A HMM-based adaptive fuzzy inference system for stock market forecasting

更新时间:2023-05-10 17:34:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Neurocomputing104(2013)10–25

ContentslistsavailableatSciVerseScienceDirect

Neurocomputing

journalhomepage:/locate/neucom

AHMM-basedadaptivefuzzyinferencesystemforstockmarketforecasting

Md.Ra ulHassana,n,KotagiriRamamohanaraob,JoarderKamruzzamanc,Musta zurRahmanb,M.MarufHossainb

a

DepartmentofInformationandComputerScience,KingFahdUniversityofPetroleumandMinerals,Dhahran31261,SaudiArabiaDepartmentofComputerScienceandSoftwareEngineering,TheUniversityofMelbourne,Victoria3010,Australiac

GippslandSchoolofIT,MonashUniversity,Churchill,VIC3842,Australia

b

articleinfo

Articlehistory:

Received24March2012Receivedinrevisedform12July2012

Accepted12September2012CommunicatedbyP.Zhang

Availableonline6December2012Keywords:Fuzzysystem

HiddenMarkovModel(HMM)StockmarketforecastingLog-likelihoodvalue

abstract

Inthispaper,weproposeanewtypeofadaptivefuzzyinferencesystemwithaviewtoachieveimprovedperformanceforforecastingnonlineartimeseriesdatabydynamicallyadaptingthefuzzyruleswitharrivalofnewdata.Thestructureofthefuzzymodelutilizedintheproposedsystemisdevelopedbasedonthelog-likelihoodvalueofeachdatavectorgeneratedbyatrainedHiddenMarkovModel.Aspartofitsadaptationprocess,oursystemchecksandcomputestheparametervaluesandgeneratesnewfuzzyrulesasrequired,inresponsetonewobservationsforobtainingbetterperformance.Inaddition,itcanalsoidentifythemostappropriatefuzzyruleinthesystemthatcoversthenewdata;andthusrequirestoadapttheparametersofthecorrespondingruleonly,whilekeepingtherestofthemodelunchanged.Thisintelligentadaptivebehaviorenablesouradaptivefuzzyinferencesystem(FIS)tooutperformstandardFISs.Weevaluatetheperformanceoftheproposedapproachforforecastingstockpriceindices.Theexperimentalresultsdemonstratethatourapproachcanpredictanumberofstockindices,e.g.,DowJonesIndustrial(DJI)index,NASDAQindex,StandardandPoor500(S&P500)indexandfewotherindicesfromUK(FTSE100),Germany(DAX),Australia(AORD)andJapan(NIKKEI)stockmarkets,accuratelycomparedwithotherexistingcomputationalandstatisticalmethods.

&2012ElsevierB.V.Allrightsreserved.

1.Introduction

Adaptiveonlinesystemshavegreatappealindomainswhereeventschangedynamically.Typicalexamplesinclude nancial,manufacturingandcontrolengineering.Asystemistermedadaptiveifitcanevolveaccordingtothechangeincharacteristicsoftheproblem.Forinstance,tomodelachaotictimeserieswherethevalueschangerandomly,thesystemshouldcontinuouslyupdateitsknowledgeandadaptitself.Theaimofsuchasystemistoimproveperformancethroughenhancedmodellingofthechangesinbehavior.Differentapplicationareasofengineering,computerscienceand nancialforecastingandanalysiscanbene tfromusingsuchkindsofadaptivesystems.

Anadaptiveonlinelearningsystemshouldpossessthefollow-ingcriteriatobeef cientandeffective:

1.Itshouldbeabletocapturethecharacteristicsofnewinforma-tionasitbecomesavailable;

2.Thesystemshouldbeabletorepresentanoverallknowledgeabouttheproblem,withoutneedingtomemorizethelargeamountofrawdata;

3.Thesystemshouldbeabletoupdateitsknowledgeinrealtimeandincrementallyupdateitsmodel;

4.Theperformanceoftheadaptivesystemshouldbebetterthanthatofthestaticof inesystemfornonstationarytimeseriesdata.Neuralnetworks,havebeenpopularforsupervisedlearning;however,ithasbeendemonstratedbyseveralstudies[1–7]thatthesetoolscanbelimitedintheirabilitytobeadaptive.Incontrast,FuzzyLogiccanmoreeasilybemadeadaptive[8],sincenewrulescanbegeneratedonlineandruleparameterscanbemodi edinaccordancewiththenewdata.Whengeneratinganadaptivefuzzymodel,performanceisacrucialfactor.Particularly,sinceincreasingthenumberofrulesmaynotalwaysguaranteeanimprovedperformance.However,changingtheparametervaluesaccordingtonewdatacanpotentiallyovercomethein uenceofthefarthestpastdatainthemodelconstruction.

Thereexistanumberofadaptivemodelswhichcombineaneuralnetworklikestructuretooptimizetheparametersoffuzzyrules.OneexampleistheAdaptiveNeuroFuzzyInferenceSystem(ANFIS)[8].Thelimitationofthissystemisthatitcannotadapt

Correspondingauthor.Tel.:þ610383441408;fax:þ610393481184.E-mailaddresses:hassan.ra ul@,mrhassan@kfupm.edu.sa(Md.R.Hassan).

0925-2312/$-seefrontmatter&2012ElsevierB.V.Allrightsreserved./10.1016/j.neucom.2012.09.017

n

Md.R.Hassanetal./Neurocomputing104(2013)10–2511

thestructureofthefuzzymodeloncethefuzzymodelhasbeenbuilt.EvolvingFuzzyNeuralNetwork(EFuNN)isanothersystemintroducedin[9,10]whichusesevolvingconnectionistsystems(ECOS)architecturetomakethesystemevolve.InthedynamicversionofEFuNN[11]theparametersareselfoptimized.InEFuNNanewruleisgeneratedifthedistancebetweenthenewdatavectorandclustercentresforeachoftheexistingrulesisgreaterthantheprede nedradiusofclusterR.Hence,theperformanceofthemodeldependsontheoptimalchoiceofR.Furthermore,thedistancefunctionbetweentwofuzzymembershipvectorsworkswellfordiscretizeddatavaluesbutisnotsuitableforrealcontinuousnumbers.Toadjusttheruleparametersafeedbackalgorithmisusedwhichrequiresstoragetokeepthedesiredoutputs.

Recently,theDynamicEvolvingNeuroFuzzyInferenceSystem(DENFIS)[12]hasbecomepopular,duetoitsadaptiveandonlinelearningnature.DENFISisquitesimilartoEFuNNN,exceptthatinDENFIS,thepositionoftheinputvectorintheinputspaceisidenti edonlineandtheoutputisdynamicallycomputed,basedonthesetoffuzzyrulescreatedduringtheearlierlearningprocess.Rulesarecreatedandupdatedbypartitioningtheinputspaceusinganonlineevolvingclusteringmethod(ECM).InECM,thedistancebetweenadatapointandclustercenteriscomparedwithaprede nedthresholdDthr,whichisthenusedtogenerateclustersandcorrespondingfuzzyrules.ThethresholdDthr,whichiseffec-tivelytheradiusofacluster,mustbestaticallyde nedandcanaffecttheperformanceoftheobtainedmodel.DENFISusesEuclideandistance[13]tomeasurethedifferencebetweentwoinputvectors.However,Euclideandistanceisnotasuitablemethodtodifferentiatetimeseriesdatapatternsconsistingoflineardrift[14].Forexample,thetwotimeseriesdatavectorsD1:/012345678SandD2:/5678910111213S(asshowninboldinFig.1)havesimilartrends,althoughtheyaredissimilarintermsofEuclideandistance.Foratimeseriesapplication,sincethesetwodatavectorsexhibitsimilarpattern,theyshouldbelongtothesamerule.Consequently,theperformanceofDENFISusuallydegradeswithadaptingmorenewdatawhenitisappliedforforecastingnon-lineartimeseriesdata.

AnotherapproachproposedinliteratureforrealizingadaptiveFuzzyInferenceSystemsisthroughleveragingevolutionaryapproaches,suchasGeneticAlgorithm(GA).In[15]aGA-basedapproachforadaptingandevolvingfuzzyruleswasproposedtoachieveautomatednegotiationamongrelax-criterianegotiationagentsine-markets.Anevolutionaryapproachforautomaticgen-erationofFISwasproposedin[16],wherethestructureandparametersofFISaregeneratedthroughreinforcementlearning

141210

D2

e

8ulaV64D1

200

10

20

30

4050

Time (t)

Fig.1.TwosimilardatapatternswithdifferentEuclideandistance(ED).HereEDbetweenD1andD2is15.

andthefuzzyrulesareevolvedviaGA.In[17],amethodforgeneratingMamdaniFISwasintroduced,wherethefuzzymodelparametersareoptimizedbyapplyingGA.AlthoughGAisquitepopularfordevelopinganevolvingfuzzysystem,itsinherentcomputationalandtimecomplexitymakesthisapproachinapplicabletoanever-changingnon-linearchaotictimeseriesdataforecasting.

HiddenMarkovModel(HMM)canbeappliedto ndsimilaritiesinthepatternsofatimeseriesdata[18–20].In[21,22,19,23],HMM–FuzzymodelwasproposedbyexploitingtheabilityofHMMtocapturepatternsimilaritiesaswellastheeaseoffuzzyapproachdealwithadaptivesystem.TheHMM–Fuzzymodelisanof inedatadrivenfuzzyrulegenerationtechniquewhereHMM’sdatapatternidenti cationmethodisusedtorankthedatavectorsandthenfuzzyrulesaregenerated.ThereasonforusingHMMisthatitmodelsasystemthatprovideshigherprobabilitytothedatavectorsthatrepresentthesystem,thanthedatavectorsthatrepresenttheminorityscenarioofthesystem.Thoughthesemodelshaveshownpromisingresults,theirperformanceinforecastingtimeseriesdataisstillinadequateandtheyaredesignedforof inelearningonly.Toimproveperformance,amodelneedstolearnonlinewherenewandrecentdatatrendscanbecapturedmakingthemodelcontinuouslyadaptive.

Inthispaper,weproposeamodelcalledtheAdaptiveFuzzyInferenceSystem(AFIS)whichconsistsoftwophases.First,aninitialfuzzymodelisgeneratedusingasmallnumberoftrainingdatavectors.Togeneratetheinitialfuzzymodel,aHMMistrainedandusedtocomputelog-likelihoodvaluesforeachofthedatavectors.Theselog-likelihoodvaluesarethenusedtorankandgroupthedatavectorstogenerateappropriatefuzzyrules,asdescribedinSection3.1.2.Second,thefuzzymodelisconformedtoarrivalofnewdatamakingitacontinuousadaptiveonlinesystem.Onobservingnewdataeitherthefuzzyrulethatsatis esthedataisidenti edusingtheHMMandisthenadaptedforthenewdataoranewfuzzyruleisgenerated.

