初中中考数学压轴题及答案(精品)

更新时间:2023-03-08 04:52:20 阅读量: 初中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

中考数学专题复习——压轴题

1.

已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.

(1) 求该抛物线的解析式;

(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;

(3) △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.

?b4ac?b2?(注:抛物线y=ax+bx+c(a≠0)的顶点坐标为???2a,4a??)

??2

?2. 如图,在Rt△ABC中,?A?90,AB?6,AC?8,D,E分别是边AB,AC的

中点,点P从点D出发沿DE方向运动,过点P作PQ?BC于Q,过点Q作QR∥BA交

AC于

R,当点Q与点C重合时,点P停止运动.设BQ?x,QR?y.

(1)求点D到BC的距离DH的长;

(2)求y关于x的函数关系式(不要求写出自变量的取值范围);

(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.

A D P B H Q

R E C

3在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM

=x.

(1)用含x的代数式表示△MNP的面积S; (2)当x为何值时,⊙O与直线BC相切?

(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

A A N C P 图 3

B

D 图 2 M O B P C B

图 1

C N M O A N M O

4.如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(3,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于3,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. 4 5如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.

(1)求证:△BDE≌△BCF;

(2)判断△BEF的形状,并说明理由;

(3)设△BEF的面积为S,求S的取值范围.

6如图,抛物线L1:y??x2?2x?3交x轴于A、B两点,交y轴于M点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C、D两点. (1)求抛物线L2对应的函数表达式;

(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;

(3)若点P是抛物线L1上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线L2上,请说明理由.

7.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.

(1)求梯形ABCD的面积;

(2)求四边形MEFN面积的最大值.

(3)试判断四边形MEFN能否为正方形,若能, 求出正方形MEFN的面积;若不能,请说明理由.

D M C N A E F B

8.如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y?k的图象上. x(1)求m,k的值;

(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形, 试求直线MN的函数表达式.

友情提示:本大题第(1)小题4分,第(2)小题7分.对

完成第(2)小题有困难的同学可以做下面的(3)选做

题.选做题2分,所得分数计入总分.但第(2)、(3)

小题都做的,第(3)小题的得分不重复计入总分.

(3)选做题:在平面直角坐标系中,点P的坐标

y 为(5,0),点Q的坐标为(0,3),把线段PQ向右平 移4个单位,然后再向上平移2个单位,得到线段P1Q1, Q 2 则点P1的坐标为 ,点Q1的坐标为 .

1 O y A B O x Q1 P1 1 2 3 P x 9.如图16,在平面直角坐标系中,直线y??3x?3与x轴交于点A,与y轴交于点C,抛物线y?ax?223x?c(a?0)经过A,B,C三点. 3(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;

(2)在抛物线上是否存在点P,使△ABP为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由; (3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小,若存在,求出M点的坐标;若不存在,请说明理由.

y A C O F B x 图16

10.如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y?轴的正半轴上,且AB?1,OB?3,矩形ABOC绕点O按顺时针方向旋转60后得到

矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物

线y?ax2?bx?c过点A,E,D. (1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式;

(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

y E A B F C D O x

11.已知:如图14,抛物线y??交于点B,点C,直线y??323x?3与x轴交于点A,点B,与直线y??x?b相443x?b与y轴交于点E. 4(1)写出直线BC的解析式. (2)求△ABC的面积.

(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?

12.在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆过点C若

C的坐标为(0,2),AB=5, A,B两点的横坐标XA,XB是关于X的方程x2?(m?2)x?n?1?0的两根:

(1) 求m,n的值

(2) 若∠ACB的平分线所在的直线l交x轴于点D,试求直线l对应的一次函数的解析式 (3) 过点D任作一直线l分别交射线CA,CB(点C除外)于点M,N,则

是否为定值,若是,求出定值,若不是,请说明理由

`11?的值CMCNC M A D O B N L`

13.已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.

(1)求该抛物线的解析式;

(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;

(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.

?b4ac?b2?(注:抛物线y=ax+bx+c(a≠0)的顶点坐标为???2a,4a??)

??2

14.已知抛物线y?3ax2?2bx?c,

(Ⅰ)若a?b?1,c??1,求该抛物线与x轴公共点的坐标;

(Ⅱ)若a?b?1,且当?1?x?1时,抛物线与x轴有且只有一个公共点,求c的取值范围;

x2?1时,(Ⅲ)若a?b?c?0,且x1?0时,对应的y1?0;对应的y2?0,试判断当0?x?1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.

