneexpressioninre-sponsetoroot-lesionnematodeinfection.TheRPKMvaluesofallunigeneswerecomparedbetweenthetwoCOreplicatesandbetweenthetwoInfreplicates.Thereweresigni cantcorrelationsbetweenthetwoCOreplicatesandbetweenthetwoInfreplicates,withthecorrela-tioncoef cientsof0.95and0.99,respectively.Scatterdiagrams,inwhichthelogarithmicRPKMvaluesofeachgeneinthetworeplicatesofeachtreatmentwereassignedascoordinatevaluesoftwoaxes,showedthatalldatapointsweredistributedintheregionofthediago-nal(Fig.4).AlltheseresultssuggestedthattheabundancesoftheseunigenetranscriptsinthetwoCOreplicatelibrariesandinthetwoInfreplicatelibrariesweresimilar.
ComparisonsoftheaverageRPKMvaluesofthetworeplicatesforeachgenebetweenCOandInframiewereperformedtoscreenthedif-ferentiallyexpressedgenes(DEGs)involvedintheRLN-defensere-sponse.Atotalof777DEGs(592genesup-regulatedand185genesdown-regulated)withatleastatwo-folddifferencebetweenCOramieandInframiewereidenti ed(FDRb0.01)(Fig.5,TableS1).AmongtheseDEGs,16(12genesup-regulatedand4genesdown-regulated)genesshowedmorethanatwenty-folddifferencebetweenCOramieandInframie(Fig.5,TableS2).Therewere40transcriptionfactors,whichweredistributedinto21families,regulatedbyRLNinfection(Table2,TableS3).
3.4.ValidationoftheexpressiondifferenceofDEGs
Inordertovalidatetheexpressionpro lingbyIlluminasequencing,theexpressionlevelsoftwelvegenes,includingtwocatalasegenes,twoNACtranscriptionfactors,threeperoxidasegenesand vedisease-resistancerelatedgenes,werefurtheranalyzedbyqRT-PCR.TheqRT-PCRresultshowedthatsevengeneswereup-regulatedexpressionand vegeneswasdown-regulatedexpression(Table3)(Pb0.05).ThetrendofexpressionchangesoftheseselectedgenesbasedonqRT-PCRwassimilarwiththosedetectedbyIllumina-sequencingmethod.However,thechangefoldsofthesegeneexpressionlevelsrespondingtoRLN-infectiondetectedbyqRT-PCRhadsomedifferencewiththosedetectedbyIlluminasequencing(Table3).
3.5.Functionalclassi cationofDEGsandthepathwaysenrichedbyDEGsTheCOGdatabasewasusedtoclassifytheorthologousgeneprod-ucts.EveryproteinintheCOGdatabaseisassumedtohaveevolvedfromanancestorprotein.Thewholedatabaseisbuiltoncodingproteinswithcompletegenomes,aswellasonsystemevolutionrelationshipsofbacteria,algae,andeukaryotes.AllDEGswerealignedusingtheCOGda-tabasetoclassifypotentialfunctions.Intotal,214DEGswereassignedtothe23COGclassi cationswith335functionalterms(Fig.6).TheGOfunctionalclassi cationofDEGswasperformedand694DEGswereclassi edinto51GOcategorieswith7641functionalterms(Fig.3).InmostGOcategories,theratioofDEGsagainstbackgroundunigenesrangedfrom2%to4%.Threefunctionalcategories,metallochaperoneac-tivity,antioxidantactivityandcellproliferation,contain6.67%,7.87%,and8.08%oftheDEGsintheirtotalunigenes,respectively,whichsug-geststhatthesethreefunctionalcategorieswereenrichedbyDEGs.
Thein uenceofRLNinfectiononbiologicalpathwayswasevaluatedbyenrichmentanalysisofDEGs.Atotalof61pathwaysinramiewerepossiblyaffectedbyRLNinfection(TableS4).Threepathways,phenylal-aninemetabolism,carotenoidbiosynthesis,andphenylpropanoid
北京百迈客苎麻根侵染线虫转录组测序分析
70S.Zhuetal./Gene552(2014)67–74
Fig.1.Lengthdistributionofassembled
unigenes.
Fig.2.Unigenenumbersannotatedinthe vepublicdatabases
searched.