TheproposedAFIShassigni cantdifferencesfromthemodelsinourpreviousstudiesinanumberofways.First,AFISisanonlinelearningsystemwhileotherslearnonlyof ine.Second,AFISisanadaptivemodel.Onceamodelisbuiltbasedontheavailabledata,itremainsunchangedinpreviousstudieswhile,inAFIS,anintelligentonlinelearningisusedtoadapttheinitialmodelasnewdataarrives.Inthelattercase,currentlyde nedruleis ne-tunedto tthenewdataandifnecessary,newruleisgenerated.Third,inAFIS,thetrainingdatasetdoesnothavetobelargeandthemodelnotnecessarilybetrainedwithdatahavingcharacteristicsofunknowntestdata,rathercanbetrainedincrementallyasnewdatabecomeavailable.AllthesefeaturesmakeAFISverysuitableforforecastingtimeseriesdataanditoutperformsotherexistingmethodsinliteratureincludingourpreviousmodelsasdemonstratedinSection5.

Theremainderofthepaperisorganizedasfollows.InSection2,webrie stlyinSection6,wesuggestfutureimprove-mentsandconcludethepaper.NotationsarelistedinTable1areusedindescribingalgorithmsintheremainingpartofthepaper.

2.Preliminaries

Inthissection,wedescribethepreliminaryconceptofHMMwhichisusefulinunderstandingtheproposedAFIS.

2.1.HiddenMarkovModel

AHiddenMarkovModel(HMM)islikea nitestatemachinethatrepresentsthestructureorstatisticalregularitiesof

12Md.R.Hassanetal./Neurocomputing104(2013)10–25

Table1

Listofnotations.NotationDescription

NNumberofstatesofaHMM

MNumberofdistinctsymbolsforaHMM

!x

Aninputdatavector/aninputobservationsequence

x1,x2,...,xkDatafeaturesindatavector!

xAStatetransitionprobabilitymatrixSii’thstateofaHMM

QStatesequence:fq1,q2,...gqCurrentstateq0Thenextstate

aijStatetransitionprobabilityfromstateSitoSjattimetB

Observationemissionprobabilitymatrix

bSjðckÞ

EmissionprobabilityofobservationsymbolckfromstateSjp

Initialstatetransitionprobabilityvectorl

ThehiddenMarkovmodel

Rll-dimensionalspaceofcontinuous/realnumbersMij

Membershipfunctionforj’thruleofi’thfeaturexiojThe ringstrengthofj’thrule

Eð!xjÞPredictionerrorforthedatavector!

xj

Emse

PredictionerrorforthetotaltrainingdatasetinMSESi

ScalingmatricesforallstatesiGAprobabilitydistributionon½0,1Þ

NðÞ

AmultivariateGaussiandensityfunction

m

ThemeanvectorfortheGaussiandensityfunctionNðÞ

u2S

ThecovariancematrixfortheGaussiandensityfunctionNðÞFij

Centerofthemembershipfunctionfori’thfeatureofj’thrulesij

Steepnessofthemembershipfunctionfori’thfeatureofj’thruleO

ThesetofobservationsymbolscAdistinctobservationsymbolv

Asetofobservationsequences

!xcontAninputdatavector/anobservationsequenceofcontinuousrealnumbers

lliThelog-likelihoodvalueofgenerating!

xgiventheHMMkDimensionofaninputdatavector/instance!

l

x!bCo-ef cientofconsequentpartofafuzzyruleD

Trainingdataset

sequences.HMMshavebeenappliedforspeechrecognitionsince

early1970s.Wewill rstusethecommonurnandballexampletoreviewthebasicideaofHMMs.SupposethereareNurnscontainingcoloredballsandthereareMdistinctcolorsofballs.Eachurnhasa(possibly)differentdistributionofcolors.First,wepickaninitialurnaccordingtosomeprobability.Second,werandomlypickaballfromtheurnandthenreplaceit.Third,weagainselectanurnaccordingtoarandomselectionprocessassociatedwiththeurns.WerepeattheSteps2and3.Inthisexample,wecanregardtheurnsasstatesandtheballsasobservationsymbols.

InHMMs,thestates(intheaboveexample,theurns)arenotobservable(i.e.,hidden).Observationsareprobabilisticfunctionofstate.Statetransitionsareprobabilistic.Moreformally:1.N,thenumberofstatesinthemodel.ThesetofstatesisdenotedasS¼fS1,S2,...,SNg.

2.M,thenumberofdistinctobservationsymbols,i.e.,theindividualsymbols.ThesetofsymbolsisdenotedasO¼fc1,c2,...,cMg.

3.ThestatetransitionprobabilitydistributionmatrixA¼½aij ;thevaluesofaijarecalculatedasaij¼Pr½q0¼Sj9q¼Si ,

1riandjrN;

ð1Þ

whereq0isthenextstate,qisthecurrentstate,Sjisthejthstate.

4.Theobservationsymbolprobabilitydistributionmatrix,B¼½bSjðckÞ ,whereckAOandbSjðckÞ¼Pr½ck9q¼Sj ,

1rjrNand1rkrM;

ð2Þ

wherebSjðcÞrepresentstheemissionprobabilityofanobserva-tionsymbolcinstateSj.

5.Theinitialstatedistributionvectorp¼fpigwhere

pi¼Pr½q0¼Si ,irN,

ð3Þ

whereq0isinitialstate.

6.l—theentiremodel,l¼ðA,B,pÞ.

TherearethreebasicproblemsassociatedwithusingHMMs[20]First,givenanobservationsequence,!

.

x¼/x1,x2,...,xTS,xiAOand

aHMMl¼ðA,B,pÞ,computePrð!

x9lÞ.Second,givenansequence!

observation

x¼/x1,x2,...,xTS,xiAOandamodell, ndtheoptimalstatesequenceQ¼/q1,q2,...,qTS,qiAS.Third,givenasetofobservationsequencesw,estimatemodelparametersl¼ðA,maximizePrð!B,pÞthat

x9lÞ8!

ixiAw.

OurgoalofusingHMMsistorankthedatavectors,whichwewillthenusetogeneratefuzzyrulesinalaterphase.Toachievethis,weneedtosolveboththethirdandthe rstproblemsdescribedabove.Thereisnoknownmethodtosolvethethirdproblemanalytically,i.e.,toadjustthemodelparameterstomaximizetheprobabilityoftheobservationdatavectors.TheBaum–Welchalgorithm[24]isaniterativeprocedurethatcandeterminetheparameterssub-optimally,similartotheexpectationmaximization(EM)method.Itoperatesasfollows:(1)lettheinitialmodelbel0.(2)computealbasedonl0andobservationsequence!x.(3)iflogPr!

new

ÀlogPrð!

ðx9lÞ

x9l0Þot,stop,elsesetl0¼landgotostep2(tistheminimumtolerancebetweentwosubsequentmodels).

The rstproblemcanbesolvedusingtheforward–backwardalgorithm,wheregiventheHMM,theprobabilityofgeneratingak-dimensionaldatavector,/x1,x2,...,xkS,iscalculatedusingthefollowingsetofequations[20]:

Prð!

x9lÞ¼

XPrð!x9Q,lÞPrðQ9lÞ,ð4Þ8Q

whereQ¼statesequenceq1,q2,...,qkandqiAS(forak-stateHMM),!

l¼TheHMMmodel,

x¼Inputdatavector/x1,x2,...,xkS,xiAO(ObservationSequence).

ThevaluesofPrð!

x9Q,lÞandPrðQ9lÞarecalculatedusingthefollowingequations[20]:

Prð!

x9Q,lÞ¼

YkPrðxi9qi,lÞ¼bq1ðx1Þbq2ðx2Þ...bqkðxkÞ,ð5Þ

i¼1

wherebqiðxiÞ¼emissionprobabilityofthefeaturexifromstateqi.PrðQ9lÞ¼p1:aq1,q2:aq2,q3...aqkÀ1,qk,

ð6Þ

whereporp1¼priorprobabilitymatrix,aqi,qj¼transitionprob-abilityfromstateqitostateqj.

SofarwehavedescribedaHMMthatdealswithasequenceofdiscretesymbols.Mostoftherealworldproblems,however,arecontinuous(e.g.,speechsignalrecognition,humanmovementrecognitionandstockindicesprediction)andhenceaHMMabletodealwithcontinuousdatasetisrequired.Thiscanbeachievedthroughaslightmodi cationofthediscreteHMM.ThefollowingsectionreviewshowaHMMcanbeusedforcontinuousdata.2.2.HMMforcontinuousdata

ThereareanumberofwaystogenerateaHMMtodealwithcontinuousdata.Firstly,thecontinuousdatasetcanbeconvertedintoanumberofdiscretesetsbyadoptingaquantizationtechnique.Infact,anumberofstudies,especiallyaredealingwithcontinuousspeechdata[25], rsttranslatethecontinuousfeaturesintoasetofdiscretesymbols.Anotherapproachistomapthediscreteoutput

Md.R.Hassanetal./Neurocomputing104(2013)10–2513

Fig.2.Step-by-stepexampleoftheproposedmodel:(1)Convertunivariatetimeseriesdataintodatavectors(window);(2)FeedthedatavectorsintoaHMM;(3)TraintheHMMusingexpectationmaximizationalgorithm;(4)Calculatelog-likelihoodvalueforeachofthetrainingdatavectorsandrankthem;(5)Groupthedatavectorsbasedontheranking;(6)Generateasetoffuzzyrules(consideredasfuzzysystem)usingthedatavectorgroups;(7)Adaptthegeneratedfuzzysystemwheneveranewdatavectorarrives;(8)FeedthenewdatavectorintothetrainedHMM;(9)Computelog-likelihoodlnewvalueforthenewdatavector;(10)Iflnewisnotwithintherangeofminimumandmaximumlog-likelihoodvalues(i.e.rankingscore)ofthefuzzysystem,createanewfuzzyrule;(11)Otherwiseidentifytherulewherethenewdatavector tsinand(12)Modifytheselectedfuzzyrule.

distributionbj(k)tothecontinuousoutputprobabilitydensityfunction.Theadvantageofdoingthisoverthequantizationisthattheinherentquantizationerrorcanbeeliminated[26].Hence,aHMMwithcontinuousoutputprobabilitydensityfunctionislesserrorpronethanadiscreteHMMwithquantizedcontinuousdata.

Tore-estimatetheHMMparameters,Baumetal.[27,28]describedageneralizationoftheBaum–Welchalgorithmtodealwithsuchacontinuousdensityfunction.Anecessaryconditionisthattheprobabilitydensityfunctionsmustbestrictlylogconcave,whichconstrainsthechoiceofcontinuousprobabilitydensityfunctiontobeGaussian,PoissonortheGammadistribution[26].