15.已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题: (1)当t为何值时,PQ∥BC?

(2)设△AQP的面积为y(cm),求y与t之间的函数关系式;

(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

B B P P 2A Q 图①

C A 图② Q C P?

k1与直线y?x相交于A、B两点.第一象限上的点M(m,n)(在A点x4k左侧)是双曲线y?上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双

xk曲线y?于点E,交BD于点C.

x16.已知双曲线y?(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.

(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.

(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

yMDBC

OENAx

压轴题答案

1. 解:( 1)由已知得:c=3,b=2

∴抛物线的线的解析式为y??x2?2x?3 (2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E关于x=1对称,所以E(3,0) 设对称轴与x轴的交点为F

所以四边形ABDE的面积=S?ABO?S梯形BOFD?S?DFE ?c?3解得 ???1?b?c?0yDBGAOFEx111AO?BO?(BO?DF)?OF?EF?DF 222111=?1?3?(3?4)?1??2?4 222=

=9

(3)相似

如图,BD=BG2?DG2?12?12?2 BE=BO2?OE2?32?32?32 DE=DF2?EF2?22?42?25 222所以BD?BE?20, DE?20即: BD?BE?DE,所以?BDE是直角三角形

222所以?AOB??DBE?90?,且

AOBO2??, BDBE2所以?AOB??DBE.

2 解:(1)??A?Rt?,AB?6,AC?8,?BC?10.

?点D为AB中点,?BD?1AB?3. 2??DHB??A?90?,?B??B.

?△BHD∽△BAC, DHBDBD312???AC??8?. ,?DH?ACBCBC105(2)?QR∥AB,??QRC??A?90.

???C??C,?△RQC∽△ABC,

?RQQCy10?x?,??, ABBC6103x?6. 5即y关于x的函数关系式为:y??(3)存在,分三种情况:

①当PQ?PR时,过点P作PM?QR于M,则QM?RM.

A ??1??2?90?,?C??2?90?, ??1??C.

B D P 1 M 2 H Q

R E C

84QM4?cos?1?cosC??,??,

105QP51?3??x?6??42?5??,?x?18. ?12555312②当PQ?RQ时,?x?6?,

55?x?6.

③当PR?QR时,则R为PQ中垂线上的点,

A D B H

A D H

E P R Q

C

P E Q

R C B 11?CR?CE?AC?2.

24QRBA?tanC??,

CRCA3?x?6156?5?,?x?.

2281815综上所述,当x为或6或时,△PQR为等腰三角形.

523解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.

∴ △AMN ∽ △ABC.

于是点R为EC的中点,

A M O P N xAN∴ AM?AN,即?.

43ABAC∴ AN=

B

图 1

C 3x. ……………2分 4∴ S=S?MNP?S?AMN?133?x?x?x2.(0<x<4) ……………3分 2481MN. 2(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO =OD =在Rt△ABC中,BC =AB?AC=5.

M O B

Q

D 图 2

22A N C

由(1)知 △AMN ∽ △ABC.

xMN∴ AM?MN,即?.

45ABBC5x, 45∴ OD?x. …………………5分

8∴ MN?过M点作MQ⊥BC 于Q,则MQ?OD?5x. 8在Rt△BMQ与Rt△BCA中,∠B是公共角, ∴ △BMQ∽△BCA. ∴ BM?QM.

BCAC55?x8?25x,AB?BM?MA?25x?x?4. ∴ BM?2432496. 4996∴ 当x=时,⊙O与直线BC相切.…………………………………7分

49(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.

A ∵ MN∥BC,∴ ∠AMN=∠B,∠AOM=∠APC. ∴ △AMO ∽ △ABP.

M N ∴ AM?AO?1. AM=MB=2. O ABAP2∴ x=

故以下分两种情况讨论:

B

3① 当0<x≤2时,y?SΔPMN?x2.

8∴ 当x=2时,y最大?P 图 3

C 323?2?. ……………………………………8分 82M E P

O A ② 当2<x<4时,设PM,PN分别交BC于E,F.

∵ 四边形AMPN是矩形, ∴ PN∥AM,PN=AM=x. 又∵ MN∥BC,

∴ 四边形MBFN是平行四边形. ∴ FN=BM=4-x.

∴ PF?x??4?x??2x?4. 又△PEF ∽ △ACB.