Fig.3.Geneontologyclassi cationsofassembledunigenesandDEGs.Theresultsaresummarizedinthreemaincategories:biologicalprocess,cellularcomponent,andmolecularfunction.
北京百迈客苎麻根侵染线虫转录组测序分析
S.Zhuetal./Gene552(2014)67–7471
Fig.4.ThecorrelationofRPKMvaluesofallunigenesbetweenthetworeplicatesofCOramieandbetweenthetworeplicatesofInframie.ThelogarithmicRPKMvaluesofeachgeneinthetworeplicateswereassignedascoordinatevaluesoftwo
axes.
biosynthesis,werestronglyin uencedbyRLNinfection(Pb0.05)(Table4).4.Discussion
4.1.Denovoassemblyof50,486non-redundantgenesinramie
Sequencingandanalysisofexpressedsequencetags(ESTs)areapri-marytoolingenediscoveryandgenomicsequenceannotationinplants.ESTscanalsobeusedforotherfunctionalgenomicprojects,includinggeneexpressionpro ling,microarrays,molecularmarkers,andphysical
mapping.Forthepasttenyears,alargenumberofcDNAlibrarieshavebeenconstructedandsequencedforrice(Kikuchietal.,2003),maize(Alexandrovetal.,2009;Soderlundetal.,2009),wheat(Zhangetal.,2004),andothercropstoobtainESTinformation.However,thecostlyandtime-consumingtraditionalsequencingmethodshaverestrictedlarge-scaleESTsequencingofnon-modelplantsandminorcrops.Aslessexpensiveandlesstime-consumingnextgenerationsequencing(NGS)techniqueshavebeendeveloped,large-scaleESTsequencingofnon-modelplantsandminorcropshavebecomefeasible.Todate,thesequencingofanumberofminorcropshasbeencompletedandhun-dredsofthousandsofESTshavebeenidenti edinthesespecies(Barakatetal.,2009;Dengetal.,2012;Gargetal.,2011;Sunetal.,2010;Wangetal.,2010).
Althoughramieisoneofthemostimportant bercrops,fewofitsESTshavebeensequencedanddepositedintheGenBankdatabase.Toobtainlarge-scaleESTs,Liuetal. rstcharacterizedthetranscriptomeoframieusingIlluminasequencingtechnology(Liuetal.,2013c).How-ever,onlyapproximately53millionreadswereusedtoassemblethetranscriptome,whichgenerated43,990ESTswithatotallengthof36.26Mb(Liuetal.,2013c).Inthisstudy,196.4millionreads(3.7-foldmorethanthatofLiuetal.)weresequencedand50,486unigeneswithatotallengthof43.08Mbwereobtained,resultinginthediscoveryofatleast6496newgenes.Inaddition,thetotalaveragesequencesizegeneratedinthisstudywasmuchlarger(853.3bpversus824bpinLiuetal.).Therefore,thetranscriptomeassembledinthecurrentstudyismorecompletethanthatofLiuetal.
4.2.Identi cationof777genesexpressedinresponsetoRLNinfectioninramie
Apreviousstudyfoundthatthelengthanddiameteroframiestem,whicharedeterminingfactorsof beryield,hadasigni cantdecreasewhenramieisinfectedbyRLN(Zhuetal.,2012).However,theexactmechanismofinhibitioninovergroundvegetativegrowthbyRLN-infectionispoorlyunderstood.Inthepresentstudy,thewholeplant,ex-cludingroots,wereusedtoanalyzethetranscriptome.Obviously,therearemanygenesexpressedinrootswhichhaveregulatedthedefensere-sponsetoRLNinfection.However,becausetheinfectedrootwaspara-sitizedbyalargenumberofRLNswhichcannotberemoved,iftheinfectedrootissampled,thetranscriptomeofbothramieroot
and
Fig.5.GenesexpresseddifferentiallyinCOramieandInframie.Theparameters“FDR≤0.01”and“log2ratio≥1”wereusedasthresholdstodeterminethesigni canceofthedifferenceingeneexpression.GreendotsrepresenttheDEGsandreddotsindicatetranscriptsthatdidnotchangesigni cantlybetweenthetwotreatments.Thexaxisrepre-sentstheaveragelogarithmicRPKMvaluesofeachgeneinCOandInframie,andtheyaxisrepresentsthelogarithmicfoldchange(FC)valuesofeachgene.
