量子力学答案_周世勋

更新时间:2023-04-12 21:33:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

量子力学习题及解答

1

第一章 量子理论基础

1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即

m λ T=b (常量);

并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式

dv e

c

hv d kT

hv v v 1

1833

-?

=πρ, (1) 以及 c v =λ, (2)

λρρd dv v v -=, (3)

,1

18)()

(5-?=?=??

? ??-=-=kT

hc v v e

hc c

d c d d dv λλλ

πλλρλλλρλρ

ρ

这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511

86'

=????

?

??

-?+--?=-kT

hc kT hc e

kT hc e hc λλλλλπρ ? 011

5=-?+--kT hc

e kT

hc λλ ? kT

hc e

kT

hc λλ=--)1(5 如果令x=kT

hc

λ ,则上述方程为

x e x =--)1(5

这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有

xk

hc T m =

λ 把x 以及三个物理常量代入到上式便知

K m T m ??=-3109.2λ

量子力学习题及解答

2

这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知

E=hv ,

λ

h P =

如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么

e p E μ22= 如果我们考察的是相对性的光子,那么

E=pc

注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有

p

h =λ nm m

m E c hc E h e e 71.01071.03

1051.021024.122966

2=?=????==

=

--μμ

在这里,利用了

m eV hc ??=-61024.1

以及

eV c e 621051.0?=μ

最后,对

E c hc

e 22μλ=

作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

1.3 氦原子的动能是kT E 2

3=(k 为玻耳兹曼常数),求T=1K 时,氦原子的德布罗意波长。

解 根据

eV K k 3101-=?, 知本题的氦原子的动能为

量子力学习题及解答

3 ,105.12

3233eV K k kT E -?=?== 显然远远小于2c 核μ这样,便有

E

c hc

22核μλ= nm m

m 37.01037.010

5.1107.321024.19396

=?=?????=---

这里,利用了

eV eV c 962107.3109314?=??=核μ

最后,再对德布罗意波长与温度的关系作一点讨论,由某种粒子构成的温度为T 的体系,其中粒子的平均动能的数量级为kT ,这样,其相庆的德布罗意波长就为

T kc hc E c hc

2222μμλ==

据此可知,当体系的温度越低,相应的德布罗意波长就越长,这时这种粒子的波动性就越明显,特别是当波长长到比粒子间的平均距离还长时,粒子间的相干性就尤为明显,因此这时就能用经典的描述粒子统计分布的玻耳兹曼分布,而必须用量子的描述粒子的统计分布——玻色分布或费米公布。

1.4 利用玻尔——索末菲的量子化条件,求:

(1)一维谐振子的能量;

(2)在均匀磁场中作圆周运动的电子轨道的可能半径。

已知外磁场H=10T ,玻尔磁子124109--??=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。

解 玻尔——索末菲的量子化条件为

?=nh pdq

其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。

(1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有

222

12kx p E +=μ 这样,便有

)2

1(22kx E p -±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据

22

1kx E = 可解出 k E x 2±

=± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有 ??

-++-=--+-x x x x nh dx kx E dx kx E )21(2)()21(222μμ

量子力学习题及解答

4

?

nh dx kx E dx kx E x x x x =-+-??+-

-+

)2

1

(2)21(222μμ ?

h

n

dx kx E x x 2)21(22=-?

+

-

μ

为了积分上述方程的左边,作以下变量代换;

θsin 2k

E

x =

这样,便有

h n

k E d E 2

sin 2cos 222

2=???

? ???-

θθμπ

π

?

?-

=?

22

2cos 2cos 2π

π

θθθμh n

d k E E

?

h n

d k

E 2

cos 222

2=

?

?=

π

πθθμ

这时,令上式左边的积分为A ,此外再构造一个积分

?-?

=22

2sin 2π

πθθμ

d k

E B

这样,便有

??--?

=-?=?

=+22

22

2cos 2,

22π

ππ

πθ

θμ

μ

πθμ

d k

E B A k

E d k

E B A (1)

??--

==22

22

,

cos )

2(2cos π

ππ

π???

