第8章《一元一次不等式》易错题集

更新时间:2024-02-28 23:49:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第8章《一元一次不等式》易错题集

一、选择题

1、(2009?荆门)若不等式组

A、a>﹣1 C、a≤1

B、a≥﹣1 D、a<1

的解集为x>3.则a的取值范围是( ) 有解,则a的取值范围是( )

2、(2009?恩施州)如果一元一次不等式组 A、a>3 B、a≥3

C、a≤3

D、a<3

3、(2006?梧州)若不等式组无解,则a的取值范围是( )

A、a<2 B、a=2

C、a>2

D、a≥2

4、(2004?日照)已知关于x的不等式组无解,则a的取值范围是( A、a≤﹣1 B、a≥2 C、﹣1<a<2 D、a<﹣1,或a>2

5、(2002?聊城)不等式组无解,则a的取值范围是(

A、a<1 B、a≤1

C、a>1

D、a≥1

6、如果不等式组的解集为x>3,那么m的取值范围为( ) A、m≥3 B、m≤3

C、m=3

D、m<3

7、如果不等式组无解,那么m的取值范围是( ) A、m>8 B、m≥8

C、m<8

D、m≤8

8、若不等式组有解,则m的取值范围是( )

A、m<2 B、m≥2

C、m<1

D、1≤m<2

9、若不等式组无解,那么a的取值范围是( ) A、a>6 B、a≥6

C、a<6

D、a≤6

10、若不等式组

A、k<2 C、k<1

有解,则k的取值范围是( )

B、k≥2 D、1≤k<2

无解,那么不等式组

B、3﹣b<x<3﹣a D、无解

的解集是3<x<a+2,则a的取值范围是( )

的解集( )

11、如果关于x的不等式组

A、b﹣3<x<3﹣a C、3﹣a<x<3﹣b

12、不等式组

A、a>1 B、a≤3 C、a<1或a>3 D、1<a≤3

有四个整数解,则a的取值范围是( )

13、(2003?泰安)关于x的不等式组

A、﹣C、﹣

<a≤﹣ ≤a≤﹣

B、﹣D、﹣

≤a<﹣ <a<﹣

14、已知关于x的不等式组恰有3个整数解,则a的取值范围是( )

A、C、

D、

B、

15、小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm,则宽的长度xcm应满足的不等式组为( )

A、

B、

2

C、 D、

二、填空题

16、(2009?孝感)关于x的不等式组

的解集是x>﹣1,则m= _________ .

17、(2006?贺州)已知不等式组无解,则a的取值范围是 _________ .

18、(2003?重庆)已知关于x的不等式组无解,则a的取值范围是 _________ .

19、已知关于x的不等式组无解,则a的取值范围是 _________ .

2

20、如果不等式组无解,那么a的取值范围是 _________ .

21、若不等式组无解,则m的取值范围是 _________ .

22、若无解,则a的取值范围是 _________ .

23、如果关于x的不等式(a﹣1)x<a+5和2x<4的解集相同,则a的值为 _________ . (1)一变:如果

的解集是x<2,则a的取值范围是 _________ ;

(2)二变:如果的解集是1≤x<2,则a的取值范围是 _________

24、不等式的自然数解有 _________ 个.

25、如图,如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a,

b的有序数对(a,b)共有 _________ 个.

三、解答题

26、某产品一名工人一天的产量约为5至8个,如每天生产工艺品60个,那么需要工人多少人. 27、计算:(1)解方程:

+

=2的解

(2)解不等式组:的解集.

28、(2010?呼和浩特)不等式组:的整数解有多少个.

3

答案与评分标准 选择题

1、(2009?荆门)若不等式组 A、a>﹣1 B、a≥﹣1 C、a≤1 D、a<1 考点:解一元一次不等式组。

分析:先解出不等式组的解集,根据已知不等式组

有解,即可求出a的取值范围.

有解,则a的取值范围是( )

解答:解:由(1)得x≥﹣a, 由(2)得x<1, ∴其解集为﹣a≤x<1, ∴﹣a<1,即a>﹣1, ∴a的取值范围是a>﹣1, 故选A.

点评:求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围. 2、(2009?恩施州)如果一元一次不等式组

的解集为x>3.则a的取值范围是( )

A、a>3 B、a≥3 C、a≤3 D、a<3 考点:解一元一次不等式组。 专题:计算题。

分析:根据不等式组解的定义和同大取大的原则可得出a和3之间的关系式,解答即可. 解答:解:不等式组

的解集为x>3,所以有a≤3,故选C.

点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x>2,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.