北京百迈客苎麻根侵染线虫转录组测序分析
72
Table2
SummaryofDEGsannotatedastranscriptionfactor.Genefamily
DEGnumberTotal
ARFB3bHLHbZIPC2H2C3HCOLE2FERFGATAHD-ZIPHSFMYBNACSBPTALETCPWhirlyWRKYYABBYZF-HD
1210111111211521221112
Up-regulated129101011210100011011
S.Zhuetal./Gene552(2014)67–74
Down-regulated001010100001421210101
genestoRLNinfectionwillbeidenti edinramie.Finally,atotalof777DEGsinvolvedinovergroundvegetativegrowthwerefoundtoberegulatedbyRLNinfection.Moreover,twelvegenes(twoNACtran-scriptionfactors, veantioxidantgenes,and vedisease-resistancere-latedgenes)werechosentovalidatetheirdifferentialexpressionbyqRT-PCR,andallthese12genescommonlyagreedwiththeresultofIlluminasequencing,i.e.thetrendsofexpressionchangesofthese12genesdetectedbyqRT-PCRaresamewiththosebyIlluminasequencing.However,thefoldsofexpressiondifferenceforthese12genesintheInfandCOramiedetectedbyqRT-PCRaredifferentwiththosedetectedbyIlluminasequencing.Actually,thesimilarcasehadbeenobservedinpreviousstudies(Liuetal.,2013b;Wuetal.,2010).TheqRT-PCRisbasedonthePCRmethodsandcyclethreshold(Ct)valuetoidentifytheDEGs,whereasthetechnologyofIlluminasequencinginidentifyingDEGsbycomparingtheabundanceofsequencereadappearinginCOandInflibraries,whicharetwocompletelydifferentstrategies.Proba-bly,thesensitivedegreeofIlluminasequencingmethodinidentifyingDEGshassomedifferencewiththatofqRT-PCR.Althoughthescalesofexpressiondifferencedetectedbytwomethodsaredifferent,thetrendsofexpressionchangesofthese12genesdetectedbyqRT-PCRcommon-lyagreedtotheresultofIlluminasequencing,whichsuggestedthattherewasapotentiallowrateoffalseDEGs.Theexpressionpro lingcharacterizedbythisstudywillaccumulatetheunderstandingoframiedisease-resistancetoRLN.
RLNwillbesequenced.Moreover,amajorobjectiveinthisstudywastounderstandtheexpressionresponseofgenesinvolvingintheovergroundvegetativegrowth,includingstemelongation,toRLNinfec-tion.TheinfectionofRLNcancauseseveredamageoframierootandhinderstheabsorptionofwaterandnutrientsfromthesoil,thusleadingtothewaterde citandnutritionalde ciencyinramie,andresultingintheinhibitionofplantgrowth.Inotherwords,manygenes,whichareexpressedintheovergroundtissuesoframie,andareinvolvedinplantgrowthanddevelopment,tolerancetowaterde citandnutrition-alde ciency,mightberegulatedexpressionbyRLN-infection.Identi -cationofthesegenesexpressedintheovergroundtissueswillbehelpfulforunderstandingthepotentialmechanismofgrowthinhibitionofRLN-infectedramie.Therefore,thewholeplantwithoutrootswaschosenforIlluminasequencing.
