初中数学几何的动点问题专题练习-附答案版 - 图文
更新时间:2024-04-17 09:56:01 阅读量: 综合文库 文档下载
动点问题专题训练
1、如图,已知△ABC中,AB?AC?10厘米,BC?8厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与
A △CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度B 从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
D Q P C 32、直线y??x?6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,
4同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;
48(3)当S?时,求出点P的坐标,并直接写出以点
5O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
P x y B O Q A
3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B
两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
5在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B
B 匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). E (1)当t = 2时,AP = ,点Q到AC的距Q 离是 ;
D (2)在点P从C向A运动的过程中,求△APQ
A C P 的面积S与
图16
t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成
为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. ..
6如图,在Rt△ABC中,?ACB?90°,?B?60°,BC?2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为?. A (1)①当?? 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当?? 度时,四边形EDBC是直角梯形,此时AD的长为 ;
(2)当??90°时,判断四边形EDBC是否为菱形,并说明理由.
E O ? D l C B C O B (备用图)
A 7如图,在梯形ABCD中,AD∥BC,AD?3,DC?5,AB?42,∠B?45?.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点
A D D运动.设运动的时间为t秒. (1)求BC的长.
(2)当MN∥AB时,求t的值. N (3)试探究:t为何值时,△MNC为等腰三角形.
B C M
8如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB?4,BC?6,∠B?60?. (1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM?EF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EP?x.
MN的形状是否发生改变?若不变,求①当点N在线段AD上时(如图2),△P出△PMN的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
N A A A D D
D N F
C
E B
图1 A E B
F C
B
E P F C B
E P M D F C
图4(备用)
图2
D
M
图3
(第25题) A
E B
图5(备用)
F C
9如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第
一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.?AEF?90,且EF交正方形外角?DCG的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE?EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A
D
F
B E C 图1
G
B
E C 图2 A
D
F G
B 图3
C E G
F A
D
11已知一个直角三角形纸片OAB,其中?AOB?90°,OA?2,OB?4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
y (Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
B
x
O A
(Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;
B y
x
O A
(Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标.
y
B
x
O A
12如图(1),将正方形纸片ABCD折叠,使点B落在CD边上F
M CE1A D ?一点E(不与点C,D重合),压平后得到折痕MN.当
CD2AM时,求的值.
BN E 方法指导:
为了求得AM的值,可先求BN、AM的长,不妨设:AB=2
B BNC N
图(1)
类比归纳
CE1AMCE1AM?,?,在图(1)中,若则的值等于 ;若则的CD3BNCD4BNCE1AM?(n为整数)值等于 ;若,则的值等于 .(用含nCDnBN的式子表示) 联系拓广 如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,DAB1CE1AM??m?1?,?,重合),压平后得到折痕MN,设则的值等BCmCDnBN于 .(用含m,n的式子表示) F
M D A
E
B C N
图(2)
12..如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16。动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动。设运动的时间为(秒)t。
(1)设△DPQ的面积为S,求S与t之间的函数关系式; (2)当t为何值时,四边形PCDQ是平行四边形?
(3)分别求出出当t为何值时,① PD=PQ,② DQ=PQ ?
13.三角形ABC中,角C=90度,角CBA=30度,BC=20根号3。一个圆心在A点、半径为6的圆以2个单位长度/秒的速度向右运动,在运动的过程中,圆心始终都在直线AB上,运动多少秒时,圆与△ABC的一边所在的直线相切。
1.解:(1)①∵t?1秒, ∴BP?CQ?3?1?3厘米,
∵AB?10厘米,点D为AB的中点, ∴BD?5厘米.
又∵PC?BC?BP,BC?8厘米, ∴PC?8?3?5厘米, ∴PC?BD. 又∵AB?AC, ∴?B??C,
∴△BPD≌△CQP. ············································································· (4分) ②∵vP?vQ, ∴BP?CQ,
又∵△BPD≌△CQP,?B??C,则BP?PC?4,CQ?BD?5, ∴点P,点Q运动的时间t?∴vQ?BP4?秒, 33CQ515································································· (7分) ??厘米/秒. ·
44t3(2)设经过x秒后点P与点Q第一次相遇, 由题意,得解得x?15x?3x?2?10, 480秒. 380?3?80厘米. ∴点P共运动了3∵80?2?28?24,
∴点P、点Q在AB边上相遇, ∴经过
80秒点P与点Q第一次在边AB上相遇. ········································· (12分) 32.解(1)A(8,0)B(0,6) ············· 1分 (2)OA?8,OB?6 ?AB?10
点Q由O到A的时间是
8?8(秒) 1?点P的速度是
6?10?2(单位/秒) · 1分 8当P在线段OB上运动(或0≤t≤3)时,OQ?t,OP?2t
S?t2 ·········································································································· 1分
当P在线段BA上运动(或3?t≤8)时,OQ?t,AP?6?10?2t?16?2t,
如图,作PD?OA于点D,由
PDAP48?6t?,得PD?, ······························ 1分 BOAB51324?S?OQ?PD??t2?t ······································································· 1分
255(自变量取值范围写对给1分,否则不给分.)
(3)P?,? ···························································································· 1分
?824??55???824??1224??1224?··················································· 3分 I1?,?,M2??,?,M3?,?? ·
555555??????3.解:(1)⊙P与x轴相切.
∵直线y=-2x-8与x轴交于A(4,0),
与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k.
在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径, ∴⊙P与x轴相切.
(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P
在线段OB上时,作PE⊥CD于E.
∵△PCD为正三角形,∴DE= ∴PE=13CD=,PD=3, 2233. 2∵∠AOB=∠PEB=90°, ∠ABO=∠PBE,
∴△AOB∽△PEB, ∴
33AOPE4?,即=2, ABPB45PB315, 2315, 2∴PB?∴PO?BO?PB?8?∴P(0,∴k?315?8), 2315?8. 2315-8), 2当圆心P在线段OB延长线上时,同理可得P(0,-∴k=-315-8, 2315315-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三22角形是正三角形.
∴当k=
正在阅读:
初中数学几何的动点问题专题练习-附答案版 - 图文04-17
二级建造师顺利过关复习方法08-21
有关描写浪漫爱情语录11-20
会计基础练习题3(综合练习)含答案11-02
《国际私法期末复习指导》论述题参考答案05-14
湖北省襄阳市四校(襄州一中、枣阳一中、宜城一中、曾都一中)高二下学期期中联考数学试题解析(解析版)W11-24
简述双开门铝材退火时效炉05-21
防溺水安全教育主题活动总结例文202204-03
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 几何
- 练习
- 初中
- 答案
- 数学
- 图文
- 专题
- 问题