θθμ

d k

E

d k

E

这里? =2θ,这样,就有

0sin ==-?-π

π

d k

E

B A (2)

根据式(1)和(2),便有

k

E A μ

π

=

这样,便有

h n

k

E 2

=

μ

π

? k

h n E μπ2=

,

k nh μ=

其中π

2h

h =

最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的能量是等间隔分布的。

量子力学习题及解答

5

(2)当电子在均匀磁场中作圆周运动时,有

B q R υυμ=2

? qBR p ==μυ

这时,玻尔——索末菲的量子化条件就为 ?

=πθ20)(nh R qBRd ? nh qBR =?π22 ? nh qBR =2 又因为动能耐μ22p E =,所以,有 μ

μ22)(2222R B q qBR E == ,

22B nBN q nB qBn =?==μμ 其中,μ

2 q M B =是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且 B BM E =?

具体到本题,有

J J E 232410910910--?=??=?

根据动能与温度的关系式

kT E 2

3= 以及

J eV K k 223106.1101--?==?

可知,当温度T=4K 时,

J J E 2222106.9106.145.1--?=???=

当温度T=100K 时,

J J E 2022104.2106.11005.1--?=???=

显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。

1.5 两个光子在一定条件下可以转化为正负电子对,如果两光子的能量相等,问要实现实种转化,光子的波长最大是多少?

解 关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过程的运动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到本题,两个光子能量相等,因此当对心碰撞时,转化为正风电子对反需的能量最小,因而所对应的波长也就最长,而且,有

2c hv E e μ==

此外,还有

λhc

pc E ==

于是,有

量子力学习题及解答

6

2c hc

e μλ

=

? 2c hc

e μλ= nm

m m 31266

104.2104.210

51.01024.1---?=?=??=

尽管这是光子转化为电子的最大波长,但从数值上看,也是相当小的,我们知道,电子是自然界中最轻的有质量的粒子,如果是光子转化为像正反质子对之类的更大质量的粒子,那么所对应的光子的最大波长将会更小,这从某种意义上告诉我们,当涉及到粒子的衰变,产生,转化等问题,一般所需的能量是很大的。能量越大,粒子间的转化等现象就越丰富,这样,也许就能发现新粒子,这便是世界上在造越来越高能的加速器的原因:期待发现新现象,新粒子,新物理。

第二章波 函数和薛定谔方程

2.1证明在定态中,几率流与时间无关。

证:对于定态,可令 )]r ()r ()r ()r ([m 2i ]e )r (e )r (e )r (e )r ([m

2i )(m 2i J e

)r ( )

t (f )r ()t r (**Et i Et i **Et i Et i **Et i ψψψψψψψψψψψψψψψ?-?=?-?=?-?===-----)()(,

可见t J 与 无关。

2.2 由下列定态波函数计算几率流密度:

ikr ikr e r

e r -==

1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。 解:分量只有和r J J 21

在球坐标中 ?θθ?θ??+??+??=?s i n r 1e r 1e r r 0

量子力学习题及解答

7 r

mr

k r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i m i J ikr ikr ikr ikr

3020

220

1*

1*111 )]11(1)11(1[2 )]1

(1)1(1[2 )

(2 )1(==+----=??

-??=?-?=-

-ψψψψ

r J 1

与同向。表示向外传播的球面波。

r

mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1

(r e r 1

)e r 1

(r e r 1

[m 2i )

(m 2i J )2(3020

220

ik r ik r ik r ik r *

2*222

-=-=---+-=??

-??