Inaddition,twoindividuals(Inf1andInf2)usedforIlluminase-quencingwereinfectedbyRLNwithinsevendays.Generally,whentheplantsufferingfrombiotic/abioticstresses,somestress-signaltrans-ductionrelatedgenesandtranscriptionregulatorswillshowafastre-sponsetostresssignalinseveralhours.Thereafter,thesetranscriptionregulatorsactivatetheexpressionofgenesinvolvinginstresstolerance,and nallymakingtheplantadapttheenvironmentstresses.Hence,theactivationofexpressionoftolerancegenesmightrequirearelativelylongtime,andstableexpressionofthesetolerancegenespossiblyap-pearsinseveraldaysafterstresstreatment.Inthisstudy,amajoraimistoidentifythetolerance-relatedgenestoRLNinfectioninramie.Therefore,theexperimenttreatedbyRLN-infectionwasperformedwithinsevendaysinthisstudy,whichcanensurethatmoretolerance
Table3
TheDEGsvalidatedbyqRT-PCR.Unigene
T1_Unigene_BMK.20119T2_Unigene_BMK.19209T4_Unigene_BMK.22483T1_Unigene_BMK.2274T2_Unigene_BMK.19179T3_Unigene_BMK.18796T3_Unigene_BMK.13840T3_Unigene_BMK.791T3_Unigene_BMK.15403T1_Unigene_BMK.2026T4_Unigene_BMK.16944T4_Unigene_BMK.14594
qRT-PCR 5.66 8.87 4.80 5.41 3.9510.424.6529.5115.892.6519.343.08
4.3.AntioxidantgenesinresponsetoRLN-infection
About7.87%ofgeneswereclassi edintheantioxidantactivitycate-goryoftheGOfunction,whichisfarhigherthanotherfunctionalcatego-ries.AlthoughRLNinfectionoccursintheroots,superoxidedismutase(SOD)declinesandmalondialdehyde(MDA)concentrationsincreaseintheleaves(Zhuetal.,2012).SODcaneliminatereactiveoxygenspe-cies(ROS)causedbystressfactorsandprotectplantcellsbyscavengingsuperoxideradicals,H2O2,andothersuperoxidecompounds(LiuandZhang,1994;SchreiberandNeubauer,1990).MDAisthelastproductoftheperoxidationofmembraneliposomesanditsconcentrationisameasureofthedegreeofperoxidationofmembrane-boundliposomes(JiangandHuang,2001).ThedecreaseinSODactivitiesandtheincreaseinMDAconcentrationsinleafsuggestthatleafcellsaredamagedwhentherootisinfectedbyRLNinramie(Zhuetal.,2012).Inthisstudy,twocatalasegenesandthreeperoxidasegenesinvolvedinROS-scavengingwerefoundtobearegulatedexpressionbyRLN-infectionbyIlluminasequencing.Moreover,theirdifferentialexpressionofthese vegeneswasfurthervalidatedbyqRT-PCR.However,amongthese vegenes,threegeneswerefoundtobedown-regulatedexpression,whichseemtobeinconsistentwiththeincreaseofantioxidantenzymeactivity.Infact,intheplantcell,ROSnotonlycandirectlycauselipidperoxidationandmembranedamage,butalsoisimportantsignalsmediatingdefensegeneactivation(Torresetal.,2006).Therefore,a neadjustmentforROSisessentialtodiseasedefense.Thedown-regulatedexpressionfor
Illuminasequencing 2.58 2.12 2.46 23.93 3.265.843.013.092.022.667.837.37
Functionannotated
CatalaseCatalasePeroxidase
NACdomain-containingprotein43-likeNACdomain-containingprotein8-likeDesiccation-relatedproteinPCC13-62-likePeroxidase3
GDSLesterase/lipaseAt2g04570-like
Diseaseresistanceresponseprotein206-likePeroxidase12-like
GDSLesterase/lipaseAt5g55050-likePathogenesisrelatedprotein1isoform1
北京百迈客苎麻根侵染线虫转录组测序分析
S.Zhuetal./Gene552(2014)67–7473
Fig.6.HistogramsoftheClustersofOrthologousGroups(COG)classi cationofDEGs.
antioxidantenzymeencodedgeneshadbeenreportedinthepreviousstudy(Doreyetal.,1998).4.5.In uenceofRLNinfectiononpathwaysassociatedwithphenylpropanoidmetabolisminramie
Phenylpropanoidscontributetoallplantresponsestobioticandabi-oticstimuli(Vogt,2010).Theyarenotonlyindicatorsofplantstressre-sponsestovariationsinlightandmineraltreatments,butarealsokeymediatorsofplantresistancetopests(Cameraetal.,2004).Alargenumberofplantgeneswithinthephenylpropanoidpathwaytakepartinthedefenseresponseagainstpests(Porthetal.,2011).Inthisstudy,threepathwaysshowedsigni cantenrichmentofDEGsandwere,therefore,determinedtobein uencedbyinfection.SixandsevenDEGsinthephenylpropanoidbiosynthesispathwayandthephenylala-ninemetabolismpathwaywereenriched,respectively.Phenylalanineisanimportantprecursorforthebiosynthesisofphenylpropanoid(Vogt,2010).Therefore,twooutofthreepathwayswithenrichedDEGsarein-volvedinphenylpropanoidmetabolism.Itislikelythatthechangesintheexpressionofgenesinphenylpropanoidmetabolismpathwaysleadtoachangeinphenylpropanoidproduction,whichcanincreasere-sistancetoRLNinramie.