N C B F 图 4

S?PEF?PF?∴ ?. ??S?ABC?AB?∴ S?PEF?232?x?2?. ……………………………………………… 9分 2y?S?MNP?S?PEF=

32392x??x?2???x2?6x?6.……………………10分 8282929?8?当2<x<4时,y??x?6x?6???x???2.

88?3?8时,满足2<x<4,y最大?2. ……………………11分 38综上所述,当x?时,y值最大,最大值是2. …………………………12分

3∴ 当x? 4 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60o=23,∴B(23,2) ∵A(0,4),设AB的解析式为y?kx?4,所以23k?4?2,解得k??3, 3以直线AB的解析式为y??3x?4 3o

(2)由旋转知,AP=AD, ∠PAD=60, ∴ΔAPD是等边三角形,PD=PA=AO2?OP2?19

y如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30° 1∴GD=BD=

23353,DH=GH+GD=+23=, 222AHEOPGBD3373∴GB=BD=,OH=OE+HE=OE+BG=2??

2222537∴D(,)

22(3)设OP=x,则由(2)可得D(23?x,2?x3133x)若ΔOPD的面积为:x?(2?x)? 2224解得:x?

5

?23?21?23?21所以P(,0)

33

6

7解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ……………1分 ∵ AB∥CD,

∴ DG=CH,DG∥CH.

∴ 四边形DGHC为矩形,GH=CD=1.

∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,

C D ∴ △AGD≌△BHC(HL).

M N AB?GH7?1∴ AG=BH==3. ………2分 ?22∵ 在Rt△AGD中,AG=3,AD=5, ∴ DG=4.

A B E G H F

1?7??4?∴ S梯形ABCD??16. ………………………………………………3分 2(2)∵ MN∥AB,ME⊥AB,NF⊥AB,

C D ∴ ME=NF,ME∥NF.

M N ∴ 四边形MEFN为矩形.

∵ AB∥CD,AD=BC, ∴ ∠A=∠B.

∵ ME=NF,∠MEA=∠NFB=90°, A B E G H F ∴ △MEA≌△NFB(AAS).

∴ AE=BF. ……………………4分 设AE=x,则EF=7-2x. ……………5分 ∵ ∠A=∠A,∠MEA=∠DGA=90°, ∴ △MEA∽△DGA.

AEME∴ . ?AGDG4∴ ME=x. …………………………………………………………6分

3∴ S矩形MEFN48?7?49?ME?EF?x(7?2x)???x???. ……………………8分

33?4?6277时,ME=<4,∴四边形MEFN面积的最大值为49.……………9分 436(3)能. ……………………………………………………………………10分

4由(2)可知,设AE=x,则EF=7-2x,ME=x.

3若四边形MEFN为正方形,则ME=EF.

4x21 即 ?7-2x.解,得 x?. ……………………………………………11分

3102114∴ EF=7?2x?7?2??<4.

105当x=

∴ 四边形MEFN能为正方形,其面积为S正方形MEFN?14?196. ????525??28解:(1)由题意可知,m?m?1???m?3??m?1?.

解,得 m=3. ………………………………3分

∴ A(3,4),B(6,2);

y ∴ k=4×3=12. ……………………………4分

A (2)存在两种情况,如图:

N1 ①当M点在x轴的正半轴上,N点在y轴的正半轴 B 上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).

M2 O x M1 ∵ 四边形AN1M1B为平行四边形,

∴ 线段N1M1可看作由线段AB向左平移3个单位, N2 再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的). 由(1)知A点坐标为(3,4),B点坐标为(6,2),

∴ N1点坐标为(0,4-2),即N1(0,2); ………………………………5分 M1点坐标为(6-3,0),即M1(3,0). ………………………………6分

2设直线M1N1的函数表达式为y?k1x?2,把x=3,y=0代入,解得k1??.

32∴ 直线M1N1的函数表达式为y??x?2. ……………………………………8分

3②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2).

∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2, ∴ N1M1∥M2N2,N1M1=M2N2.

∴ 线段M2N2与线段N1M1关于原点O成中心对称.

∴ M2点坐标为(-3,0),N2点坐标为(0,-2). ………………………9分

2设直线M2N2的函数表达式为y?k2x?2,把x=-3,y=0代入,解得k2??,

32∴ 直线M2N2的函数表达式为y??x?2.