=?-?=--ψψψψ

可见,r J

与2反向。表示向内(即向原点) 传播的球面波。

补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化? ∞==??∞

∞dx dx ψψ*

∴波函数不能按1)(2=?∞

dx x ψ方式归一化。

其相对位置几率分布函数为 12==ψω表示粒子在空间各处出现的几率相同。

2.3 一粒子在一维势场

?????>∞≤≤<

∞=a

x a x x x U ,,,0 00

)( 中运动,求粒子的能级和对应的波函数。 解:t x U 与)(无关,是定态问题。其定态S —方程 )()()()(222

2x E x x U x dx d m ψψψ=+-

在各区域的具体形式为 Ⅰ: )()()()(2 011122

2x E x x U x dx d m x ψψψ=+-< ①

Ⅱ: )()(2 0 2222

2x E x dx d m a x ψψ=-≤≤ ②

Ⅲ: )()()()(2 33322

2x E x x U x dx d m a x ψψψ=+-> ③

量子力学习题及解答

8

由于(1)、(3)方程中,由于∞=)(x U ,要等式成立,必须

0)(1=x ψ 0)(2=x ψ 即粒子不能运动到势阱以外的地方去。

方程(2)可变为0)(2)(222

22=+x mE

dx x d ψψ

令222

mE

k =

,得 0)()(22

2

22=+x k dx

x d ψψ 其解为 kx B kx A x cos sin )(2+=ψ ④

根据波函数的标准条件确定系数A ,B ,由连续性条件,得 )0()0(12ψψ=⑤

)()(32a a ψψ=⑥

⑤ 0=?B ⑥

0sin =?ka A

)

,3 ,2 ,1( 0

sin 0 ==?=∴≠n n ka ka A π

∴x a

n A x π

ψsin )(2= 由归一化条件 1)(2

=?

dx x ψ

得 1sin 0

2

2

=?

a

xdx a

n A

π

mn a

b

a

xdx a n x a m δππ?

=*2

sin sin

x a n a x a

A πψs i n 2)(22=

∴=

?

222

mE

k =

),3,2,1( 22

2

22 ==?n n ma

E n π可见E 是量子化的。 对应于n E 的归一化的定态波函数为

??

???><≤≤=-a x a x a

x xe a n a

t x t

E i

n n , ,0 0 ,sin 2),( πψ

#

2.4. 证明(2.6-14)式中的归一化常数是a

A 1=

'

量子力学习题及解答

9 证:??

???≥<+'=a x a x a x a n A n ,0 ),(sin πψ (2.6-14) 由归一化,得

a

A a x a n n a A a A dx a x a n A x A dx a x a n A dx a x a

n A dx a a

a a a a a

a a a n 2222222

22)(sin 2)(cos 2

2)](cos 1[21)(sin 1'=+?'-'=+'-'=+-'=+'==-----∞????πππππψ ∴归一化常数a A 1

=' #

2.5 求一维谐振子处在激发态时几率最大的位置。

解:222

122)(x xe x ααπ

αψ-?=

222223222112 24)()(x

x

e x e x x x αα

παπααψω--?=??==

22]22[2 )(323

1x e x x dx x d ααπ

αω--= 令0 )(1=dx

x d ω,得 ±∞=±==x x x 1 0α

由)(1x ω的表达式可知,±∞==x x 0,时,0)(1=x ω。显然不是最大几率的位置。

2222)]251[(4)]22(2)62[(2 )( 44223322223

212x

x e x x e x x x x dx x d ααααπ

ααααπαω----=---=而 0142 )(32

1212<-=±=e dx x d x παω 可见μωα

±=±=1

x 是所求几率最大的位置。 #

2.6 在一维势场中运动的粒子,势能对原点对称:)()(x U x U =-,证明粒子的定态波函数具有确定的宇称。

证:在一维势场中运动的粒子的定态S-方程为

量子力学习题及解答

10 )()()()(22

22x E x x U x dx d ψψψμ=+- ① 将式中的)(x x -以代换,得

)()()()(22

2

2x E x x U x dx d -=--+--ψψψμ ② 利用)()(x U x U =-,得

)()()()(222

2x E x x U x dx

d -=-+--ψψψμ ③ 比较①、③式可知,)()(x x ψψ和-都是描写在同一势场作用下的粒子状态的波函数。由于它们描写的是同一个状态,因此)()(x x ψψ和-之间只能相差一个常数c 。方程①、③可相互进行空间反演 )(x x -?而得其对方,由①经x x -→反演,可得③, )()( x c x ψψ=-? ④

由③再经x x →-反演,可得①,反演步骤与上完全相同,即是完全等价的。 )()( x c x -=?ψψ ⑤ ④乘 ⑤,得

)x ()x (c )x ()x ( 2-=-ψψψψ 可见,12=c 1±=c

当1+=c 时,)x ()x ( ψψ=-,)(x ψ?具有偶宇称, 当1-=c 时,)()( x x ψψ-=-,)(x ψ?具有奇宇称, 当势场满足)()( x U x U =-时,粒子的定态波函数具有确定的宇称。#