Supplementarydatatothisarticlecanbefoundonlineat/10.1016/j.gene.2014.09.014.
4.4.TranscriptionfactorsinresponsetoRLN-infection
Recently,expandingtranscriptomedatahaveuncoveredaglobalpictureofbioticstressresponsivegenesinplant,anddozensoftran-scriptionfactors(TFs)arefoundtobeinvolvedintheplantdefensere-sponsetopathogenorpestattack(Lietal.,2012;Santosetal.,2012;Wuetal.,2010).MostoftheseTFsfallintoseverallargeTFfamilies,suchasAP2/ERF,bZIP,NAC,MYB,MYC,andWRKY(Mooreetal.,2012;Puraniketal.,2012;vanVerketal.,2011).TheexpressionofTFsregulatestheexpressionofdownstreamtargetgeneswhichareinvolvedinthedefenseresponseandresistancetodisease.Inthisstudy,atotalof40transcriptionfactorswereregulatedexpressionbyRLNinfection.Amongthem,twoNACTFs(T1_Unigene_BMK.2274andT2_Unigene_BMK.19179)weredown-regulatedexpressioninInframie,andthedown-regulationofexpressionwasfurthervalidatedbyqRT-PCR.Inthepreviousstudy,atotalof32ramieNACTFshadbeenidenti ed(Liuetal.,2014).Expressionanalysisforthese32NACTFsre-vealedthat4genes(BnNAC16,BnNAC20,BnNAC29,andBnNAC30)wereregulatedexpressionbyRLNinfection(Liuetal.,2014).Interestingly,theT1_Unigene_BMK.2274andT2_Unigene_BMK.19179ofthisstudyaretheBnNAC16andBnNAC20,respectively.There-fore,thedown-regulatedexpressionofT1_Unigene_BMK.2274andT2_Unigene_BMK.19179inInframieinthisstudyisconsistentwiththeresultsofthepreviousstudy(Liuetal.,2014).
References
Alexandrov,N.,Brover,V.,Freidin,S.,Troukhan,M.,Tatarinova,T.,Zhang,H.,Swaller,T.,
Lu,Y.P.,Bouck,J.,2009.Insightsintocorngenesderivedfromlarge-scalecDNAse-quencing.PlantMol.Biol.69,179–194.
Anders,S.,Huber,W.,2010.Differentialexpressionanalysisforsequencecountdata.Ge-nomeBiol.11(10),R106.
Barakat,A.,DiLoreto,D.S.,Zhang,Y.,Smith,C.,Baier,K.,Powell,A.W.,Wheeler,N.,
Sederoff,R.,Carlson,E.J.,parisonofthetranscriptomesofAmericanchest-nut(Castaneadentata)andChinesechestnut(Castaneamollissima)inresponsetothechestnutblightinfection.BMCPlantBiol.9,51.
Camera,L.,Gouzerh,G.,Dhondt,S.,Hoffmann,L.,Frittig,B.,Legrand,M.,Heitz,T.,2004.
Metabolicreprogramminginplantinnateimmunity:thecontributionsofphenylpropanoidandoxylipinpathways.Immunol.Rev.198,267–284.
Chitwood,D.,2003.Researchonplant-parasiticnematodebiologyconductedbythe
UnitedStatesDepartmentofAgriculture—AgriculturalResearchService.PestManag.Sci.59,748–
753.
Table4
Listofpathwaysigni cantlyenrichedinDEGs(Pb0.05).Pathway
BackgroundnumberDEGPvaluePathwayID
746
0.0060.0190.041
ko00360ko00906ko00940
Phenylalaninemetabolism64Carotenoidbiosynthesis30Phenylpropanoidbiosynthesis73
北京百迈客苎麻根侵染线虫转录组测序分析
74S.Zhuetal./Gene552(2014)67–74
Conesa,A.,Gotz,S.,Garcia-Gomez,J.M.,Terol,J.,2005.Blast2GO:auniversaltoolforanno-tation,visualizationandanalysisinfunctionalgenomicsresearch.Bioinformatics21,3674–3676.