3、(2006?梧州)若不等式组

无解,则a的取值范围是( )

A、a<2 B、a=2 C、a>2 D、a≥2 考点:解一元一次不等式组。

分析:利用不等式组的解集是无解可知,x应该是大大小小找不到. 解答:解:可以判断出2a﹣1>a+1,

解得:a>2.a=2时,不等式组是x>3,x<3时没有交集,所以也是无解,不要漏掉相等这个关系. 故选D.

点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).

4

4、(2004?日照)已知关于x的不等式组无解,则a的取值范围是( )

A、a≤﹣1 B、a≥2 C、﹣1<a<2 D、a<﹣1,或a>2 考点:解一元一次不等式组。

分析:先求出不等式组的解集,利用不等式组的解集是无解可知a<x<2,且x应该是大大小小找不到,所以可以判断出a≥2,不等式组是x>2,x<2时没有交集,所以也是无解,不要漏掉相等这个关系. 解答:解:∵不等式组无解

∴a≥2时,不等式组无解,

故选B.

点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 5、(2002?聊城)不等式组

无解,则a的取值范围是( )

A、a<1 B、a≤1 C、a>1 D、a≥1 考点:解一元一次不等式组。

分析:先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.

解答:解:原不等式组可化为

,即

故要使不等式组无解,则a≤1. 故选B.

点评:解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则. 6、如果不等式组

的解集为x>3,那么m的取值范围为( )

A、m≥3 B、m≤3 C、m=3 D、m<3 考点:解一元一次不等式组。

分析:求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.应先求得第一个不等式的解集,再根据法则进行判断. 解答:解:解这个不等式组得

∵其解集为x>3,根据“同大取大”可知m<3;

注意当m=3时,不等式组的解集也是x>3.故选B.

点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x>2,不要漏掉相等这个关系.

5

7、如果不等式组无解,那么m的取值范围是( )

A、m>8 B、m≥8 C、m<8 D、m≤8 考点:解一元一次不等式组。 专题:计算题。

分析:根据不等式取解集的方法,大大小小无解,可知m和8之间的大小关系,求出m的范围即可. 解答:解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选B.

点评:本题考查不等式解集的表示方法,根据大大小小无解,也就是没有中间(公共部分)来确定m的范围.做题时注意m=8时也满足不等式无解的情况. 8、若不等式组

有解,则m的取值范围是( )

A、m<2 B、m≥2 C、m<1 D、1≤m<2 考点:解一元一次不等式组。

分析:本题实际就是求这两个不等式的解集.先根据第一个不等式中x的取值,分析m的取值. 解答:解:原不等式组可化为

(1)始终有解集,

则由(2)有解可得m<2. 故选A.

点评:本题除用代数法外,还可画出数轴,表示出解集,与四个选项对照即可.同学们可以自己试一下. 9、若不等式组

无解,那么a的取值范围是( )

A、a>6 B、a≥6 C、a<6 D、a≤6 考点:解一元一次不等式组。

分析:不等式组的解集是无解,根据小大大小取不了解答此题. 解答:解:∵不等式组

无解,

∴a≥6, 故选B.

点评:本题是反向考查不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围 10、若不等式组

有解,则k的取值范围是( )

A、k<2 B、k≥2 C、k<1 D、1≤k<2 考点:解一元一次不等式组。 专题:计算题。

分析:根据不等式组的解集为两个不等式解集的公共部分,所以在有解的情况下,k的值必须小于2 解答:解:因为不等式组

有解,根据口诀可知k只要小于2即可,故选A.

6

点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x>2,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到. 11、如果关于x的不等式组

无解,那么不等式组

的解集( )

A、b﹣3<x<3﹣a B、3﹣b<x<3﹣a C、3﹣a<x<3﹣b D、无解 考点:解一元一次不等式组。 专题:计算题。

分析:根据“大大小小”无解,从而得出一个新的不等式,解答即可. 解答:解:不等式组

无解,所以a≥b,则3﹣a≤3﹣b,再根据比大的小比小的大取中间,所以3﹣a<x<3﹣

b.故选C.

点评:本题考查了不等式组解集表示,难度较大. 12、不等式组

的解集是3<x<a+2,则a的取值范围是( )

A、a>1 B、a≤3 C、a<1或a>3 D、1<a≤3 考点:解一元一次不等式组。 专题:计算题。

分析:根据题中所给条件,结合口诀,可得a﹣1与3之间、5和a+2之间都存在一定的不等关系,解这两个不等式即可.

解答:解:根据题意可知a﹣1≤3 即a+2≤5 所以a≤3

又因为3<x<a+2 即a+2>3 所以a>1 所以1<a≤3 故选D.