322所以,直线MN的函数表达式为y??x?2或y??x?2. ………………11分

33(3)选做题:(9,2),(4,5). ………………………………………………2分 9解:(1)?直线y??3x?3与x轴交于点A,与y轴交于点C.

?A(?1,0),C(0,················································································· 1分 ?3) ·

?点A,C都在抛物线上,

??2330?a??ca????? ??33 ??3?c?c??3???抛物线的解析式为y?3223····················································· 3分 x?x?3 ·

33?43?1,? ······················································································· 4分 ?顶点F????3??(2)存在 ····································································································· 5分 ·································································································· 7分 P,?3) ·1(0··································································································· 9分 P,?3) 2(2(3)存在 ··································································································· 10分

理由: 解法一:

延长BC到点B?,使B?C?BC,连接B?F交直线AC于点M,则点M就是所求的点. ·············································································· 11分 过点B?作B?H?AB于点H.

y ?B点在抛物线y?32230) x?x?3上,?B(3,33H A C B O B x

3在Rt△BOC中,tan?OBC?,

3??OBC?30?,BC?23,

在Rt△BB?H中,B?H?M F 图9 1BB??23, 2············································ 12分 BH?3B?H?6,?OH?3,?B?(?3,?23) ·设直线B?F的解析式为y?kx?b

?3??23??3k?bk????6??43 解得?

?k?b???b??33?3??2?y?333x? ······················································································· 13分 623??y??3x?3x???3107?????M,? 解得 ??333?77103x???y??y??,62??7??3?? ??3103?M?······ 14分 ?在直线AC上存在点,使得△MBF的周长最小,此时M???7,?. ·7??解法二:

过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交

AC于点M,则点M即为所求. ································ 11分

过点F作FG?y轴于点G,则OB∥FG,BC∥FH.

y ??BOC??FGH?90?,?BCO??FHG ??HFG??CBO

0). 同方法一可求得B(3,在Rt△BOC中,tan?OBC?A O C M G F H 图10 B x

33?,??OBC?30,可求得GH?GC?, 33?GF为线段CH的垂直平分线,可证得△CFH为等边三角形,

?AC垂直平分FH.

?53?即点H为点F关于AC的对称点.?H?0,·········································· 12分

??3?? ·??设直线BH的解析式为y?kx?b,由题意得

5?k?3?0?3k?b???9 解得? 5?5b??3?b???33??3??y?553?3 ······················································································· 13分 933?55x???3x?3?3?1037??y??93 解得? ?M?, ?????77???y??103?y??3x?3??7??3103??. 1 ?在直线AC上存在点M,使得△MBF的周长最小,此时M???7,?7??10解:(1)点E在y轴上 ··············································································· 1分 理由如下:

连接AO,如图所示,在Rt△ABO中,?AB?1,BO?3,?AO?2

?sin?AOB?1?,??AOB?30 2?由题意可知:?AOE?60

??BOE??AOB??AOE?30??60??90?

································································ 3分 ?点B在x轴上,?点E在y轴上. ·(2)过点D作DM?x轴于点M

?OD?1,?DOM?30?

?在Rt△DOM中,DM??点D在第一象限,

13,OM? 22?31? ················································································ 5分 ?点D的坐标为???2,?2??由(1)知EO?AO?2,点E在y轴的正半轴上

2) ?点E的坐标为(0,················································································· 6分 ?点A的坐标为(?31), ·

?抛物线y?ax2?bx?c经过点E,

?c?2

?31?2,由题意,将A(?31)代入y?ax?bx?2中得 ,,D???22???8??3a?3b?2?1a???9?? 解得 ?3?31b?2??a??b??53?422?9?853x?2 ·················································· 9分 ?所求抛物线表达式为:y??x2?99(3)存在符合条件的点P,点Q. ································································· 10分

理由如下:?矩形ABOC的面积?AB?BO?3 ?以O,B,P,Q为顶点的平行四边形面积为23.

由题意可知OB为此平行四边形一边, 又?OB?3

?OB边上的高为2 ······················································································· 11分

2) 依题意设点P的坐标为(m,853x?2上 ?点P在抛物线y??x2?99853??m2?m?2?2

99解得,m1?0,m2??53 8?53?P2??P2),2?1(0,??8,? ???以O,B,P,Q为顶点的四边形是平行四边形,

?PQ∥OB,PQ?OB?3, 2)时, ?当点P1的坐标为(0,点Q的坐标分别为Q1(?3,2),Q2(3,2);

A B F C D O M x y E ?53?2?当点P2的坐标为???8,?时,

??点Q的坐标分别为Q3???133??33?,2Q,2?,. ··········································· 14分 ?4?????8???8?32x?3中,令y?0 4(以上答案仅供参考,如有其它做法,可参照给分) 11解:(1)在y??3??x2?3?0

4?x1?2,x2??2

?A(?2,0),B(2,0) ·············································· 1分 C E y N A M D O P B x 又?点B在y??3x?b上 43?0???b

23b?