Deng,Y.,Yao,J.,Wang,X.,Guo,H.,Duan,D.,2012.Transcriptomesequencingandcompar-ativeanalysisofSaccharinajaponica(Laminariales,Phaeophyceae)underbluelightinduction.PLoSOne7,e39704.
Dorey,Stéphan,Baillieul,Fabienne,Saindrenan,Patrick,Fritig,Bernard,Kauffmann,Serge,
1998.TobaccoclassIandIIcatalasesaredifferentiallyexpressedduringelicitor-inducedhypersensitivecelldeathandlocalizedacquiredresistance.Mol.PlantMi-crobeInteract.11,1102–1109.
Garg,R.,Patel,R.,Tyagi,A.,Jain,M.,2011.Denovoassemblyofchickpeatranscriptome
usingshortreadsforgenediscoveryandmarkeridenti cation.DNARes.18,53–63.Grabherr,M.,Haas,B.,Yassour,M.,Levin,J.,Thompson,D.,Amit,I.,Adiconi,X.,Fan,L.,
Roychowdhury,R.,Zeng,Q.,etal.,2011.Full-lengthtranscriptomeassemblyfromRNA-Seqdatawithoutareferencegenome.Nat.Biotechnol.29,644–652.
Jiang,Y.,Huang,B.,2001.Droughtandheatstressinjurytotwocool-seasonturfgrassesin
relationtoantioxidantmetabolismandlipidperoxidation.CropSci.41,436–442.Kanehisa,M.,Goto,S.,2000.KEGG:kyotoencyclopediaofgenesandgenomes.Nucleic
AcidsRes.28,27–30.
Kent,W.,2002.BLAT_TheBLAST-likealignmenttool.GenomeRes.12,656–664.
Kikuchi,S.,Satoh,K.,Nagata,T.,Kawagashira,N.,Doi,K.,Kishimoto,N.,Yazaki,J.,Ishikawa,
M.,Yamada,H.,Ooka,H.,etal.,2003.Collection,mapping,andannotationofover28,000cDNAclonesfromjaponicarice.Science301,376–379.
Li,C.,Deng,G.,Yang,J.,Viljoen,A.,Jin,Y.,Kuang,R.,Zuo,C.,Lv,Z.,Yang,Q.,Sheng,O.,etal.,
2012.Transcriptomepro lingofresistantandsusceptibleCavendishbananarootsfollowinginoculationwithFusariumoxysporumf.sp.cubensetropicalrace4.BMCGe-nomics13,374.
Liu,Z.,Zhang,1994.PhysiologyofDroughtResistanceinPlants.AgriculturalPressof
China,Beijing.
Liu,F.,Liu,Q.,Liang,X.,Huang,H.,Zhang,S.,2005.Morphological,anatomical,andphys-iologicalassessmentoframie[Boehmerianivea(L.)Gaud.]tolerancetosoildrought.Genet.Resour.Crop.Evol.52,497–506.
Liu,T.,Tang,Q.,Zhu,S.,Tang,S.,2011.Analysisofclimaticfactorscausingyielddifference
inramieamongdifferenteco-regionsofYalleyvalley.Agric.Sci.Technol.12,745–750.
Liu,T.,Zhu,S.,Fu,L.,Yu,Y.,Tang,Q.,Tang,S.,2013a.Morphologicalandphysiological
changesoframie(BoehmerianiveaL.Gaud)inresponsetodroughtstressandGA3treatment.Russ.J.PlantPhysiol.60,749–755.
Liu,T.,Zhu,S.,Tang,Q.,Yu,Y.,Tang,S.,2013b.Identi cationofdroughtstress-responsive
transcriptionfactorsinramie(BoehmerianiveaL.Gaud).BMCPlantBiol.13,130.Liu,T.,Zhu,S.,Tang,Q.,Chen,P.,Yu,Y.,Tang,S.,2013c.Denovoassemblyandcharacter-izationoftranscriptomeusingIlluminapaired-endsequencingandidenti cationofCesAgeneinramie(BoehmerianiveaL.Gaud).BMCGenomics14,125.
Liu,T.,Zhu,S.,Tang,Q.,Tang,S.,2014.Identi cationof32full-lengthNACtranscription
factorsinramie(BoehmerianiveaL.Gaud)andcharacterizationoftheexpressionpat-ternofthesegenes.Mol.Genet.Genomics289,675–684.