2.7 一粒子在一维势阱中 ?????≤>>=a x a

x U x U ,0

,0)(0

运动,求束缚态(00U E <<)的能级所满足的方程。

解法一:粒子所满足的S-方程为 )()()()(222

2x E x x U x dx d ψψψμ=+-

按势能)(x U 的形式分区域的具体形式为 Ⅰ:)x (E )x (U )x (dx d 2110122

2ψψψμ=+- a x <<∞- ① Ⅱ:)()(22222

2x E x dx d ψψμ=- a x a ≤≤- ② Ⅲ:)x (E )x (U )x (dx d 2330322

2

ψψψμ=+- ∞<

Ⅰ: 0)

(21201=--''ψμψ E U ④

Ⅱ:. 0E

2222=+''ψμψ ⑤

量子力学习题及解答

11

Ⅲ:0)(23203

=--''ψμψ

E U ⑥ 令 22220212 )(2 E k E U k μμ=-= 则

Ⅰ: 01211=-''ψψk ⑦

Ⅱ:. 02222

=-''ψψk ⑧ Ⅲ:01213

=-''ψψk ⑨ 各方程的解为

x k x k 3222x

k x k 11

11

1Fe Ee x k cos D x k sin C Be Ae -+-+=+=+=ψψψ 由波函数的有限性,有

)(0 )(31=?∞=?-∞E A 有限有限ψψ 因此

x k 3x k 111Fe Be -==ψψ

由波函数的连续性,有

)

13( Fe k a k sin D k a k cos C k ),a ()a ()

12( Fe a k cos D a k sin C ),a ()a ()11( a k sin D k a k cos C k Be k ),a ()a ()10( a k cos D a k sin C Be ),a ()a (a k 1222232a k 22322222a k 12122a k 21111

1

-----=-?'='=+?=+=?-'=-'+-=?-=-ψψψψψψψψ 整理(10)、(11)、(12)、(13)式,并合并成方程组,得

F e k aD k sin k aC k cos k 00F e aD k cos aC k sin 00

0D a k sin k aC k cos k B e k

00aD k cos aC k sin B e a k 12222a k 222222a k 122a k 1111=+-+=-++=+--=+-+----

解此方程即可得出B 、C 、D 、F ,进而得出波函数的具体形式,要方程组有非零解,必须

0Be k a k sin k a k cos k 0e

a k cos a

k sin 0

0a k sin k a k cos k e k 0a k cos a k sin e a k 12222a k 222222a

k 122a k 1111=--------

量子力学习题及解答 12 ]a k 2c o s k k 2a k 2s i n )k k [(e ]

a k 2sin k a k 2sin k a k 2cos k k 2[e ]

a k sin e k a k cos a k sin e k a k cos e k a k cos a k sin e k [e k ]a k cos a k sin e k a k sin e k k a k cos a k sin e k a k cos e k k [e e k a k sin k a k cos k e a k cos a k sin 0

a k cos a k sin e k e k a k sin k a k cos k e a k cos a k sin 0a k sin k a k cos k e 022122

122a k 222

122

2221a k 222a k

222a

k 122

a k 222a k

1a k

122a k

2

222a k 2122a k 2

222a k 21a k a k 12222a

k 2222a

k 1a

k 12222a k

222222a k 111111111111111111--=-+-=-++

+--

+++

+-==

-----

----=------------------

∵ 012≠-a k e

∴02cos 22sin )(22122

12

2=--a k k k a k k k 即 022)(2122

12

2=--k k a k tg k k 为所求束缚态能级所满足的方程。# 解法二:接(13)式

a k sin D k k a k cos C k k

a k cos D a k sin C 21

2

212

22+=+-

a k sin D k k a k cos C k k a k cos D a k sin C 21

2

212

22+-=+ 0

2cos k 2 2sin )( 02cos 2 2sin ) 1( 0cos sin cos sin cos sin 0)cos sin )(sin cos ( 0)cos sin )(sin cos ()cos sin )(sin cos (0)cos sin (sin cos cos sin sin cos 22122