3.Adaptivefuzzyinferencesystem

Theproposedadaptiveonlinefuzzyinferencesystemhastwophases(asillustratedinFig.2):

Phase1:Initialfuzzyrulebasegeneration

JConvertunivariatetimeseriesdataintodatavectors(window)

FeedthedatavectorsintoaHMM

JTraintheHMMusingexpectationmaximizationalgorithm

JCalculatelog-likelihoodvalueforeachofthetrain-ingdatavectorsandrankthem

JGroupthedatavectorsbasedontheranking(log-likelihoodscores)

JGenerateasetoffuzzyrules(consideredasfuzzysystem)usingthedatavectorgroups

Phase2:Adaptationoftheruleparametersinresponsetoarriv-ingofnewdatasequences,oronlinegenerationofanewrule,ifrequired

JFeedthenewdatavectorintothetrainedHMMJComputelog-likelihoodvalueforthenewdatavectorJIfthelog-likelihoodvaluedoesnotfallwithintherangeofminimumandmaximumlog-likelihoodvalues(i.e.rankingscore)ofthefuzzysystem,createanewfuzzyrule

JElseidentifytherulewherethenewdatavector tsin

JAdapttheselectedfuzzy

rule

J

14Md.R.Hassanetal./Neurocomputing104(2013)10–25

InPhase1,theinitialfuzzymodelisgenerated.Intheprocessofgeneratingthemodel,extractionofappropriateandaccuratefuzzyrulesfromdataisachallenge.Thisisbecause,evenforasmallnumberofdatafeaturesinthedataset,therearepotentiallyalargenumberofrulesthatcanbegenerated.Thereareseveralmethodsthatcanbeemployedforgeneratingfuzzyrulesrepresentingtheinput–outputrelationship[29–31].InAFIS,wefollowthefuzzyrulegenerationapproachthroughusingaHMM’sabilitytoidentifyandgroupsimilarpatternsfollowingthestudies[22,32,18,23].TheHMMconsidersthedependencybetweenfeatures,becauseitusesaMarkovprocess,whereitisassumedthatthecurrentstatedependsontheimmediatepaststate.Detailsaboutthegenerationoffuzzyrulebaseareprovidedinsequel.3.1.HMM–Fuzzymodel

TogeneratethefuzzyrulebaseaHMMistrainedusingwellknownBaum–Welch[27]algorithmandthetrainedHMMisthenusedtocomputelog-likelihoodvaluesforeachofthedatavectors.TheHMMlog-likelihoodvalueisusedasaguidetoextracttheappropriatefuzzyrulesfromthetrainingdataset.

Letusconsiderthetrainingdataset,whichisaunivariatetimeseries,wherethesetofdatavectorsareobtainedbychoosinga xedwindowsizeWTwhichslidesforwardwithrespecttotime.LetDbeaunivariatetimeseriesdataoflengthT,i.e.,D¼/x1,x2,x3,ÁÁÁ,xTS,wherexiAOfor1rirT.Table2showstheinputdatavectorsandthecorrespondingdesiredoutput.ThetrainingdatavectorsarerankedusingatrainedHMMandthentheinitialfuzzymodelisdescribedinthefollowingsubsections.

Itmaybenotedthatwehaveused xedwindowsizewithuniformsamplingofrecentdata(inourcasewithtimelag1)topredictfuturedata,whichisthestandardpracticeintimeseriesforecasting.ArecentstudybyMinvydasandKristina[33]showedpromisingresultswhennon-uniformsamplinginsteadofuniformsamplingofdatawasusedinforecasting.Itrequiresdeterminationofanoptimalsetoftimelagsfromtheobservedtimeseriesdata.SinceourfocusinthisworktomakeHMM–Fuzzymodeladaptiveforonlineforecasting,westicktothestandardapproachhere,however,theeffectofnon-uniformsamplingonourmodelisworthinvestigat-inginfuture.

3.1.1.Rankingthedatavectors

Topartitiontheinputdataspace,initiallythedatavectorsarerankedusingHMMlog-likelihoodscores.Sincethedataarecon-tinuous,aHMMforcontinuousdatasequence(asdescribedin

Section2.2)isused.Eachdatavector!

xihasaHMMlog-likelihood

valuell!

i.ThisvalueisthetheHMMl:llð!logofprobabilityxi9lÞÞ¼logðPQofgeneratingWT!xi,given

i¼logðfSt¼1aSi,mq2

tÀ1StNðxt,utSqtÞÞ.Thesescores,arethususedtorankthedatavectors,consideringthetrainedHMMasareferencepoint.Thisisdepictedinthefollowingscenario.

Example1.LetusconsideradatasetD,where!

1rirm;irepresentstheindexfordatavector!

xiADfor

xiandxijj’thelementof!

isthe

xi;1rjrk.Thatis,eachofthedatavectorsisk-dimensional(herethedimensionofthedatavectoristhelength

Table2

ThesetofpredictordatavectorsandthedesiredoutputforaunivariatedataDoflengthTwherexiADfor1rirT.DataVector1:/x1,x2,...,xWTSDesiredOutput:xWTþ1DataVector2:/x2,x3,...,xWTþ1SDesiredOutput:xWTþ2DataVector3:

/x3,x4,...,xWTþ2SDesiredOutput:

xWTþ3yyyyyy

y

yData

Vectorm:

/xTÀWT,xTÀWTþ1,...,xTÀ1S

Desired

Output:

xT

ofthewindowsize‘WT’)andthedatasetcontainsmdatavectors.AssumethatthedatasetDrepresentsthedailyclosingpriceofastock:i.e.theithdatavector/xi1,xi2,xi3,xi4Swillbe/xdayForthisdatasetD,wetrainaHMMi,xdayliþ1,xdayiþ2,xdayiþ3S.¼ðA,B,pÞ.Assumethatthelog-likelihoodvaluesfordatavectors!x1,!x2,!

thethree

x3arel1,l2andl3,respectively.InHMM–Fuzzymodel,datavalueswithcloselog-likelihoodvalueswouldbeassignedthesamerank.Letusassumethatthevaluesofl1andl3areveryclosewithinatolerancelevel.Ontheotherhand,supposethevalueofl3isnotclosetothevalueofl1andl2.datavectors!x1and!

Thus,

x3willbeassignedthesamerankanddata

vector!

x2willbeassignedadifferentrank.

3.1.2.Fuzzyruleinference

AFISusestheTakagi–Sugeno(TS)typefuzzyinferencemodel[34].Themodelcomprisesasetoffuzzyrulessuchthateachrulehastwoparts:apremiseandaconsequence.Theconsequenceisusuallyalinearcombinationofallvariablesinaninputspace,andisusuallydenotedasafunctionoftheinputvariables.

InAFIS,allfuzzymembershipfunctionsareradialbasisfunctionswhichdependontwoparameters,asgivenbythefollowingequation:MjiðxÞ¼eÀ1=2ððxiÀFijÞ=sijÞ2

,

ð7Þ

whereMji(x)representsthemembershipfunctionfortheattributexiandj’thfuzzyrule,Fijisthecenterandsijisthesteepnessofthemembershipfunctionforthei’thfeature,i.e.,xiinthedatasetconsideredtogeneratethej’thrule.

Infuzzymodel,thenon-linearityinthedatasetisconsideredtobeacombinationoflinearrepresentations.Assoonasrepre-sentativestraightlinesareobtainedfornon-lineardata,theTSfuzzymodelisgeneratedandthemembershipfunctionofeachofthelinearrepresentationsisderived.Themathematicalequationforeachofthelinearrepresentationsisa rst-orderpolynomial,whichisusedtorepresentafuzzyruleinthemodel.Therepresentationsyntaxforsuchafuzzyruleis[35]jthrule:Ifv1isMj

1

andv2isMj

2

andÁÁÁvkisMjk

Theny

^jisfjðv1,v2,...,vkÞ:Herev!!

iAV,1rirk;Visak-dimensionalinputdatavectorandMjiisthefuzzyrelationshipamongvis.

Thelinearfunctionfjðv1,v2,...,vkÞisrepresentedasfollows:y^jpred¼v^kþ1¼bj0þbj1v1þbj2v2þÁÁÁþbjkvk,

ð8Þ

here,y

^j

predistheoutputpredictedbyj’th-ruleandbj0,bj1,...,bjkarethecoef cients.

IntheTSmodel,theconsequenceofde ningalinearmappingcanbetermedgeometricallyasahyperplaneintheinput–outputspace[24]andthedefuzzi cationofthemodeliscomputedastheweightedaverageofeachrule’soutputasrepresentedinEq.(9)[35].

Pc

y

^pred¼j¼1

ojÂy^jpred

,ð9Þ

j¼1j

whereoj¼Q

ki¼1Mji(forak-dimensionalinputdatavector)andc¼thetotalnumberofrulesinthemodel.

InAFIS,theleast-squareestimation(LSE)[36,37]functionisusedtoobtaintheoptimizedparametervaluesofEq.(8)intheconsequentpartofeachfuzzyrule.

Letusassumethat,therearemdatavectorsforthej’thfuzzy

rule.Theco-ef cientb!

iAb,0rirkofEq.(8)isobtainedbyapplyingtheLSEformula(Eq.(10)).!b¼CXT!y,

ð10Þ

Md.R.Hassanetal./Neurocomputing104(2013)10–2515

where

Bx11x12...x1k

1

BBx21x22...x2kCC

C¼ðXTXÞÀ1,X¼BB

B

TB:

B............C

CBC

and!

y¼½y1y2...ym @xm1

xm2

...

xAmk3.1.3.Fuzzyrulegeneration

Intheprocessofgeneratingtheinitialfuzzyrules,wedividethedatasetusingthelog-likelihoodscore/rankforeachdatavector,throughapplicationofadivideandconquerapproach.

Tobeginwith,wecreateonlyonefuzzyrulethatrepresentstheentireinputspaceofthetrainingdataset.Atthispoint,allthedatavectorsareconsideredtobelongtooneglobalgroup,there-forethelog-likelihoodvalueforeachdatavectordoesnothaveanyroleingeneratingthefuzzyrule.Intheprocessofrulegeneration,wecalculatethecenterFiandsteepnesssi,inordertode nethemembershipfunctionforeachfeaturexiinthedataset.LetusassumethedatasetDisusedtobuildtheinitial

fuzzymodel.Theparameters{!F,!sð!

xÞ}fortheonlyonegener-atedrulewhichsatis esthewholedatasetDisobtainedasfollows:

Pm

F¼1xij

i¼jm

,

ð11Þvuu 1Xm

si¼tmðxijÀFiÞ2,ð12Þ

j¼1wherem¼totaldatavectorsinD;xij¼i’thattributeofj’thvector.

Theparametervalueoftheconsequentpartisobtainedusing

Eq.(10).Thegeneratedfuzzyruleisusedtopredicttheoutputy

^jforeachdatavector!

xjinthetrainingdataset.Theprediction

errorEð!

xjÞforeachdatavectoriscomputedusingEq.(13).Eð!xjÞ¼y

^jÀyj,ð13Þ

here,y

^jisthepredictedvalueusingthegeneratedfuzzyrulesetandytheactualvalueforj’thdatavector!

jisxj.

Thetotalmeansquarederror(MSE)Emseforthetrainingdataset(m¼totaltrainingdatavectors/instances)isobtainedbythefollowingEq.(14).

EPm!2

j¼1EðxjÞ

mse¼

m:ð14ÞThepredictionerrorEmseisusedtoevaluatetheperformanceofthedevelopedmodelforthetrainingdataset.Iftheerrorforthetrainingdatasetdoesnotreducefurther,thealgorithmistermi-natedandnofurtherruleisgenerated.Otherwise,theinputtrainingdataissplitintotwogroupswiththehelpofdatavectorssortedaccordingtotheirranks.Thesplittingofthedataisdonebygroupingthedatavectorsbasedontheirranks.

Initially,thesplitisdoneinsuchawaythatthe rstgroupcontainsdatavectorshavingcomparativelyhigherrankthanthedatabelongingtotheanothergroup.Toachievethis,aparameteryisintroduced,i.e.the rsty%ofthewholerankeddatasetisconsideredtoformagroupandtheremainingdata,i.e.ð1ÀyÞ%ofthewholerankeddatasetbelongstoanothergroup.Wecreateanewruleforeachcreatedpartition.Thuseachsplitincreasesthenumberofrulesbyone.ThepredictionerrorEmseforthetrainingdatasetisrecalculatedusingtheextractedruleset.Ateachstepofincreaseinthenumberofrules,theconvergenceoferrorismonitored.RulegenerationisstoppedwhenaddingaruledoesnotyieldfurtherimprovementinpredictionerrorEmse.