Livak,K.,Schmittgen,T.,2001.Analysisofrelativegeneexpressiondatausingreal-time
quantitativePCRandthe2(-DeltaDeltaC(T))Method.Methods.25,402–408.
Moore,J.,Loake,G.,Spoel,S.,2012.Transcriptiondynamicsinplantimmunity.PlantCell
23,2809–2820.
Mortazavi,A.,Williams,B.A.,McCue,K.,Schaeffer,L.,Wold,B.,2008.Mappingandquan-tifyingmammaliantranscriptomesbyRNA-Seq.Nat.Methods5,621–628.
Porth,I.,Hamberger,B.,White,R.,Ritland,K.,2011.Defensemechanismsagainstherbiv-oryinPicea:sequenceevolutionandexpressionregulationofgenefamilymembersinthephenylpropanoidpathway.BMCGenomics12,608.
Puranik,S.,Sahu,P.,Srivastava,P.,Prasad,M.,2012.NACproteins:regulationandrolein
stresstolerance.TrendsPlantSci.17,369–381.
Santos,C.,Pinheiro,M.,Silva,A.,Egas,C.,Vasconcelos,M.,2012.Searchingforresistance
genestoBursaphelenchusxylophilususinghighthroughputscreening.BMCGenomics13,599.
Schmidt,A.,McIntyre,C.,Thompson,J.,Seymour,N.,Liu,C.,2005.Quantitativetraitlocifor
rootlesionnematode(Pratylenchusthornei)resistanceinMiddle-EasternlandracesandtheirpotentialforintrogressionintoAustralianbreadwheat.Aust.J.Agric.Res.56,1059–1068.
Schreiber,U.,Neubauer,C.,1990.O2-dependentelectron ow,membraneenergization
andmechanismofnon-photochemicalquenchingofchlorophyll uorescence.Photosynth.Res.25,279–293.
Sharma,S.,Kopisch-Obuch,F.,Keil,T.,Laubach,E.,Stein,N.,Graner,A.,Jung,C.,2011.QTL
analysisofroot-lesionnematoderesistanceinbarley:1.Pratylenchusneglectus.Theor.Appl.Genet.122,1321–1330.
Soderlund,C.,Descour,A.,Kudrna,D.,Bomhoff,M.,Boyd,L.,Currie,J.,Angelova,A.,
Collura,K.,Wissotski,M.,Femandes,J.,etal.,2009.Sequencing,mappingandanalysisof27,455maizefull-lengthcDNAs.PLoSGenet.5,e1000740.
Sun,C.,Li,Y.,Wu,Q.,Luo,H.,Sun,Y.,Song,J.,Lui,E.M.K.,Chen,S.,2010.Denovosequenc-ingandanalysisoftheAmericanginsengroottranscriptomeusingaGSFLXTitaniumplatformtodiscoverputativegenesinvolvedinginsenosidebiosynthesis.BMCGeno-mics11,262.
Sundararaju,P.,2010.Identi cationofnematoderesistantgenesourcesagainstroot-lesionnematode(Pratylen-chuscoffeae)inbanana.IndianJ.Nematol.40,48–54.Torres,MiguelAngel,Jones,JonathanD.G.,Dang,JefferyL.,2006.Reactiveoxygenspecies
signalinginresponsetopathogens.PlantPhysiol.vol.141,373–378.
vanVerk,M.,Bol,J.,Linthorst,H.,2011.Prospectingforgenesinvolvedintranscriptional
regulationofplantdefenses,abioinformaticsapproach.BMCPlantBiol.11,88.Vogt,T.,2010.Phenylpropanoidbiosynthesis.Mol.Plant3,2–20.
Wang,Z.,Fang,B.,Chen,J.,Zhang,X.,Luo,Z.,Huang,L.,Chen,X.,Li,Y.,2010.Denovoas-semblyandcharacterizationofroottranscriptomeusingIlluminapaired-endse-quencinganddevelopmentofcSSRmarkersinsweetpotato(Ipomoeabatatas).BMCGenomics11,726.