12

221

22212

2222212221222212

2221

22212

221

2

2212221

2

2212

221

2

2212

2212

2212

=--=-+-=--+=-+=-+--+-=--+-+a k k a k k k a k k k

a k k k a k a k a k k k a k k k a k a k k k a k a k k k

a k a k k k a k a k k k a k a k k k a k a k k k a k a k k k a k a k k k a k a k k k a k a k k k a k a k k k #

解法三:

(11)-(13))(sin 21122F B e k a k D k a

k +=?-

(10)+(12))F B (e a k cos D 2a

k 21+=?-

)a ( k a tgk k )12()10()

13()11(122=?+-

(11)+(13)a ik e B F k a k C k 1)(cos 2122---=?

量子力学习题及解答

13 (12)-(10)a ik 21e )B F (a k sin C 2--=?

令 ,,a k a k 22==ηξ 则

)d ( ctg )c ( tg ηξξηξξ-==或

)f ( a

U 2)k k (22

0222122 μηξ=+=+

合并)b ()a (、:

21222

1222k k k k a k tg -= 利用a

k tg 1a tgk 2a k 2tg 2222-=

# 解法四:(最简方法-平移坐标轴法) Ⅰ:11012

2ψψψμE U =+''- (χ≤0)

Ⅱ:222

2ψψμE =''- (0<χ<2a )

Ⅲ:33032

2ψψψμE U =+''- (χ≥2a ) ?????????=--''=+''=--''?0

)

(2020

)

(232032221201ψμψψμψψμψ

E U E

E U

?????=-''==+''-==-''(3)

0k E 2k (2) 0k )E U (2k (1) 0k 32

132

2

22222202

11211ψψμψψμψψ 束缚态0<E <0U

x

k x

k x

k x k Fe Ee x k D x k C Be Ae 111132221cos sin -+-++=+=+=ψψψ

0 )(0

)(3

1=?∞=?-∞E B 有限有限ψψ

因此

x k

x

k Fe Ae 1131 -==∴ψψ

由波函数的连续性,有

)

7( Fe a k 2cos D a k 2sin C ),a 2()a 2()

6( Fe k a k 2sin D k a k 2cos C k ),a 2()a 2()

5( C k A k ),0()0()

4( D A ),0()0(a k 22232a k

2122223221212111--=+?=-=-?'='=?'='=?=ψψψψψψψψ

(7)代入(6)

k a ctgk k ) 10 ( ) 12 ( )

13 ( ) 11 ( 1 2 2 - = ? - +

量子力学习题及解答

14 a k D k k a k C k k a k D a k C 21

2212

222sin 2cos 2cos 2sin +-=+

利用(4)、(5),得 0

a k 2cos k k 2a k 2sin )k k ()k k (0

a k 2cos 2a k 2sin )k k k k (0A 0

]a k 2cos 2a k 2sin )k k k k [(A a

k 2sin D k k

a k 2cos A a k 2cos A a k 2sin A k k 22122

12

221221

221

221

2

21

21

222221

=---=+-∴≠=+-+-=+即得

两边乘上

#

2.8分子间的范德瓦耳斯力所产生的势能可以近似表示为

???????<≤≤-<≤<∞=,

,0 ,0 , 0 ,)(10x b b x a U a x U x x U

求束缚态的能级所满足的方程。

解:势能曲线如图示,分成四个区域求解。 定态S-方程为

)()()()(222

2x E x x U x dx d ψψψμ=+-

对各区域的具体形式为

Ⅰ:)0( )(21112

<=+''-x E x U ψψψμ

Ⅱ:)0( 222022

a x E U <≤=+''-ψψψμ

Ⅲ:)( 233132

b x a E U ≤≤=-''-ψψψμ

Ⅳ:)( 02442

x b E <=+''-ψψμ

对于区域Ⅰ,∞=)(x U ,粒子不可能到达此区域,故 0)(1=x ψ

而 . 0)

( 22202=--''ψμψ E U ① 0)

( 23213=++''ψμψ E U ②

02424=+''ψμψ E

③ 对于束缚态来说,有0<<-E U

量子力学习题及解答

15

∴ 02212

=-''ψψk 2

021)