Inthecaseoffurtherrulecreation,thedatasetinthesecond

partisfurthersplittoextractmorerules.The rsty%oftherankeddatasetinthesecondpartisselectedtoformagroup.Theremainingpartofthedatasetinthesecondpartofthewholedatasetisconsideredasanothergroup.AnewruleisgeneratedforeachofthenewpartitionsandthepredictionerrorEmseforthetrainingdatasetisrecalculatedusingtheextractedruleset.ThisprocessofrulegenerationcontinuesuntilthepredictionerrorEmseforthetrainingdatasetreachesaplateauorthereisnodatainthelastpartitionedgrouptofurthersplit.

Eachtimeanewrule(letusconsiderthisnewruleisthej’thrule)isgenerated,thetotalnumberofdatavectorsnjandthe

HMMlog-likelihoodvaluerange(startingpoint:lstart

jandend

point:lend

j)consideredtogeneratethatj’thruleisstoredtobeusedatlaterstageofthesystem.

Example2.LetusconsiderthedatasetdescribedinExample1.First,onefuzzyruleisgeneratedusingallthedatavectorsindatasetD.Weassumethatthepredictionerrorforthegeneratedfuzzyruleis0.9,whichisgreaterthanthebestpossibleminimumpredictionerror0.Tominimizeerrorfurther,thenumberoffuzzyruleisincreasedbyone.ThedatasetisdividedintotwopartsusingtheHMMlog-likelihoodvalueofeachdatavector.TheHMMlog-likelihoodvalueisusedasarankscoreforeachdatavector.The rstdividedpartconsistsofthedatavectorswithlog-likelihoodvaluesintherangeof–0.0to–1.5(i.e.the rsty%datavectorsofthewholedataset)andtheseconddividedpartcontainsthedatavectorswithlog-likelihoodvaluesintherangeof–1.5to–3.5(i.e.theremainingð1ÀyÞ%ofthedataset).Twofuzzyrulesaregeneratedusingthesetwopartsofthedivideddataset.Soweobtainapredictionerror0.3usingthetwofuzzyrules.Assumingthaterrormaybereducedfurther,additionalrulegenerationisrequired.Thedatasetinthesecondpartitionedgroupissplitintotwogroups.Atthisstep,the rsty%rankeddatavectorsofthesecondpartitioneddatasetisusedasonegroupandtheremainingdatavectorsfromthesecondpartitioneddatasetisconsideredasanothergroup.Newrulesaregeneratedforeachofthegroups(the rstpartitionedgroupandthenewlyobtainedtwogroups)andsowehavenowobtainedthreefuzzyrules.Letusassumethatapredictionerrorusingthesethreefuzzyrulesof0.5.Afurthersplitofthelastpartitioneddataproducesapredictionerroris0.7.Letusassumethatwehavereachedatapointwhereitisnotpossibletofurthersplitthelastpartitioneddatavectors.Now,wehavethebestminimumpredictionerror0.3thatwasachievedusingtwofuzzyrules.The nalfuzzymodelisbuiltusingthosetwofuzzyrulesandtherulegenerationprocessisterminated.3.2.Adaptivefuzzy

TomaketheHMM–Fuzzymodeladaptivetothenewarrivalofdatawhichmightbecomeavailableafterthemodelhasbeenbuilt, rstweneedtoidentifytherule,thatistobeadaptedtore ectthenewdatabehavior.Therefore,thisprocesshastwosteps:(1)Identifyingtherelatedruleand(2)updatetheselectedrule’sparameters.

3.2.1.Extractingtheruletobemodi ed

Whennewdataisavailable,thelog-likelihoodvalueforthenewdataiscalculated.Basedonthelog-likelihoodvaluethecorrespondingrulethatwasgeneratedusingdatavectorswithsimilarlog-likelihoodscoreisidenti ed.Thenthatrule’spara-metersareadaptedwiththenewdata.

Example3.LetusconsideradatasetDwithatotalndatavectors.ForthisdatasetwetrainaHMMlandproducethesetoffuzzy

16Md.R.Hassanetal./Neurocomputing104(2013)10–25

Fig.3.Theselectedruleanditsadaptation.

rulesusingtheHMM–Fuzzyapproach.Letusassumen¼40andwehavethreefuzzyrules.Amongtheserules,the rstrulehasbeengeneratedusingthedatasetwithlog-likelihoodvaluesintherangeof–0.0to–0.6,whilethatofforthesecondruleisinbetween–0.61and–0.7andthatforthethirdruleisinbetween–0.71and–3.0.Supposethenewdatavectorproducesalog-likelihoodvalueof–0.9.Thisvalueindicatesthatthenewdatavectorwillbecoveredbythethirdrule.Hence,toadaptthefuzzymodelgiventhenewdatavectorwemustupdatethethirdrule.3.2.2.Adapttheextractedrule(s)

Adaptationoftheextractedrulegiventhenewdatavectoristheprocessofadjustmentoftheparametersoftherule.Therearethreeparameterswhichneedtobeadjusted:(1)Thelinearparametersoftheconsequentpartoftherule,(2)ThecenterFofeachmembershipfunctionM,and(3)Thesteepnesssofeachmembershipfunction.

!!n

Toadaptthelinearparametersbtoboftheconsequentpartoftheextractedruleuponarrivingnewdataynew,theformulaforrecursiveLSE[37]isusedasinEq.(15).!!T

CxnewxnewC

C¼CÀ

1þxnewCxnew

!n!!T!n!b¼bþCxnewynewÀxnewb:

n

whereFij¼currentcenterde ningthemembershipfunctionMij,

Fnij¼thenewcenterofthemembershipfunctionMij,j¼theselectedrule,nj¼numberofdatavectorsthatwereusedtogeneraterulejduringinitialmodelbuilding,xnewi¼ithfeatureofthedatavector!

xnew,Mij¼membershipfunctionoftheithfeatureoftheselectedj’thrule.

Fig.3showstheeffectofadaptationonmembershipfunctionsofaselectedrule.

Example4.ConsideringthesamesetupdescribedinExample3,we

!

nowhavethenewdatavectorxnewandtheselectedrulerulej.Now,weadjustthecenterFijandsteepnesssijofeachmembership

!

functionMijofrulerulej.LetusassumethatFj¼/6:2,5:7,6:3,6:5S,

!!

i.e.,F1j¼6:2,...,F4j¼6:5,sj¼/0:4,0:7,0:63,0:49Sandxnew¼/5:5,6:5,6:7:ingEq.(16)and(17)weobtaintheadjusted

!n

centervaluesasFj¼/6:16,5:75,6:28,6:53S,andtheadjusted

!n

steepnessvaluesassj¼/0:4488,0:7502,0:6550,0:5213S.3.2.3.Generatenewrule

InAFIS,anewruleisalsogeneratedifrequired.IftheHMMgeneratesalog-likelihoodvalueforanewdatavectorwhichdoesnot tintheexistingdataarray(i.e.,thenewlog-likelihoodvalueexceedstherangeoflog-likelihoodvaluesthatwasusedtogeneratetheexistingfuzzymodel)anewruleneedstobegenerated.Inthiscase,giventhedesiredoutputforthenewdatavector,theLSEalgorithmisusedtoobtainthelinearparametersforthenewrule.Parametersofthemembershipfunctionsforthenewruleareobtainedfromthenewdatavector.Sincethereisonlyonedatavectorpertainingtothenewrule,thecentervalue(Fnewi)andsteepnessvalue(snewi)ofeachmembershipfunctionforthisnewruleareobtainedfromthenewarrivingdatavector.However,everytimethesystemfetchesnewdatavectorofsimilarpatternitwilladaptitselfwiththenewarrivingdatavectorasdescribedinpreviousSection3.2.1

.

ð15Þ

!

Here,xnewisthedatavectorthatcorrespondstotheoutputynew.

!

Basedonthenewlyavailabledataxnew,recalculationoftheparameters:FandsforeachmembershipfunctionoftheselectedruleisdoneusingEqs.(16)and(17).

Fnij¼

Ã1Â

xnewiþnjFij,

jð16Þ

sij

n2

!

Á2njÀ12

nsþx¼ÀFij,

njþ1jijnjþ1newi

ð17Þ

Md.R.Hassanetal./Neurocomputing104(2013)10–2517

4.Experimentdesignanddatasets

Ourexperimentsareconductedonrealstockdata.Thehard-wareusedisanAMD2.3GHzCPUwith4GBmemory.ProgramswerewritteninMatlabandrunusingWindowsVista.4.1.Datasets

Wehaveusedsevenleadingstockmarketindicesdatafromdifferentpartsoftheworld:DowJonesIndustrialAverage(DJI),NASDAQComposite(NASDAQ)andS&P500IndexRTH(S&P500)fromUSAstockmarket;FTSE100,DAXPerformanceIndex(GDAXIorDAX)fromEuropeanstockmarket;andAllOrdinaries(AORD)andNIKKEI225(N225orNIKKEI)fromAsianstockmarket[38].Wehaveusedthehistoricalpastweeklydataoftheabove-mentionedstockmarketindices.ThetimerangeforeachdatasetisdetailedinTable3.4.2.Datasetup

Wehaveusedweeklystockindicestobeusedinthemodeltrainingandevaluation.Touseinthesystem,wehaveusedfourweeksasinputvariablesand fthweekasthepredictvariable.

InAFIS,webuildaninitialmodelconsideringasmallamountofdataastrainingdata.ThisinitiallybuiltmodelisadaptedwiththearrivingofnewdatafollowingtheadaptiveprocessasdescribedinSection3.2.Toevaluatetheonlineadaptivebehavioroftheproposedsystem,webuilttheinitialmodelbyvaryingthelengthofthetrainingdatasetusingassmallasof60datavectorstoamaximum3000datavectors.Theremainingpartofthedatasetwasusedastestdata(completelyunknowntothesystem).Tomakethecomparisonconsistent,webuilttheothermodelsusingthesamesplitofdataintotrainingandtestsets.Theothermodelswehavetestedare:DENFIS,Chiu’sfuzzymodel[39](fuzzymodelisgeneratedusingasubtractiveclustering)followedbyahybridlearningalgorithmpresentedbyJangetal.[40]andHMM–Fuzzymodel.

AutoregressiveIntegratedMovingAverage(ARIMA)isapop-ulartechniqueforforecastingtimeseriesdata.WecomparedtheperformanceofAFISwithARIMAwhere,weusedthe rst1000datainstancesastrainingdataandtheremainingdatainstancesastestdata.

WehavealsogeneratedpredictionsusingarepetitivelytrainedARIMA,wheretheARIMAistrainedeverytimewitheacharrivingnewdatainstances.Eachtime,theARIMAistrainedusingthenewdatainstance,alongwith1000datainstancesfromtherecentpast.WetermthisARIMAasrepetitivelytrainedARIMA.