点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 13、(2003?泰安)关于x的不等式组

A、﹣C、﹣

<a≤﹣ ≤a≤﹣

B、﹣D、﹣

≤a<﹣ <a<﹣

有四个整数解,则a的取值范围是( )

考点:一元一次不等式组的整数解。 专题:计算题。

分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可. 解答:解:由(1)得x>8; 由(2)得x<2﹣4a; 其解集为8<x<2﹣4a,

7

因不等式组有四个整数解,为9,10,11,12,则,

解得﹣≤a<﹣.

故选B.

点评:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 14、已知关于x的不等式组

恰有3个整数解,则a的取值范围是( )

A、C、

D、

B、

考点:一元一次不等式组的整数解。 专题:计算题。

分析:先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值. 解答:解:由于不等式组有解,则∵

,必定有整数解0,

∴三个整数解不可能是﹣2,﹣1,0.

若三个整数解为﹣1,0,1,则不等式组无解;

若三个整数解为0,1,2,则;

解得.

故选B.

点评:解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

2

15、小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm,则宽的长度xcm应满足的不等式组为( )

A、

B、

C、 D、

考点:由实际问题抽象出一元一次不等式组。

分析:由于长方形的相片框架的长为25cm,而长总大于宽,由此得到x<25,又面积不小于500,根据面积公式可以得到25x≥500,联立两个不等式组成不等式组,解不等式组即可求解. 解答:解:根据题意,得

故选A.

点评:此题中要注意隐含的不等关系:长总大于宽.熟悉长方形的面积公式. 填空题

8

16、(2009?孝感)关于x的不等式组的解集是x>﹣1,则m= ﹣3 .

考点:解一元一次不等式组。

分析:易得m+2>m﹣1.那么不等式组的解集为x>m+2,根据所给的解集即可判断m的取值. 解答:解:根据“同大取大”确定x的范围x>m+2,∵解集是x>﹣1,∴m+2=﹣1,m=﹣3. 点评:求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到. 17、(2006?贺州)已知不等式组考点:解一元一次不等式组。

分析:解出不等式组含a的解集,与已知不等式组

无解比较,可求出a的取值范围.

无解,则a的取值范围是 a≤﹣1 .

解答:解:由(1)得x≥﹣1;由(2)得x<a. 根据“大大小小找不到”可得a<﹣1, 当a=﹣1时也没有解.∴a≤﹣1.

点评:求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到. 18、(2003?重庆)已知关于x的不等式组

无解,则a的取值范围是 a≥3 .

考点:解一元一次不等式组。 分析:先求出不等式组的解集,利用不等式组的解集是无解可知,x应该是“大大小小找不到”,所以可以判断出a≥3. 解答:解:解关于x的不等式组

,得

∵不等式组无解 ∴大大小小找不到,即a≥3.

点评:本题主要考查了已知一元一次不等式组的解集,求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,不等式组是x>3,x<3时没有交集,所以也是无解,不要漏掉相等这个关系. 求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到. 19、已知关于x的不等式组

无解,则a的取值范围是 a≥3 .

考点:解一元一次不等式组。 专题:计算题。

分析:由题意分别解出不等式组中的两个不等式,由题意不等式的解集为无解,再根据求不等式组解集的口诀:大大小小找不到(无解)来求出a的范围. 解答:解:由x﹣a>0, ∴x>a,

由5﹣2x≥﹣1移项整理得, 2x≤6, ∴x≤3, 又不等式组

无解,

∴a≥3.

点评:主要考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集为无解反过来求a的范围.

9

20、如果不等式组无解,那么a的取值范围是 a≤2 .

考点:解一元一次不等式组。

分析:不等式组无解,则x必定大于较大的数,小于较小的数,因此可知a必定不大于2,由此可解出a的取值. 解答:解:由不等式无解可知a≤2. 故填≤2.

点评:本题考查的是一元一次不等式组的解.可根据“比大的大,比小的小,无解”来解此题. 21、若不等式组

无解,则m的取值范围是 m≥8 .

考点:解一元一次不等式组。

分析:不等式组无解就是两个不等式的解集没有公共部分,可利用数轴进行求解.

解答:解:x<8在数轴上表示点8左边的部分,x>m表示点m右边的部分.当点m在8这点或这点的右边时,两个不等式没有公共部分,即不等式组无解.则m≥8.

点评:本题考查不等式组中不等式的未知字母的取值,利用数轴能直观的得到,易于理解. 22、若

无解,则a的取值范围是 a≤﹣1 .

考点:解一元一次不等式组。

分析:根据x的取值,分析a的取值.

解答:解:

上面表示﹣1≤x≤2,不等式无解,

即x<a与上面的不等式没有公共部分, 因而a<1

a的取值范围是a<1. 故填a≤﹣1.

