算法设计与分析第二版课后习题解答
更新时间:2024-05-25 08:45:01 阅读量: 综合文库 文档下载
算法设计与分析基础课后练习答案
习题1.1 4.设计一个计算
的算法,n是任意正整数。除了赋值和比较运算,该算法只
能用到基本的四则运算操作。 算法求
//输入:一个正整数n2
//输出:。
step1:a=1;
step2:若a*a 5. a.用欧几里德算法求gcd(31415,14142)。 b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m, n)间连续整数的算法快多少倍?请估算一下。 a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513, 105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1, 0) = 1. b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。 连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和 2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈ 1300 与 2·14142/11 ≈ 2600 倍之间。 6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立. Hint: 根据除法的定义不难证明: ? 如果d整除u和v, 那么d一定能整除u±v; ? 如果d整除u,那么d也能够整除u的任何整数倍ku. 对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。 数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。故gcd(m,n)=gcd(n,r) 7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次? Hint: 对于任何形如0<=m gcd(m,n)=gcd(n,m) 并且这种交换处理只发生一次. 8.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次) b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次) gcd(5,8) 习题1.2 1.(农夫过河) P—农夫 W—狼 G—山羊 C—白菜 2.(过桥问题) 1,2,5,10---分别代表4个人, f—手电筒 4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数) 算法Quadratic(a,b,c) //求方程ax^2+bx+c=0的实根的算法 //输入:实系数a,b,c //输出:实根或者无解信息 If a≠0 D←b*b-4*a*c If D>0 temp←2*a x1←(-b+sqrt(D))/temp x2←(-b-sqrt(D))/temp return x1,x2 else if D=0 return –b/(2*a) else return “no real roots” else //a=0 if b≠0 return –c/b else //a=b=0 if c=0 return “no real numbers” else return “no real roots” 5. 描述将十进制整数表达为二进制整数的标准算法 a.用文字描述 b.用伪代码描述 解答: a.将十进制整数转换为二进制整数的算法 输入:一个正整数n 输出:正整数n相应的二进制数 第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n 第二步:如果n=0,则到第三步,否则重复第一步 第三步:将Ki按照i从高到低的顺序输出 b.伪代码 算法 DectoBin(n) //将十进制整数n转换为二进制整数的算法 //输入:正整数n //输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中 i=1 while n!=0 do { Bin[i]=n%2; n=(int)n/2; i++; } while i!=0 do{ print Bin[i]; i--; } 9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进. 算法 MinDistance(A[0..n-1]) //输入:数组A[0..n-1] //输出:the smallest distance d between two of its elements 习题1.3 1. 考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去. a.应用该算法对列表”60,35,81,98,14,47”排序 b.该算法稳定吗? c.该算法在位吗? 解: a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示: b.该算法不稳定.比如对列表”2,2*”排序 c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题) 第2章 习题2.1 7.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n)∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解: a. 这个断言是正确的。它指出如果t(n)的增长率小于或等于g(n)的增长率,那么 g(n)的增长率大于或等于t(n)的增长率 由 t(n)≤c·g(n) for all n≥n0, where c>0 1 则:()t(n)?g(n) for all n≥n0 cb. 这个断言是正确的。只需证明?(?g(n))??(g(n)),?(g(n))??(?g(n))。 设f(n)∈Θ(αg(n)),则有: f(n)?c?g(n) for all n>=n0, c>0 f(n)?c1g(n) for all n>=n0, c1=cα>0 即:f(n)∈Θ(g(n)) 又设f(n)∈Θ(g(n)),则有:f(n)?cg(n) for all n>=n0,c>0 f(n)?c??g(n)?c1?g(n) for all n>=n0,c1=c/α>0 即:f(n)∈Θ(αg(n)) 8.证明本节定理对于下列符号也成立: a.Ω符号 b.Θ符号 证明: a。we need to proof that if t1(n)∈Ω(g1(n)) and t2(n)∈Ω(g2(n)), then t1(n)+ t2(n)∈Ω(max{g1(n), g2(n)})。 由 t1(n)∈Ω(g1(n)), t1(n)≥c1g1(n) for all n>=n1, where c1>0 由 t2(n)∈Ω(g2(n)), T2(n)≥c2g2(n) for all n>=n2, where c2>0 那么,取c>=min{c1,c2},当n>=max{n1,n2}时: t1(n)+ t2(n)≥c1g1(n)+ c2g2(n) ≥c g1(n)+c g2(n)≥c[g1(n)+ g2(n)] ≥cmax{ g1(n), g2(n)} 所以以命题成立。 