Wedevelopedanotherfuzzymodelthroughpartitioningthetrainingdatarandomlyandthengeneratingfuzzyrulesforeachofthepartitions,inordertostudytheeffectivenessofinitialpartitioningofdatausingHMMinAFIS.ThenumberofpartitionswaschosentobesameasthenumberoffuzzyrulesgeneratedinAFIS.WerefertothismodelasRandomlyPartitionedFuzzyRuleGeneration(RPFRG).Wemadethismodeladaptivebyadaptingitsparametervalueswitharrivingnewdata.Toadapttheparameter

Table3

Detailsofthedatasetusedintheexperiment.StocknameFromdateTodateDJI

01/10/192824/08/2009NASDAQ05/02/197124/08/2009S&P50003/01/195024/08/2009FTSE10002/04/198424/08/2009DAX26/11/199024/08/2009AORD03/08/198424/08/2009NIKKEI

04/01/1984

24/08/2009

values,wehaveusedthesamemethodologyasinAFIS.WecallthisadaptivemodelasAdaptiveFuzzySystemfollowedbyRPFRG(ARPFRG).InARPFRG,therulethatneedstobeadaptedisselectedrandomlyandtheparameterswereadaptedgiventhenewdatavectorfollowingEqs.(16)and(17).DetailsoftheseapproachesareprovidedinAppendix.

Wedevelopedafuzzymodelwherefuzzyrulesweregener-atedfollowedbyak-meansclusteringalgorithm[41].Inthismodel,thevalueofkisprovidedbytheuserpriortobuildthefuzzymodel.DetailsofthisapproachisprovidedinAppendix:SectionAppendixC.Inthisstudywerefertothismodelasfuzzyrulegenerationusingk-meansclustering.Wemodi edthisof ineapproachofgeneratingfuzzymodeltoanonlineadaptivesystemfollowingtheproceduredescribedinAppendix:SectionD.Theadaptiveversionofthefuzzyrulegenerationusingk-meansisreferredasadaptivek-meansfuzzymodel.

Arti cialNeuralNetwork(ANN)isapopulartooltoforecastfuture.Weusedathreelayer(Input-Hidden-Outputlayer)ANNtrainedbybackpropagationalgorithm[42].Todeterminethemostsuitablearchitecture,wetrainedtheANNbyvaryingthenumberofhiddennodesfrom5to35andthenselectedthatANNwhichproducedthebestforecastperformance.

4.3.Performancemetrics

Wehaveusedthreedifferentmetricstoevaluatethepredictedmodels:MeanAbsolutePercentageError(MAPE),NormalizedRootMeanSquaredError(NRMSE)andt-test.

4.3.1.MeanAbsolutePercentageError(MAPE)

Thisvalueiscalculatedby rsttakingtheabsolutedeviationbetweentheactualvalueandtheforecastvalue.Thenthetotaloftheratioofdeviationvaluewithitsactualvalueiscalculated.Thepercentageoftheaverageofthistotalratioisthemeanabsolutepercentageerror.ThefollowingequationshowstheprocessofcalculatingtheMAPE.

Pr 9yÀy^ MAPE¼

i¼1

ii9i

r

Â100%,ð18Þ

wherer¼totalnumberoftestdatavectors,yi¼actualstockprice

onweeki,andy

^i¼forecaststockpriceonweeki.4.3.2.NormalizedRootMeanSquaredError(NRMSE)

Thisistherootmeansquarederrordividedbytherangeofobservedvalues

q Pr

NRMSE¼

¼1ðyiÀy^2

iiÞ

,ð19Þmaxminwhereymaxandyminarethemaximumandminimumvaluesofyiwiththertestdatavectors.

4.3.3.t-test

t-testisastatisticalhypotheticaltestwheretheaveragesofthetwosamples:thepredictedoutputusingAFISandthepredictedoutputusinganotherfuzzyapproachistestedagainst

thenullhypothesisH0.Letusconsiderthetwoaveragesare:y

AFISandy

#respectively.Thenullhypothesisisde nedasH0:y

AFIS¼y#,ð20Þ

wherey

^AFIS¼averageofpredictedoutputsfromAFIS;y^#¼averageofpredictedoutputsfromanyotherapproach.Thet-valueforthe

18Md.R.Hassanetal./Neurocomputing104(2013)10–25

102102

MAPE

101

MAPE

3000

101

100

05001000150020002500

100

0500100015002000

Number of training data instancesNumber of training data instances

102102

MAPE

101

MAPE

101

100

0500100015002000

100

02004006008001000

Number of training data instancesNumber of training data instances

102

102

MAPE

MAPE

100

200

300

400

500

600

700

800

101101

100100

0100200300400500600700800900

Number of training data instancesNumber of training data instances

102

MAPE

101

100

0100200300400500600700800900

Number of training data instances

parisonoftheMAPEforalldatasetsfortheforecastsgeneratedusingAFIS,HMM–Fuzzy,DENFISandChiu’sFuzzymodel[39].(a)DJI,(b)NASDAQ,(c)S&P500,(d)FTSE100,(e)DAX,(f)AORDand(g)NIKKEI.

Md.R.Hassanetal./Neurocomputing104(2013)10–2519

0.40.350.3

0.350.30.25

NRMSE

NRMSE

0.250.20.150.10.0500.20.150.10.05

0500100015002000

Number of training data instancesNumber of training data instances

0.450.40.350.3

0.70.6

0.5

NRMSE

NRMSE

0.250.20.150.10.0500.40.30.20.1

Number of training data instances

0.70.60.5

0.450.40.350.3

NRMSE

0.40.30.20.100

100

200

300

400

500

600

700

800

NRMSE

0.250.20.150.10.050

Number of training data instancesNumber of training data instances

NRMSE

100

200

300

400

500

600

700

800

900

Number of training data instances

parisonoftheNRMSEforalldatasetsfortheforecastsgeneratedusingAFIS,HMM–Fuzzy,DENFISandChiu’sFuzzymodel.(a)DJI,(b)NASDAQ,(c)S&P500,(d)FTSE100,(e)DAX,(f)AORDand(g)NIKKEI.

20Md.R.Hassanetal./Neurocomputing104(2013)10–25

t-testiscalculatedasinEq.(21).AFISÀy#y

t-value¼^#ÞvarðyAFISÞÀvarðy

ð21Þ

wheren¼totalnumberofsamples.Thet-valueisusedtodeterminethesigni cancelevelofdifferencebetweenthetwodatasamples.Thissigni cancelevelisknownasp-value.Ap-valuer0:05indicatesthatthenullhypothesisisrejectedwithin95%con dencelevelandhencethedifferencesinpredic-tionarestatisticallysigni cant.4.4.Choiceofparameters

Followingthestudies[43,22,19,21,23],thenumberofstatesinHMMforthestocksischosenas5,asthenumberofinputfeaturesis5(i.e.thewindowsize‘WT’¼5)inthedataset.Wegeneratedforecastsbyvaryingthewindowsizefrom3to6andnoticedinsigni cantvariationinforecastperformance.Alltheexperimentalresultsreportedhereweregeneratedusingthewindowsize‘WT’¼5.TheinitialparametervaluesoftheHMMarechosenbyfollowingthesamestepsasinHassanetal.[19].Weidenti edtheparametervaluesofARIMAthroughanalysisofthetrainingdatausingAkaikeInformationCriterion(AIC)andBayesianInformationCriterion(BIC).Theparametervalues(y)oftheHMM–Fuzzymodel(wherethe rst1000datainstanceswereusedastrainingdata)andARIMA(p,d,f)arelistedinTable6.InHMM–Fuzzy,forchoosingthe

Table4

Comparisonofthep-valueoft-testforalldatasets.Stockname

parametervaluey,weused90%ofthetrainingdatatogeneratefuzzyrulesandusedtheremaining10%ofthetrainingdatatomonitortheperformanceofthegeneratedfuzzymodel.Weselectedaythatproducedtheminimumerrorforthis10%data,throughvaryingthevalueofyfrom10%to90%.Thisyisthenusedtogeneratethefuzzymodelusingthefulltrainingdataset.Itshouldbenotedthatweusedthetrainingdataonlyforselectinganoptimalyandgeneratingtheinitialfuzzymodel,whilekeepingthetestdatacompleteunknowntothesystem.Thesameapproachwasusedtoselecttheparametervalues(i.e.,radiusofclusters)togenerateChiu’sfuzzymodel.TheobtainedmodelusingChiu’ssubtractiveclusteringtechniquewastunedusingahybridlearningalgorithmpresentedbyJangetal.[40]with500epochs.

5.Resultsanddiscussion

GraphsinFigs.4and5showtheperformancesinMAPEandNRMSErespectivelyforthesevenstocksconsideredinthispaper.Ascanbeseenfromthesegraphs,theforecastperformanceoftheproposedadaptivefuzzyinferencesystem(AFIS)onthestockmarketdatasetsclearlyoutperformsthatofalltheotherreportedcompetingfuzzymodels.Fromobservationsofthe gures,twoimportantaspectsareevidenthere:(a)betterperformanceisachievedbyAFISirrespectiveofthelengthoftrainingdataset,especiallyforDJI,NASDAQandS&P500datasetsMAPEandNRMSEattainedbyAFISissigni cantlylowerthanothers;(b)AFISachievesitssuperiorperformancewithonlyveryshort

p-values(vs.AFIS)within95%con denceHMM–Fuzzy

Chiu’sModel

Signi cantlydifferenceð1:006Â10Þ

Signi cantlydifferenceð2:017Â10À3Þ

Signi cantlydifference(0.0243)

Signi cantlydifferenceð2:336Â10À5Þ

Signi cantlydifference(0.0064)

Signi cantlydifference(0.0137)

Signi cantlydifference(0.0471)

À7

DENFIS

Signi cantlydifferenceð2:009Â10À9Þ

Signi cantlydifferenceð2:171Â10À7Þ

Signi cantlydifference(0.0092)

Signi cantlydifferenceð3:336Â10À13Þ

Signi cantlydifference(0.0015)

Signi cantlydifferenceð3:987Â10À13Þ

Signi cantlydifferenceð5:289Â10À90Þ

DJINASDAQS&P500FTSE1000DAXAORDNIKKEI

Signi cantlydifferenceð1:092Â10Þ

Signi cantlydifference(0.049)

Signi cantlydifference(0.0341)

Signi cantlydifferenceð3:056Â10À3Þ

Signi cantlydifference(0.0154)

Signi cantlydifferenceð2:931Â10À36Þ

Signi cantlydifference(0.02685)

À3

1010

32

AFISRPFRGARPFRG

101010

65432

101

AFISRPFRGARPFRG

NRMSE

10101010

0 1 2 3

MAPE

Number of training instancse

1010

10110

200250300350400450500550600650700200250300350400450500550600650700

Number of training instancse

Fig.6.PerformancecomparisonamongHMM–Fuzzy,AFIS,randomlypartitionedfuzzyrulegeneration(RPFRG)andadaptivefuzzysystemfollowedbyrandomlypartitionedfuzzyrule(ARPFRG)forDJIstockindex.(a)Performancemetric:NRMSEand(b)Performancemetric:MAPE.

Md.R.Hassanetal./Neurocomputing104(2013)10–2521

lengthofthetrainingdata.Forexample,forNIKKEIseries,allthefuzzymodelsproducedaminimumconsistentMAPEandNRMSEstartingfromthelengthofthetrainingdataas200(asweseeinFigs.4(g)and5(g)).ForthisstockAFISproducedevenabetterperformancestartingfromthelengthofthetrainingdataas60andonwards.