( 2

E U k -=μ ④ 03233=+''ψψk 2

123)

( 2

E U k +=μ ⑤ 042

44

=+''ψψk 224/2 E k μ-= ⑥

各方程的解分别为

x

k x k x

k x k Fe Ee x k D x k C Be Ae 3

3

1

1

42232cos sin -+-+=+=+=ψψψ

由波函数的有限性,得

0 )(4=?∞E 有限,

ψ ∴ x k Fe 3

4-=ψ 由波函数及其一阶导数的连续,得 A B -=?= )0()0(21ψψ ∴ )(33

2x k x k e e A --=ψ

a k D a k C e e A a a x k x k 2232cos sin )()()(3

3

+=-?=-ψψ ⑦

a k Dk a k Ck e e Ak a a a k a k 2222133

sin cos )()()(3

3-=+?'='-ψψ ⑧ b k Fe b k D b k C b b 3

2243cos sin )()(-=+?=ψψ ⑨

b k e Fk b k Dk b k Ck b b 3

3222243

cos sin )()(--=-?'='ψψ ⑩ 由⑦、⑧,得a

k D a k C a k D a k C e e e e k k a k a k a k a k 222221cos sin cos cos 1111+-=

-+-- (11) 由 ⑨、⑩得D b k k C b k k D b k k C b k k )cos ()sin ()sin ()cos (23232222--=- 0)sin cos ()sin cos (

223

22232=+-=+D b k b k k k

C b k b k k k (12) 令21

1111k k e

e e e a k a k a k a k ?-+=--β,则①式变为

0)sin cos ()cos sin (2222=++-D a k a k C a k a k ββ

联立(12)、(13)得,要此方程组有非零解,必须

0)s i n c o s ()c o s s i n ()

c o s s i n ()s i n c o s (

2222223

22232=+-+-+a k a k a k a k b k b k k k b k b k k k ββ

量子力学习题及解答

16 )

()1()( 0

)1)(((c o s ))((sin 0

cos cos sin cos )cos sin sin sin sin sin cos sin sin sin cos cos 0

)cos sin ( )cos sin ()sin cos )(sin cos ( 3

23223

2

232

22222223

2

2232

2222223

22232

223

2

22223

2

22ββββββββββ-+=-=+-+--=+---+++

++=+-??

--++k k

k k a b tgk k k a b k k k a b k a k b k a k b k a k b k k k

a k

b k k k a k b k a k b k a k b k k k

a k

b k k k b k b k k k a k a k b k b k k k a k a k 即

把β代入即得

)()1()( 111111112132322a k a k a

k a k a k a k a k a

k e e e e k k k k e e e e k k a b tgk -----

+--++=-

此即为所要求的束缚态能级所满足的方程。 #

附:从方程⑩之后也可以直接用行列式求解。见附页。

))

()

(b k a k e k b k a k e k b k a

k e k b k a k e k k e e k b k a k e k b k a k e k k b k a k e k b k a k e k k e e e k b k k b k k e b k b k a k a k e e k e k b k k b k k e b k b k a k k a k k e e e k b k k b k k e b k b k a k k a k k k e e a k a k e e b k

b k

b k

b

k b k b k

a k

a k a k

a k a k a k a

k

a

k a k a k a

k

a k

a k a k a

k

a k

a k a k a k a k 22222322222321222222322222223232222222213222222222232222222222222sin sin sin cos cos cos cos sin )( sin cos sin sin cos sin cos cos )( sin cos cos sin 0

cos sin )( sin cos cos sin 0

sin cos )(00

sin cos 0cos sin 00

sin cos )(0

cos sin )(33331133331133113311331111--------------------++-+------=----=+--

----==---+---

)](sin )()(cos )[( )](sin )()(cos )([)](cos )(sin )[( )](sin )(cos )[(31313

113

112312

222312312

22231221231222232=-++----+-+-=-+----+---=-------b

k a k b k a k b

k a k a k b

k a k a k e a b k k k k a b k k k k e e a b k k k k a b k k k k e e a b k k k a b k k k e e e a b k k a b k k k e e

量子力学习题及解答

17

)( )()()]()[( 0

)]()()[( )]()()([ 231223123122

2312

2

231222312312

22311133=--+--+--=-++----++-?--k k k e

k k k a b tgk k k k e

k k k e a b tgk k k k k k k e a b tgk k k k k k k a

k a

k b k b

k

此即为所求方程。 #

补充练习题一

1、设 )()(222

1

为常数αψαx Ae

x -=,求A = ? 解:由归一化条件,有

?