点评:不等式的解集可以通过数轴来确定,比较形象明了.

23、如果关于x的不等式(a﹣1)x<a+5和2x<4的解集相同,则a的值为 1<a≤7 . (1)一变:如果

的解集是x<2,则a的取值范围是 1<a≤7 ;

(2)二变:如果的解集是1≤x<2,则a的取值范围是 1<a≤7

考点:解一元一次不等式组。 分析:(1)解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围. (2)解出不等式组的解集,与已知解集1≤x<2比较,可以求出a的取值范围. 解答:解:(1)在(a﹣1)x<a+5中,若a<1,则解得x>所以a>1.∴(a﹣1)x<a+5的解集为x<是1<a≤7.

(2)由2x<4得:x<2,又∵该不等式的解集为1≤x<2.根据“同小取小”的原则可得

10

,不等式的解集就为2>x>了,与原题矛盾,

.根据“同小取小”的原则可得≥2,解得:a≤7.∴a的取值范围

≥2.解得a≤7∴a的取值范

围是1<a≤7.

点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数. 24、不等式的

自然数解有 8 个.

考点:一元一次不等式组的整数解。

分析:先根据不等式的基本性质把不等式去分母、去括号、移项、合并同类项求出x的取值范围,再求出符合条件的x的取值即可.

解答:解:去分母得,8﹣x>0, 移项得,﹣x>﹣8, 系数化为1得,x<8,

故此不等式的自然数解有0,1,2,3,4,5,6,7共8个.

点评:此题比较简单,解答此题的关键是熟知不等式的基本性质及自然数的定义,解答此题时要注意0是自然数,这是需要注意的重点问题. 25、如图,如果不等式组

的整数解仅为1,2,3,那么适合这个不等式组的整数a,

b的有序数对(a,b)共有 72 个.

考点:一元一次不等式组的整数解。 专题:分类讨论。

分析:此题要注意数形结合,先判断出a和b的取值范围,然后确定其具体整数值的个数,再进行组合. 解答:解:由不等式组得:个;

,由于其整数解仅为1,2,3,结合图形得:

,a的整数值共有9

,b的整数值共8个,则整数a,b的有序数对(a,b)共有8×9=72个.

点评:本题的难点是确定数的取值范围,在确定范围时要结合图形,便于理解和计算. 解答题

26、某产品一名工人一天的产量约为5至8个,如每天生产工艺品60个,那么需要工人 12 人. 考点:一元一次不等式的应用;一元一次不等式组的整数解。 专题:应用题。

分析:根据题意“一名工人一天的产量约为5至8个”列不等式组,解不等式即可得需要工人8至12人;为保证每天生产工艺品60个,应需要12个人. 解答:解:设需要工人x人, 根据题意得5≤

≤8

解得7.5≤x≤12 因为x为整数 所以8≤x≤12

故为保正每天生产工艺品60个,应需要12个人. 答:需要工人12人.

点评:此题联系实际,要考虑到人数不能为半个人,应取整数,而且考虑到工人的生产率的不稳定性,取最多人数,以保证产量.

27、计算:(1)解方程:

+

=2的解是 无解 ;

(2)解不等式组:的解集是 ﹣1<x≤4 .

11

考点:解一元一次不等式组。 分析:(1)将方程两边同乘以2x﹣1,然后再对方程进行移项、合并同类项、系数化为1求出方程的解;

(2)由题意知将不等式组中的不等式的解集根据移项、合并同类项、系数化为1分别解出来,然后再根据解不等式组解集的口诀:大小小大中间找,来求出不等式组的解集. 解答:解:(1)由方程10x﹣5=2(2x﹣1), ∴6x=3 解得

+

=2两边乘以2x﹣1(2x﹣1≠0)得

∵2x﹣1≠0, ∴x≠, ∴方程无解;

(2)由不等式2x+3>1移项得, 2x>﹣2, ∴x>﹣1, 由不等式

两边同乘以2得,

x﹣2≤2, 解得x≤4, ∴不等式的解集为:﹣1<x≤4. 点评:(1)此题考查了解方程的一般方法:移项、合并同类项、系数化为1,同时注意方程分母不能为0;

(2)主要考查了一元一次不等式组解集的求法,利用不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解),来求解. 28、(2010?呼和浩特)不等式组:

的整数解有 3 个.

考点:一元一次不等式组的整数解。 专题:计算题。

分析:先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解. 解答:解:由x﹣3(x﹣2)≤8得x≥﹣1 由5﹣x>2x得x<2

∴﹣1≤x<2 ∴不等式组的整数解是x=﹣1,0,1 .

点评:解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

12

本文来源:https://www.bwwdw.com/article/l21a.html

Top