Tofurtheranalyzetheresults,wehaveconductedapairedt-testwith5%signi cancelevel(i.e.95%con dencelevel)betweenAFISandotherconsideredtechniques.AsshowninTable4thecomputedp-valuesbetweenthepredictedvaluesbyusingAFISandthatofusingHMM–Fuzzy,Chiu’ssubtractiveclusteringbasedfuzzymodelandDENFISaremuchlessthan0.05.ThefactthattheperformanceofAFISisfarbetterthantheotherfuzzysystems(Figs.4and5)alongwiththesmallerp-value(i.e.,p-valueo0:05)statisticallysignifythatAFISiscapableofforecastingtimeseriesdatasigni cantlybetterthanHMM–Fuzzy,Chiu’sfuzzymodelandDENFISforthestockdataconsideredinourexperiment.

ToanalyzetheeventthatmakesAFISsuchanef cientforecastapproach, rstwegeneratedfuzzyrulesusingaschemeofrandomlypartitioningthetrainingdata.GeneratedrulesarealsoadaptedassoonasnewdataarrivesfollowingarandomprocessasstatedinSection4.Fig.6providestheperformanceresultsofRandomlyPartitionedFuzzyRuleGeneration(RPFRG)andAdaptiveFuzzySystemfollowedbyRPFRG(ARPFRG)alongwithHMM–FuzzyandAFISforDJIstockindex.Table6showsthatAFISisclearlyabletomodelthebehaviorofthestockseries.Forexample,theperformanceofAFISinMAPEis1.93foratrainingdatalengthof700,whereasforthesametrainingdataARPFRGattainsaMAPEvalueofnearly430000(seeFig.6b).Itisworthmentioningherethatduetointroducingrandomnessingeneratingfuzzyrulesandidentifyingtherulethatneedstobeadapted,theMAPEvaluesforbothRPFRGandARPFRGaremuchhigherthanthatofAFIS.Second,wegeneratedfuzzymodelusingak-meansclusteringalgorithmanditsadaptiveversion.Intheadaptivek-meansfuzzymodel,withthearrivalofnewdatavectors,theinitialfuzzymodelgeneratedusingak-meansalgorithmisadaptedbycouplingtheintelligentdynamicadaptiveapproachdescribedinSection3.2.1.AsshowninTable5,theperformanceoftheadaptivek-meansfuzzymodelissigni cantlybetterthanthatofnon-adaptivefuzzymodel.Thissigni estheimportanceoftheproposedadaptiveapproachinimprovingforecastaccuracy.Moreinterestingly,eventhoughtheadaptiveapproachyieldsbetterresults,theperformanceofAFISisfarbetterthantheperformanceoftheadaptivek-meansfuzzymodelintermsofMAPE.Hence,these ndingssubstantiatethattheeffectivenessofpartition-ingdatausingHMMaswellastheintelligentadaptiveapproachcontributedtotheimprovedperformanceofAFIS.

Inliterature,ANNhasbeenusedtoforecasttimeseriesdata,e.g.,stockmarketpredictionbyAtsalakisaetal.[44]andforeigncurrencyexchangerateforecastingbyKamruzzamanetal.[45].Table6providesacomparisonbetweenAFISandANN.TheforecastperformanceofAFISissigni cantlybetterthanthatofANN.ThepoorperformanceofANNisduetoitsinabilitytocopewithnewdatavector.Thisisbecause,whilegeneratingforecastusinganANNthathasbeentrainedadataset,mightnotre ectthecharacteristicsofthenewdatavector.RetraininganANNwithnewdataistimeconsuming,andhencenotsuitablefortimeseriesdatalikestockmarket,wherethetrendmaychangeconsiderablyfromthatofthepast.EvidentlythebetterperformanceofAFISisduetoitsintelligentadaptiveabilitywiththenewdata.

ARIMAisoneofthewidelyusedtechniquestopredicttimeseriesdata.ARIMAisanof ineprocesswheretheinitialmodelisbuiltusingavailabletrainingdataset.Oncethemodelisbuiltthemodeldoesnotadaptitselfwiththearrivalofnewdata.Table6showstheperformancecomparisonbetweenAFISandARIMAforthesevenstockindices.Tomakethecomparisonconsistent,theperformanceofrepetitivelytrainedARIMAisalsopresented.Onceagain,AFISoutperformsstandardARIMA.However,theperfor-manceofAFISisslightlybetterthanrepetitivelytrainedARIMAexceptinthecaseofNIKKEIforwhichtrainedARIMAperformsslightlybetter.ThiswasnotsurprisingasARIMAisretrainedwithnewdatathusexhibitingadaptiveness.However,ARIMAissig-ni cantlyworseintermsofitscomputationalperformance,as

Table5

PerformancecomparisonamongAFIS,Fuzzymodelgeneratedusingk-meansanditsadaptiveversion(trainedforeachnewdata;the rst1000datainstancesusedfortrainingandtheremainingdatafortesting).Stockname

AFISNRMSE

DJI

NASDAQS&P500FTSE100DAXAORDNIKEI

0.00870.01700.01020.03960.07350.02510.0259

MAPE1.52162.22761.62911.70053.67911.56682.4377

Fuzzyrulegenerationusingk-meansNRMSE3.4020.34460.42870.040.34020.34460.0339

MAPE42.262260.77346.6231.700342.094860.7732.4259

Adaptivek-meansfuzzymodelNRMSE0.0130.02160.0110.040.01210.02160.0339

MAPE2.42163.44221.7041.69762.22783.44222.426

3354233

#ofFuzzyrules

Table6

PerformancecomparisonamongAFIS,ARIMAandArti cialNeuralNetwork(trainedforeachnewdata;the rst1000datainstancesusedfortrainingandtheremainingdatafortesting).Stockname

AFISNRMSE

DJI

NASDAQS&P500FTSE100DAXAORDNIKKEI

0.00870.01700.01020.03960.07350.02510.0259

MAPE1.52162.22761.62911.70053.67911.56682.4377

ARIMA

RepetitivelytrainedARIMA

MAPE78.462550.944746.900420.728679.150251.594225.8386

p,d,f3,1,1,2,4,1,1,1,1,1,1,1,1,1,3022403

NRMSE0.00900.01740.01050.04040.07420.03120.0237

MAPE1.56972.39531.64111.72133.79931.68172.3701

Arti cialNeuralNetworkNRMSE0.31840.31420.32250.1180.32250.26030.0411

MAPE42.728860.556332.94372.761846.749847.14832.4377

#Nodes35101010151520

y

0.80.90.70.80.80.90.9

NRMSE0.34290.27200.34070.44750.34320.27360.3955

22Md.R.Hassanetal./Neurocomputing104(2013)10–25

showninTable7.OnaverageAFISisbetween4and13timesfasterthanrepetitivelytrainedARIMA.TheaverageexecutiontimetogenerateapredictionusingAFISisalmostconsistent(4–5ms)forthesevenstockindicesasshowninTable8.But,thetimetogenerateapredictionusingrepetitivelytrainedARIMAvariesfrom19msto57ms.

Furthermore,unlikerepetitivelytrainedARIMA,AFISdoesnotrequiretoretrainandrebuildthemodelforeverynewobservation.Instead,AFISadaptsonlyitsstructureandco-ef cientdynamicallywitheveryarrivingnewdatainstance,thusprovidingthebestperformancecomparedwithothercompetingmodels.

Theaboveresultsdemonstratethecapabilityofourmethodinyieldingbetterforecastingforstockmarketdata.Inaddition,wedidfurtherexperimentstoassessitsef cacyonothertimeseriesdata.Fig.7showstheforecastvaluesandtheactualvaluesofmonthlyelectricityproductioninAustralia(dataavailableon[46]).Asshowninthe gure,AFIScanbetterfollowthetrendoftimeseriesincomparisonwiththatofof inefuzzymodels,e.g.HMM–FuzzymodelandChiu’sfuzzymodel.Thisisbecause,eachofthefuzzymodelswastrainedusingasmalldata(Jan,1956–Oct,1964,lengthis100)andhenceastimegoesontheof inefuzzymodelscannotproduceareasonableforecastforthenewdata.Ontheotherhand,AFISemploysitsintelligentadaptiveabilitywiththearrivalofnewdata.ForecasterrorintermsofotherperformancemetricsshowninTable9alsoshowsthesuperiorityofAFIScomparedtoothermodels,evenifthelengthoftrainingdataissmall.

Table10summarizesthecharacteristicsthatarerequiredforaperfectonlineadaptivesystem.AFIShastheallthecharacteristicswhileDENFISsatis esthreecriteriaamonginthelistandrepetitivelytrainedARIMAsatis esonlytwocriteria.Moreover,

Table7

ExecutiontimecomparisonbetweenAFISandrepetitivelytrainedARIMA(the rst1000datainstancesusedforbuildingtheinitialmodelandtheremainingdatafortesting;thisexperimentwasexecuted10timesforeachofthestocksandtheaverageperformancealongwithperformancevariationisreportedhere).Stockname

LengthofLengthoftrainingdatatestdata

AFIS

Trainingtimeforbuildinginitialmodeltime(s)mean7std

DJI

NASDAQS&P500FTSE100DAXAORDNIKKEI

100010001000100089010001000

32161007204232184303324

3.2093.3152.9983.1263.3913.3263.253

70.351270.132470.512170.414270.353170.136770.4851

RepetitivelytrainedARIMA

PredictiontimeandtimeTrainingtimeforbuilding

initialmodeltime(s)toadapttime(s)

mean7stdmean7std14.091570.4251

4.894170.33939.080870.47341.626570.33810.415670.23321.527570.29931.644170.8474

2.682.632.582.712.252.552.57

70.131270.353270.451270.441770.393170.667170.3985

Predictiontimeandtimetoadapttime(s)mean7std137.830025.7742116.96707.56252.66006.02406.2243

73.828970.655671.873570.125370.186770.0851470.6285

9.795.2712.874.656.403.943.79

Speedupperdataprediction

Table8

Executiontimetogenerateaprediction.Stockname

Timetopredictthenextdata(ms)AFIS

DJI

NASDAQS&P500FTSE100DAXAORDNIKKEI

4.384.864.455.074.955.045.07

RepetitivelytrainedARIMA42.8625.6057.2823.5631.6719.8819.21

9.795.2712.874.656.403.943.79

Speedup

1600014000

Million kilowatt hours

12000100008000600040002000

Date

Fig.7.Forecastvaluesvs.actualvalueswhereforecastsarecomputedusingAFIS,HMM–Fuzzymodel,Chiu’sfuzzymodelandDENFISforthemonthlyelectricity

productioninAustralia.(Trainingdata:Jan1956–Oct1964andTestdata;Nov1964–Aug1995).