Wang,X.,Chen,J.,Wang,B.,Liu,L.,Jiang,H.,Tang,D.,Peng,D.,2012.Characterizationby
suppressionsubtractivehybridizationoftranscriptsthataredifferentiallyexpressedinleavesofanthracnose-resistantramiecultivar.PlantMol.Biol.Rep.30,547–555.Williams,K.,Taylor,S.,Bogacki,P.,Pallotta,M.,Bariana,H.,Wallwork,H.,2002.Mapping
oftherootlesionnematode(Pratylenchusneglectus)resistancegeneRlnn1inwheat.Theor.Appl.Genet.104,874–879.
Wu,J.,Zhang,Y.,Zhang,H.,Huang,H.,Folta,K.,Lu,J.,2010.Wholegenomewideexpres-sionpro lesofVitisamurensisgraperespondingtodownymildewbyusingSolexasequencingtechnology.BMCPlantBiol.10,234.
Yu,Y.,Liu,H.,Zhu,A.,Zhang,G.,Zeng,L.,Xue,S.,2012.Areviewofrootlesionnematode:
identi cationandplantresistance.Adv.Microbiol.2,411–416.
Zhang,D.,Choi,D.,Wanamaker,S.,Fenton,R.,Chin,A.,Malatrasi,M.,Turuspekov,Y.,
Walia,H.,Akhunov,E.D.,Kianian,P.,etal.,2004.ConstructionandevaluationofcDNAlibrariesforlarge-scaleexpressedsequencetagsequencinginwheat(TriticumaestivumL.).Genetics168,595–608.
Zhu,S.,Liu,T.,Tang,Q.,Tang,S.,2012.Physio-ecologicalandcytologicalfeaturesoframie
fromcontinuouscroppingsystem.J.HunanAgric.Univ.(Nat.Sci.)38,360–365.
Zwart,R.,Thompson,J.,Godwin,I.,2005.Identi cationofquantitativetraitlociforresis-tancetotwospeciesofroot-lesionnematode(PratylenchusthorneiandP.neglectus)inwheat.Aust.J.Agric.Res.56,345–352.
Zwart,R.,Thompson,J.,Sheedy,J.,Nel-son,J.,2006.Mappingquantitativetraitlociforre-sistancetoPratylenchusthorneifromsynthetichexaploidwheatintheInternationalTriticeaeMappingInitiative(ITMI)population.Aust.J.Agric.Res.57,525–530.
Zwart,R.,Thompson,J.,Milgate,A.,Bansal,U.,Williamson,P.,Raman,H.,Bariana,S.H.,
2010.QTLmappingofmultiplefoliardiseaseandroot-lesionnematoderesistancesinwheat.Mol.Breed.26,107–124.
正在阅读:
52-2014.11.15-Gene苎麻根侵染线虫转录组测序分析07-22
煤矿地面供电管理规定01-20
澳大利亚国立大学专业课程05-04
行程问题 - 环形路(教师版)03-17
2019版《师说》历史二轮复习(通史版):中国古代史专题 冲关综合检测 - 图文12-19
专题六 电场和磁场03-01
假肢矫形器学习题105-01
扶贫攻坚工作总结报告通用范文08-04
妇幼保健与计划生育目标管理责任书07-25
财务报表分析研究文献综述10-29
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 测序
- 侵染
- 线虫
- 苎麻
- 转录
- 2014.11
- 分析
- Gene
- 52
- 15
- 霍尼韦尔智能家居系统解决方案
- 说说我是如何成为旅游设计师的
- 关于组织收看《人民的好儿女》
- 【天道独家】2014年美国USNews会计专业大学排名
- 《现代流通助推新农村建设——— 山东莒南调查》
- 质量守恒定律常见题型
- 千万别忽略了日常生活中18个有用的人情世故
- 小学教师个人工作自我鉴定
- 2010年浙江省国家公务员考试行政测试真题和答案详解(word版本)
- 事业单位考试公共基础知识题库「2018年事业单位考试公基专项题库」
- 初中读一读,写一写
- 医药代表到底是怎样
- 201401北京东方博文金融街长安街综合体261P
- 商业模式的设计与创新
- 如何办理人身损害赔偿协议公证
- 2011年高考作文题目汇总及解析
- 国人部发〔2007〕107号
- 六年级思品学科期末考试试卷分析
- 工程质量管理体系及保证措施
- 2012-2013人教版一年级数学上册第六单元检测卷