?

--∞

--==)x (d e 1

A )x (d e

A

12

22

2x

2

x 2

ααα

α

παα

1

A dy e 1

A 2

y 2

2

==?

-- 利用π=?∞

∞--dy e 2

y

∴π

α

=A #

2、求基态微观线性谐振子在经典界限外被发现的几率。 解:基态能量为ω 2

10=E

设基态的经典界限的位置为a ,则有 ωμω 2

121220==a E ∴0a 1

a ==

μω

在界限外发现振子的几率为

)

t 2

1y ]dt e 2122[2

]

dy e dy e [2

dy

e 2

)x (d e 2

)( dx e 22

2

/t

1

y y 1

y a )x (a

x 2

2

22

02

2

2=

-

=

-==

=

=?

???

??∞

--∞

--∞

--∞

-∞

-∞-(令偶函数性质ππππ

π

π

απ

π

ααα

式中

?

∞--2

2

/221

dt e

t π为正态分布函数?∞

--=

x

t

dt e x 2

/2

21

)(πψ

当)2(2ψ时的值=x 。查表得92.0)2(= ψ ∴]92.0[?-?

=πππ

ω

16.0)92.01(2=-=

∴在经典极限外发现振子的几率为0.16。 #

) ( 2

2 0

2

2 0

2

2 0 x a x a x e dx e dx e α

α

α π

α ψ π α π α ω - ∞ - - ∞ - - =

+ = ?

?

量子力学习题及解答

18

3、试证明)x 3x 2(e 3)x (33x 2122ααπαψα-=-是线性谐振子的波函数,并求此波函数对应的能

量。

证:线性谐振子的S-方程为

)()(2

1)(22222x E x x x dx d ψψμωψμ=+- ① 把)(x ψ代入上式,有

)

3x 9x 2(e 3e )]3x 6()x 3x 2(x [3)]x 3x 2(e 3[dx d )x (dx d 2345x 21x 2

12333233x 2122222

2αααπααααααπαααπ

αψααα-+-=-+--=-=---

??

????-+-=-)3x 9x 2(e 3dx d dx )x (d 2345x 21222

2αααπαψα ??

????+-+-+--=--)x 18x 8(e )3x 9x 2(xe 3335x 212345x 212222

2ααααααπααα )x ()7x ()x 3x 2(e 3)7x (22433x 2122422ψααααπ

αααα-=--=-

把)(22x dx

d ψ代入①式左边,得 )()(2

7 )(2

1)(21)(27 )(2

1)(2)(27 )(21)(2)(27 )(2

1)(2222222242222242

22

22222x E x x x x x x x x x x x x x x x x x x dx x d ψωψψμωψμωωψψμωψμωμψμμωψμωψαμψμαψμωψμ==+-=

+-??=+-=+-=右边)(左边 当ω 27=E 时,左边 = 右边。 n = 3

)32(3)(332122x x e dx d x x ααπαψα-=-,是线性谐振子的波函数,其对应的能量为ω 2

7。

第三章 量子力学中的力学量

量子力学习题及解答

19 3.1 一维谐振子处在基态t i x e x ωαπαψ2

222)(--=,求:

(1)势能的平均值22

21x U μω=;

(2)动能的平均值μ22

p T =;