Md.R.Hassanetal./Neurocomputing104(2013)10–2523

Table9

PerformancecomparisonamongAFIS,HMM–Fuzzy,DENFISandChiu’smodel(byvaryingthelengthoftrainingdata:100and200)forMonthlyelectricityproductioninAustralia:millionkilowatthours:Jan1956–Aug1995.TrainingdataFromJan1956Jan1956

ToOct1964Feb1973

TestdataFromNov1964Mar1973

ToAug1995Aug1995

AFISNRMSE0.06860.0507

MAPE7.54004.5667

HMM–FuzzyNRMSE0.48980.0610

MAPE38.00555.1254

Chiu’smodelNRMSE0.29580.0611

MAPE19.01745.1157

DENFISNRMSE0.46860.4180

MAPE50.193832.5049

Table10

Comparisonofadaptiveonlinelearningsystemsbasedonthedesiredcharacteristics.Desiredcharacteristics

AFISRep.trained

ARIMA||||

|ÂÂ|

DENFIS

Canitcaptureanynewinformationastheyareavailable?

Doesthesystemrepresenttheoverallknowledgeabouttheproblemwithoutmemorizingthelargeamountofrepresentativedataset?Isthesystemabletoupdateanyknowledgeinrealtimewhichisobservedintherecentdatasetsthatwasnotpreviouslyconsideredduringbuildingtheinitialsystemandtherebybeabletoavoidrebuildinganewsystemwhenthereisnochangeinthemodel?Istheperformanceofthesystemsigni cantlybetterthanastaticsystem?

|||Â

theperformanceofDENFISismuchworsethanthatofAFISonallthesevenstockindicesasdemonstratedinourexperiment.6.Conclusion

Inthispaper,anewadaptivefuzzyinferencesystem(AFIS)hasbeenproposedanddevelopedwithaviewtoachieveimprovedperformancebydynamicallyadaptingwiththearrivalofnewdata.ThestructureofthebasefuzzymodelofourproposedsystemisdevelopedbasedonHMMlog-likelihoodofeachdatavector.TherationaleofusingHMMistomodeltheunderlyingsystemandusethisHMMtorankthedatavectoraccordingly.Fuzzyrulesarethengeneratedaftergroupingthedatavectorsthathavehigherlog-likelihoodvaluesthantheothers.Theseinitiallygeneratedrulesareadjusteddynamicallyeverytimenewdataisobserved.DuetotheintelligentadaptationmechanisminAFIS,itperformsbetterthanotherexistingcompetingmodels(bothstaticfuzzymodelsanddynamicmodels,i.e.,staticARIMA,HMM–Fuzzy,Chiu’sModel,DENFISandrepetitivelytrainedARIMA).Onesuchdynamicadap-tivefuzzyinferencesystemhasmanypotentialapplicationsincomputerscience, nancialengineeringandcontrolengineeringwherethevalueofaneventcontinuouslychangeswithtime.AppendixA.RandomlyPartitionedFuzzyRuleGeneration(RPFRG)

Inthisapproachoffuzzyrulegeneration,weassumethatthenumberoffuzzyrulestobegeneratedforagivendataisknowntotheuserpriortobuildingthefuzzymodel.Letusconsiderthenumberoffuzzyrulesis‘k’.Hence,thetraininginput(predictor)dataispartitionedinto‘k’groupswhereeachdatavectorshouldbelongtoonlyoneofthe‘k’groups.Thisisdoneforeachdatavectortobeputinoneofthe‘k’groupsrandomly.LetusconsiderasetofinputpredictordatavectorsX1toX33andthevalueof‘k’is3.Thus,foreachdatavectorXiarandomvaluebetweentherangeof1–3isgeneratedandfollowingtherandomlygeneratedvaluethecorrespondingdatavectorisconsideredtobelongtothatgroup.Assumethatarandomvalue‘3’isgeneratedforX1and‘2’isgeneratedforX2.SoX1andX2willbeassignedtoGroup1andGroup2,respectively.Thepartition-ingoftheinputdatavectorsareasfollows:Group1:X3X4X7X9X10X16X20X29X33

Group2:X2X5X6X8X11X14X17X19X23X24X28X31Group3:X1X12X13X15X18X21X22X25X26X27X30X32

Sincedataarepartitionedinto‘k’groupsbychoosingtheirgrouplabelsusingrandomlygeneratednumberwecallthispartitioningasRandomlypartitioned.Oncethedatahasbeenpartitionedinto‘k’groups,individualfuzzyruleisgeneratedforeachgroupofdatafollowingSection3.1.2.Thisapproachisreferredasrandomlypartitionedfuzzyrulegeneration(RPFRG).

AppendixB.AdaptiveRandomlyPartitionedFuzzyRuleGeneration(RPFRG)

Inthisapproach,thefuzzymodelgeneratedinSectionAppendixAistransformedtoanadaptivesystemwheretherulestructureisadaptedwiththearrivalofnewinputdatavectorxnew.Inthisregardassoonasadatavectorxnewisavailable,thesystemeitherchoosesafuzzyruleamongtheexisting‘k’fuzzyrulesgeneratedinSectionAppendixAandthenadaptsruleorgeneratesanewfuzzyruleintheRPFRGfuzzymodel.Here,therulethatneedstobeadaptedischosenbygeneratingarandomnumberinbetween1and‘k’,where‘k’isthetotalnumberoffuzzyrulesintheRPFRGfuzzymodel.

Letusconsiderthenewinputdatavectoris/5:9,1:2Swhilethedesiredoutputforthisinputdatais0.9.IntheprocessofadaptingtheRPFRGfuzzymodel,anintegervalueintherangeof1–3(since,weconsiderthevalueof‘k’¼3)isgenerated.Letusassumethattherandomlygeneratedintegervalueis2.Thus,Ruleno2ischosentoadaptgiventhenewinputdatavector.Notethat,theparametersofRuleno2beforeadaptationareasfollows:

M2,1:F¼4.8633ands¼2.3628 M2,2:F¼3.1875ands¼1.2521

Now,followingEqs.(15)–(17),thenewparameters(i.e.,afteradaptingtherulegivennewinputdatavector)areasfollows:

M2,1:Fn¼4.9431andsn¼2.2804 M2,2:Fn¼3.0346andsn¼1.3195

TheeffectofadaptationonthefuzzymembershipfunctionsofRuleno2willbesimilartotheoneillustratedinFig.3.

!n

Inasimilarway,thenewvaluesofCnandbarecomputedbythefollowingEq.(15).Oncetheruleisadaptedtheresultantfuzzymodelbecomesmoresuitabletoforecastnewdatacomparedtothenonadaptivestaticsystem(e.g.,RPFRG).Thisapproachis

24Md.R.Hassanetal./Neurocomputing104(2013)10–25

referredasadaptiverandomlypartitionedfuzzyrulegeneration(ARPFRG).

AppendixC.Fuzzyrulegenerationusingk-meansclusteringInthisapproach,ak-meansclusteringalgorithm[41]isappliedtopartitiontheinputdataconsideringthatthenumberoffuzzyrules(‘k’)tobegeneratedforagivendataisknowntotheuserpriortobuildingthefuzzymodel.Oncethedataarepartitionedinto‘k’clusters,atotal‘k’fuzzyrulesaregeneratedbythefollowingSection3.1.2,whereeachrulecorrespondtoonecluster.Werefertothisapproachask-meansfuzzymodel.

AppendixD.Adaptivek-meansfuzzymodel

Inthisapproach,thek-meansfuzzymodelismadeanadaptivesystem,bycouplingthek-meanspartitioningwiththedynamicadaptivefuzzi cationasdescribedinSection3.2.2.Intheprocessofadaptation,tochoosethefuzzyrulethatneedstobeadaptedgivenanewdatavectorxnew,theminimumEuclideandistancebetweenclustercentersandthenewdatavectorxnewisused.Letusconsiderthattherearethreerulesthathavebeengeneratedfromthreeclusters.Thus,distancesfromxnewtoeachoftheclustercentersarecomputed.Assumethesedistancesare2.3,0.9and4.5fromthecenterpointsofcluster1,cluster2andcluster3,respectively.Since,0.9istheminimumdistance,Ruleno2isselectedtoadaptitsparameters.AdaptationoftheruleparametersisaccomplishedbythefollowingEqs.(15)–(17).Werefertothisapproachasadaptivek-meansfuzzymodel.References

[1]LiangXun,Rong-ChangChen,JianYang,Anarchitecture-adaptiveneural

networkonlinecontrolsystem,NeuralComput.Appl.17(4)(2008)413–423.[2]A.Robins,Sequentiallearninginneuralnetworks:areviewandadiscussion

ofpseudorehearsalbasedmethods,Intell.DataAnal.8(3)(2004)301–322.[3]Y.Zhi-Gang,S.Shen-Min,D.Guang-Ren,R.PEI,Robustadaptiveneural

networkswithanonlinelearningtechniqueforrobotcontrol,in:AdvancesinNeuralNetworks:(PartI–III:ISNN2006:ThirdInternationalSymposiumonNeuralNetworks),2006,pp.1153–1159.

[4]J.A.S.Freeman,D.Saad,Onlinelearninginradialbasisfunctionnetworks,

NeuralComput.9(7)(1997)1601–1622.

[5]R.M.French,Semi-destructiverepresentationsandcatastrophicforgettingin

connectionistnetworks,ConnectionSci.1(1992)365–377.

[6]T.M.Heskes,B.Kappen,On-linelearningprocessesinarti cialneuralnet-works,in:J.Taylor(ed.,)MathematicalApproachestoNeuralNetworks,Elsevier,Amsterdam,1993,pp.199–233.

[7]G.A.Rummery,M.Niranjan,On-lineq-LearningusingConnectionistSystems,

TechnicalReport.CUED/F-INENG/TR166,CambridgeUniversityEngineeringDepartment(1994).

[8]J.S.R.Jang,ANFIS:adaptive-network-basedfuzzyinferencesystem,IEEE

Trans.Syst.ManCybern.23(1993)651–663.

[9]N.Kasabov,Evolvingfuzzyneuralnetworks-algorithms,applicationsand

biologicalmotivation,in:MethodologiesfortheConception,DesignandApplicationofSoftComputing,WorldScienti c,Singapore,1998.

[10]N.Kasabov,Evolvingfuzzyneuralnetworks:theoryandapplicationsforon-lineadaptiveprediction,decisionmakingandcontrol,AustralianJournalofIntelligentInformationProcessingSystems,1998,154–160.

[11]N.Kasabov,Evolvingfuzzyneuralnetworksforonline,adaptive,knowledge-basedlearning,IEEETrans.Syst.ManCybern.B31(2001)902–918.

[12]N.K.Kasabov,Q.Song,DENFIS:dynamicevolvingneural-fuzzyinference

systemanditsapplicationfortimeseriesprediction,IEEETrans.FuzzySyst.10(2002)144–154.

[13]M.M.Deza,E.Deza,EncyclopediaofDistances,Springer,Berlin,Heidelberg,2009.[14]Similaritysearchandoutlierdetectionintimeseries,//IT/Similarity-Search-and-Outlier-Detection-in-Time-Series-4480.htmlS.

[15]K.M.Sim,Evolvingfuzzyrulesforrelaxed-criterianegotiation,IEEETrans.

Syst.ManCybern.B38(6)(2008)1486–1499.

[16]Y.Zhou,M.J.Er,Anevolutionaryapproachtowarddynamicself-generatedfuzzy

inferencesystems,IEEETrans.Syst.ManCybern.B38(4)(2008)963–969.

[17]A.Elmzabi,M.Bella h,M.Ramdani,Anadaptivefuzzyclusteringapproach

forthenetworkmanagement,Int.J.Inf.Technol.1(3)(2007)12–17.