b. t1(n)+t2(n) ∈Θ(max(g1(n),g2(n))) 证明:由大?的定义知,必须确定常数c1、c2和n0,使得对于所有n>=n0,有: c1max((g1(n),g2(n))?t1(n)?t2(n)?max(g1(n),g2(n)) 由t1(n)∈Θ(g1(n))知,存在非负整数a1,a2和n1使: a1*g1(n)<=t1(n)<=a2*g1(n)-----(1) 由t2(n)∈Θ(g2(n))知,存在非负整数b1,b2和n2使: b1*g2(n)<=t2(n)<=b2*g2(n)-----(2) (1)+(2): a1*g1(n)+ b1*g2(n)<=t1(n)+t2(n) <= a2*g1(n)+ b2*g2(n) 令c1=min(a1,b1),c2=max(a2,b2),则 C1*(g1+g2)<= t1(n)+t2(n) <=c2(g1+g2)-----(3) 不失一般性假设max(g1(n),g2(n))=g1(n). 显然,g1(n)+g2(n)<2g1(n),即g1+g2<2max(g1,g2) 又g2(n)>0,g1(n)+g2(n)>g1(n),即g1+g2>max(g1,g2)。 则(3)式转换为: C1*max(g1,g2) <= t1(n)+t2(n) <=c2*2max(g1,g2) 所以当c1=min(a1,b1),c2=2c2=2max(c1,c2),n0=max(n1,n2)时,当n>=n0时上述不等式成立。 证毕。 习题2.2 2. 请用 的非正式定义来判断下列断言是真还是假。 a. n(n + 1)/2 ∈ O(n3) b. n(n + 1)/2 ∈ O(n2) c. n(n + 1)/2 ∈ Θ(n3) d. n(n + 1)/2 ∈ Ω(n) 答:c假,其它真。 5.按照下列函数的增长次数对它们进行排列(按照从低到高的顺序) (n?2)!, 5lg(n+100)10, 22n, 0.001n4+3n3+1, ln2 n, , 3n. 答:习题2.3 1. 计算下列求和表达式的值。 答 : 3. 考虑下面的算法。 a. 该算法求的是什么? b. 它的基本操作是什么? c. 该基本操作执行了多少次? d. 该算法的效率类型是什么? e. 对该算法进行改进,或者设计一个更好的算法,然后指出它们的效率类型。如果做不到这一点,请试着证明这是不可能做到的。 9.证明下面的公式: 可以使用数学归纳法,也可以像10岁的高斯一样,用洞察力来解决该问题。这个小学生长大以后成为有史以来最伟大的数学家之一。 数学归纳法: 高斯的方法: 习题2.4 1. 解下列递推关系 (做a,b) a. ?x(n)?x(n?1)?5当n>1时 ??x(1)?0 解: b. 解: ?x(n)?3x(n?1)??x(1)?4当n>1时 2. 对于计算n!的递归算法F(n),建立其递归调用次数的递推关系并求解。 解: 3. 考虑下列递归算法,该算法用来计算前n个立方的和:S(n)=13+23+…+n3。 算法S(n) //输入:正整数n //输出:前n个立方的和 if n=1 return 1 else return S(n-1)+n*n*n a. 建立该算法的基本操作次数的递推关系并求解 b. 如果将这个算法和直截了当的非递归算法比,你做何评价? 解: 7. a. 请基于公式2n=2n-1+2n-1,设计一个递归算法。当n是任意非负整数的时候,该算法能够计算2n的值。 b. 建立该算法所做的加法运算次数的递推关系并求解 c. 为该算法构造一棵递归调用树,然后计算它所做的递归调用次数。 d. 对于该问题的求解来说,这是一个好的算法吗? 解:a.算法power(n) //基于公式2n=2n-1+2n-1,计算2n //输入:非负整数n //输出: 2n的值 If n=0 return 1 Else return power(n-1)+ power(n-1) c. C(n)??2i?2n?1?1 i?0n8.考虑下面的算法 算法 Min1(A[0..n-1]) //输入:包含n个实数的数组A[0..n-1] If n=1 return A[0] Else temp←Min1(A[0..n-2]) If temp≤A[n-1] return temp Else return A[n-1] a.该算法计算的是什么? b.建立该算法所做的基本操作次数的递推关系并求解 解: a.计算的给定数组的最小值 ?C(n?1)?1b.C(n)?? 0?for all n>1 n=1 9.考虑用于解决第8题问题的另一个算法,该算法递归地将数组分成两半.我们将它称为Min2(A[0..n-1]) 算法 Min(A[r..l]) If l=r return A[l] Else temp1←Min2(A[l..(l+r)/2]) Temp2←Min2(A[l..(l+r)/2]+1..r) If temp1≤temp2 return temp1 Else return temp2 a.建立该算法所做的的操作次数的递推关系并求解 b.算法Min1和Min2哪个更快?有其他更好的算法吗? 解:a. 习题2.5 3.java的基本数据类型int和long的最大值分别是n最小为多少的时候,第n个斐波那契数能够使下面的类型溢出。 a.int类型 b.long类型 当 4.爬梯子 假设每一步可以爬一个或两格梯子,爬一部n格梯子一共可以用几种的不同方法?(例如,一部3格的梯子可以用三种不同的方法爬:1-1-1,1-2和2-1)。 6.改进算法Fib,使它只需要?(1)的额外空间。 7.证明等式: 答:数学归纳法证明 习题2.6 1. 考虑下面的排序算法,其中插入了一个计数器来对关键比较次数进行计数. 算法SortAnalysis(A[0..n-1]) //input:包含n个可排序元素的一个数组A[0..n-1] //output:所做的关键比较的总次数 count←0 for i←1 to n-1 do v←A[i] j←i-1 while j>0 and A[j]>v do count←count+1 A[j+1]←A[j] j←j+1 A[j+1]←v return count 比较计数器是否插在了正确的位置?如果不对,请改正. 解:应改为: 算法SortAnalysis(A[0..n-1]) //input:包含n个可排序元素的一个数组A[0..n-1] //output:所做的关键比较的总次数 count←0 for i←1 to n-1 do
正在阅读:
算法设计与分析第二版课后习题解答05-25
桓公问治民于管子12-21
深圳奥特迅直流系统培训手册 - 图文10-30
建设项目合同附加款05-24
毕业论文—个人博客系统的设计与实现111-26
2014年自考《工程估价》习题及答案09-04
家门口的桂花树作文350字06-21
酒店顾客满意度研究04-26
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 课后
- 习题
- 算法
- 解答
- 分析
- 设计