(3)动量的几率分布函数。 解:(1) ?∞∞--==dx e x x U x 2

222222121απαμωμω

μωμωαμωαπαπα

μω

?==?=222

22241212121221

ω 41

= ?∞+--????=0122)12(5312a

a n dx e x n n ax n π (2) ?∞∞-==dx x p x p T )(?)(2122*

2ψψμμ

?∞∞----=dx e dx d e x

x 2

22221

22

221)(21ααμπα

?∞

∞---=dx e x x 2

2)1(22222αααμπα

][222222222

??∞∞--∞

∞---=dx e x dx e x x ααααμπα ]2[23222

απ

ααπ

αμπα?-=

μωμαμαπαμπα?===44222

2222

ω 41

=

或 ωωω 41

4121

=-=-=U E T

(3) ?=dx x x p c p )()()(*

ψψ 212221?∞∞---=dx e e Px

i

x απαπ

?∞∞---=dx e e Px i x 2

22

1

21απαπ

?∞∞--+-=dx e p ip x 2

22

2222)(21

21 αααπα

π

?∞

∞-+--=dx e e ip x p 222222

)

(212 21 αααπαπ

παπαπα221222

2 p e -=222

21

απαp

e -=

动量几率分布函数为

量子力学习题及解答

20 222

1

)()(2 απαωp e p c p -==

#

3.2.氢原子处在基态0/30

1

),,(a r e a r -=π?θψ,求:

(1)r 的平均值;

(2)势能r e 2

-的平均值;

(3)最可几半径;

(4)动能的平均值;

(5)动量的几率分布函数。

解:(1)?θθπτ?θψππd rd d r re a d r r r a r sin

1),,(02200/23020

????∞-==

?∞-=0/233

004

dr a r a a r

?∞+-=01!

n ax n a n dx e x

040302

32!

34a a a =??

?

? ??=

2

203020

/2302

0200/23

02

02002/23

02

2

214 4 sin sin 1)()2(0

00

a e a a e dr r e a e d drd r e a e d drd r e r a e r e U a r a r a r -

=??

?

? ??-=-=-=-=-=???????∞-∞-∞-ππππ?

θθπ?

θθπ

(3)电子出现在r+dr 球壳内出现的几率为 ??=π

π?θθ?θψω02022 sin )],,([)(d drd r r dr r dr

r e a a r 2/230

04-= 2/230

4)(r e a r a r -=ω

/20

30)22(4)(a r re r a a dr r d --=ω

令 0321 , ,0 0)

(a r r r dr r d =∞==?=,ω

当0)( ,0 21=∞==r r r ω时,为几率最小位置 0

/2220

03022)482(4)(a r e

r a r a a dr r d -+-=ω

量子力学习题及解答

21

08)

(2

30

2

20

<-

=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

(4)22

22?21??-==μ

μ p T ???∞--?-=ππ?θθπμ02002

/2/30

2 sin )(1200d drd r e e a T a r a r

???∞---=ππ?θθπμ02002

/22/302 sin )]([11200d drd r e dr d r dr

d r

e a a r a r ?

----=0

/0

203

2 )2(1

(240

dr e a r r a a a r μ

2

2

20204022)442(24a a a a μμ =-= (5) τ?θψψd r r p c p

),,()()(* ?= ???

-∞

-=

π

π

θ?θθππ20

cos 0

2

/30

2

/3 sin 1

)2(1

)(0

d d e

dr r e

a p c pr i

a r

??

-=-∞

θθπππ0

cos 0

/2

30

2

/3)cos ( )

2(20

d e

dr e

r a

pr i

a r

?

--=0

cos /230

2

/30)

2(2πθπππpr i

a r e ipr

dr

e r a

?∞---=0

/30

2

/3)()2(20dr e e re ip a pr i

pr

i

a r

πππ ?

+-=

1

!n ax n a

n dx e x ])1(1)1(1[)2(2202030

2

/3p i a p i a ip a

+--=πππ 2

222

003

30)1(421

p a a ip

ip a +=

π 2

22

2

044003

3

)

(24

+=p a a a a π

2

22202/30)

()2(

+=

p a a π

动量几率分布函数

4

22025302

)

(8)()(

+==p a a p c p πω #

3.3 证明氢原子中电子运动所产生的电流密度在球极坐标中的分量是 0==θe er J J 2

sin m n e r m e J ψθ

μ?=

证:电子的电流密度为

?

???????+????+????=?22222sin 1)(sin sin 1)(1?θθθθθr r r r

本文来源:https://www.bwwdw.com/article/kx6l.html

Top