[18]M.R.Hassan,B.Nath,M.Kirley,AfusionmodelofHMM,ANNandGAfor

stockmarketforecasting,ExpertSyst.Appl.31(1)(2007)171–180.

[19]M.R.Hassan,HybridHMMandSoftComputingModelingwithApplications

toTimeSeriesAnalysis,Ph.D.Thesis,DepartmentofComputerScienceandSoftwareEngineering,TheUniversityofMelbourne,2007.

[20]L.R.Rabiner,AtutorialonHiddenMarkovModelsandselectedapplications

inspeechrecognition,Proc.IEEE77(1989)257–286.

[21]M.R.Hassan,AcombinationofHMMandfuzzymodelforstockmarket

forecasting,Neurocomputing72(16–18)(2009)3439–3446.

[22]M.R.Hassan,B.Nath,M.Kirley,AHMMbasedfuzzymodelfortimeseries

prediction,in:ProceedingsofFUZZ-IEEEConference,2006,pp.9966–9974.[23]M.R.Hassan,B.Nath,M.Kirley,J.Kamruzzaman,Ahybridofmultiobjective

evolutionaryalgorithmandHMM–Fuzzymodelfortimeseriesprediction,Neurocomputing81(2012)1–11.

[24]M.Mannle,Identifyingrule-basedTSKfuzzymodels,in:Proceedingsof

EUFIT,1999,pp.286–299.

[25]H.Bahi,M.Sellami,CombinationofvectorquantizationandHiddenMarkov

Modelsforarabicspeechrecognition,in:ACS/IEEEProceedingsofInterna-tionalConferenceonComputerSystemsandApplications,2001,p.0096.[26]X.Huang,Y.Aricki,M.Jack,HiddenMarkovModelsforSpeechRecognition,

EdinburghUniversityPress,1990.

[27]L.E.Baum,T.Pitrie,G.Souls,N.Weiss,Amaximizationtechniqueoccurringin

thestatisticalanalysisofprobabilisticfunctionsofMarkovchains,Ann.Math.Stat.41(1970)164–171.

[28]L.E.Baum,Aninequalityandassociatedmaximizationtechniqueinstatistical

estimationofprobabilisticfunctionsofMarkovprocesses,Inequalities3(1972)1–8.

[29]S.-M.Chen,S.-H.Lee,Anewmethodforgeneratingfuzzyrulesfrom

numericaldataforhandlingclassi cationproblems,Appl.Artif.Intell.(2001)645–664.

[30]P.P.Angelov,R.A.Buswell,Automaticgenerationoffuzzyrule-basedmodels

fromdatabygeneticalgorithms,Inf.Sci.(2003)17–31.

[31]X.Z.Wang,Y.D.Wang,X.F.Xu,W.D.Ling,D.S.Yeung,Anewapproachto

fuzzyrulegeneration:fuzzyextensionmatrix,FuzzySetsSyst.(2001)291–306.

[32]M.R.Hassan,B.Nath,M.Kirley,Adataclusteringalgorithmbasedonsingle

HiddenMarkovModel,in:ProceedingsoftheInternationalMulticonferenceonComputerScienceandInformationTechnology,2006,pp.57–66.

[33]M.Ragulskisand,K.Lukoseviciute,Non-uniformattractorembeddingfor

timeseriesforecastingbyfuzzyinferencesystems,Neurocomputing72(2009)2618–2626.

[34]T.Takagi,M.Sugeno,Fuzzyidenti cationofsystemsanditsapplicationto

modelingandcontrol,IEEETrans.Syst.ManCybern.(1985)116–132.

[35]J.Zurada,OptimalDataDrivenRuleExtractionusingAdaptiveFuzzy-Neural

Models,Ph.D.Dissertation,UniversityofLouisville,2002.

[36]A.E.Gaweda,J.M.Zurada,Data-drivenlinguisticmodelingusingrelational

fuzzyrules,IEEETrans.FuzzySyst.11(2003)121–134.

[37]G.C.Goodwin,K.S.Sin,AdaptiveFilteringPredictionandControl,Prentice-Hall,UpperSaddleRiver,NJ,1984.

[38]Yahoo nance,/http:// /S.URL/http:// /S.[39]S.L.Chiu,Anef cientmethodforextractingfuzzyclassi cationrulesfrom

highdimensionaldata,put.Intell.1(1997)1–7.

[40]J.R.Jang,C.T.Sun,E.Mizuatani,Neuro-FuzzyandSoftComputing,Prentice

Hall,EnglewoodCliffs,NJ,1997.

[41]J.A.Hartigan,M.A.Wong,Algorithmas136:ak-meansclusteringalgorithm,

Appl.Stat.28(1979)100–108.

[42]D.Rumelhart,J.McClelland,ParallelDistributedProcessing,MITPress,1986.[43]M.R.Hassan,B.Nath,StockmarketforecastingusingHiddenMarkovModel:

anewapproach,in:ProceedingsofInternationalConferenceonIntelligentSystemDesignandApplication,2005,pp.192–196.

[44]G.Atsalakisa,K.Valavanisb,Surveyingstockmarketforecastingtechniques,

partII:softcomputingmethods,ExpertSyst.Appl.36(3)(2009)5932–5941.[45]J.Kamruzzaman,R.Sarker,Forecastingofcurrencyexchangeratesusing

ANN:acasestudy,in:InternationalConferenceonNeuralNetworksandSignalProcessing,2003,pp.793–797.

[46]Monthlyelectricitydata,//TSDLS.URL/http://

/data/set/22l0/monthly-electricity-production-in-australia-million-kilowatt-hours-jan-1956-aug-1995#!display=line&ds=22l0S

.Md.Ra ulHassanreceivedaB.Sc.(Engg)inElectro-nicsandComputerSciencefromShahJalalUniversityofScienceandTechnology,BangladeshandaPh.D.inComputerScienceandSoftwareEngineeringfromtheUniversityofMelbourne,Australiain2000and2007respectively.Currently,heisafacultymemberintheDepartmentofInformationandComputerScience,KingFahdUniversityofPetroleumandMinerals,SaudiArabia.Hisresearchinterestsincludeneuralnetworks,fuzzylogic,evolutionaryalgorithms,HiddenMarkovModelandsupportvectormachinewithaparticularfocusondevelopingnewdataminingandmachinelearningtechniquesfortheanalysisandclassi cation

ofbiomedicaldata.Heiscurrentlyinvolvedinseveralresearchanddevelopmentprojectsforeffectiveprognosisanddiagnosisofbreastcancerfromgeneexpres-sionmicroarraydata.Heistheauthorofaround30paperspublishedin

Md.R.Hassanetal./Neurocomputing104(2013)10–25

recognizedinternationaljournalsandconferenceproceedings.HeisamemberoftheMelbourneuniversitybreastcancerresearchgroup,AustralianSocietyofOperationsResearch(ASOR),andIEEEComputerSociety;andisinvolvedinseveralProgramCommitteesofinternationalconferences.HealsoservesastherevieweroffewrenownedjournalssuchasBMCBreastCancer,IEEETransactionsonFuzzySystems,Neurocomputing,KnowledgeandInformationSystems,CurrentBioinfor-matics,InformationScience,DigitalSignalProcessing,IEEETransactionsonindustrialelectronicsandComputer

Communications.

25

KotagiriRamamohanaraoreceivedtheB.E.degreefromAndhraUniversityin1972,theM.E.degreefromMusta zurRahmanreceivedhisPh.D.inComputerScienceandSoftwareEngineeringfromtheUniversityofMelbourneinAugust2010.HecompletedaGradu-ateCerti cateinResearchCommercializationin2009fromMelbourneBusinessSchoolandB.Sc.inCompu-terScienceandEngineeringin2004fromBangladeshUniversityofEngineeringandTechnology(BUET).Hisresearchinterestsincludescienti candbusinesswork owmanagement,schedulinginGridsandP2Psystems,Cloudcomputingandautonomicsystems.Musta zhascontributedtotheGridbusWork owEnginethatfacilitatesuserstoexecutescienti cwork- owapplicationsonGrids.Musta zurRahmanis

currentlyworkingasaConsultantofBusinessAnalyticsandOptimizationServicetheIndianInstituteofSciencein1974,andthePh.D.degreefromMonashUniversityin1980.HejoinedtheDepartmentofComputerScienceandSoftwareEngi-neeringattheUniversityofMelbournein1980,wasawardedtheAlexandervonHumboldtFellowshipin1983,andwasappointedaprofessorofcomputersciencein1989.Heheldseveralseniorpositions,suchasheadoftheSchoolofElectricalEngineeringandComputerScienceattheUniversityofMelbourne,codirectoroftheKeyCentreforKnowledge-BasedSystems,andresearchdirectorfortheCooperative

ResearchCentreforIntelligentDecisionSystems.HeservedasamemberoftheAustralianResearchCouncilInformationTechnologyPanel.HealsoservedontheeditorialboardsoftheIEEETransactionsonKnowledgeandDataEngineering,ComputerJournalandtheVLDBJournal.Atpresent,heisalsoontheeditorialboardsofUniversalComputerScienceandtheJournalofKnowledgeandInformationSystems.Heservedasaprogramcommitteememberofseveralinternationalconferences,includingSIGMOD,IEEEICDM,VLDB,ICLP,andICDE.HewasaprogramcochairofVLDB,PAKDD,andDOODconferences.HeisasteeringcommitteememberofIEEEICDM,DASFAA,andPAKDD.HeisafellowoftheInstituteofEngineersAustralia,theAustralianAcademyofTechnologicalSciencesandEngineeringandtheAustralianAcademyofScience.HeisarecipientoftheCentenaryMedalforhiscontributiontocomputerscience.Hehaspublishedmorethan200researchpapers.Hisresearchinterestsareintheareasofdatabasesystems,logic-basedsystems,agent-orientedsystems,informationretrieval,datamining,andmachinelearning.HeiscurrentlyworkingasaProfessorattheUniversityof

Melbourne.

JoarderKamruzzamanreceivedaB.Sc.andM.Sc.inelectricalengineeringfromBangladeshUniversityofEngineering&Technology,Dhaka,Bangladeshin1986and1989respectively,andaPh.D.ininformationsystemengineeringfromMuroranInstituteofTech-nology,Japan,in1993.Currently,heisafacultymemberintheFacultyofInformationTechnology,MonashUniversity,Australia.Hisresearchinterestincludescomputernetworks,computationalintelli-gence,andbioinformatics.Hehaspublishedover150peer-reviewedpublicationswhichinclude40journalpapersand6bookchapters,andeditedtworeferencebooksoncomputationalintelligencetheoryandappli-cations.Heiscurrentlyservingasaprogramcommitteememberofanumberofinternational

conferences.

LineatIBM

Australia.

M.MarufHossainreceivedtheB.Sc.(Hons)degreefromtheUniversityofDhaka,Bangladeshin2000,theMITdegreefromtheDeakinUniversity,Australiain2005andaPh.D.inComputerSciencefromtheUniversityofMelbourne,Australiain2009.HeiscurrentlyworkingasaseniordataanalystatAustralianTransactionReportsandAnalysisCentre,Australia.Hisresearchinterestsincludedatamining,machinelearning,receiveroperatingcharacteristicscurves,andclassi cation.

本文来源:https://www.bwwdw.com/article/l3oe.html

Top