233?BC的解析式为y??x? ········································································ 2分

4232?y??x?3?x1??1???4(2)由?,得?9

33y1??y??x???4??42?x2?2 ·················································· 4分 ??y2?09??0) ?C??1,?,B(2,4??9 ······················································································· 5分 4199?S△ABC??4?? ·················································································· 6分

242(3)过点N作NP?MB于点P ?EO?MB ?NP∥EO

?△BNP∽△BEO ······················································································· 7分 BNNP?? ································································································· 8分 BEEO?AB?4,CD?由直线y??33?3?x?可得:E?0,? 42?2?35,则BE? 22?在△BEO中,BO?2,EO??62tNP,?NP?t ················································································ 9分 ?5352216?S??t?(4?t)

25312S??t2?t(0?t?4) ············································································· 10分

55312S??(t?2)2? ····················································································· 11分

5512?此抛物线开口向下,?当t?2时,S最大?

512?当点M运动2秒时,△MNB的面积达到最大,最大为.

5

12解:

(1)m=-5,n=-3 (2)y=

4x+2 3(3)是定值.

因为点D为∠ACB的平分线,所以可设点D到边AC,BC的距离均为h, 设△ABC AB边上的高为H, 则利用面积法可得:

CM?hCN?hMN?2?2?H2 (CM+CN)h=MN﹒H

CM?CNH?MNh

又 H=CM?CNMN

化简可得 (CM+CN)﹒MN1CM?CN?h

故 11CM?CN?1h

13解:( 1)由已知得:??c?31?b?c?0解得

??c=3,b=2

∴抛物线的线的解析式为y??x2?2x?3 (2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E关于x=1对称,所以E(3,0) 设对称轴与x轴的交点为F

所以四边形ABDE的面积=S?ABO?S梯形BOFD?S?DFE

=

12AO?BO?12(BO?DF)?OF?12EF?DF =12?1?3?12(3?4)?1?12?2?4 =9

(3)相似

如图,BD=BG2?DG2?12?12?2 BE=BO2?OE2?32?32?32 DE=DF2?EF2?22?42?25 yDBGAEOFx222所以BD?BE?20, DE?20即: BD?BE?DE,所以?BDE是直角三角形

222所以?AOB??DBE?90?,且所以?AOB??DBE.

AOBO2, ??BDBE214解(Ⅰ)当a?b?1,c??1时,抛物线为y?3x2?2x?1, 方程3x2?2x?1?0的两个根为x1??1,x2?1. 3∴该抛物线与x轴公共点的坐标是??1········································ 2分 0?. ·,0?和?,(Ⅱ)当a?b?1时,抛物线为y?3x2?2x?c,且与x轴有公共点.

?1

?3??

1对于方程3x2?2x?c?0,判别式??4?12c≥0,有c≤. ·································· 3分

3①当c?111时,由方程3x2?2x??0,解得x1?x2??. 333此时抛物线为y?3x2?2x??1?1与x轴只有一个公共点??,··························· 4分 0?. ·33??②当c?1时, 3x1??1时,y1?3?2?c?1?c, x2?1时,y2?3?2?c?5?c.

1由已知?1?x?1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x??,

3应有??y1≤0,?1?c≤0, 即?

5?c?0.??y2?0.解得?5?c≤?1.

1综上,c?或?5?c≤?1. ····································································· 6分

3(Ⅲ)对于二次函数y?3ax2?2bx?c,

由已知x1?0时,y1?c?0;x2?1时,y2?3a?2b?c?0, 又a?b?c?0,∴3a?2b?c?(a?b?c)?2a?b?2a?b. 于是2a?b?0.而b??a?c,∴2a?a?c?0,即a?c?0.

∴a?c?0. ···························································································· 7分

∵关于x的一元二次方程3ax2?2bx?c?0的判别式

??4b2?12ac?4(a?c)2?12ac?4[(a?c)2?ac]?0,

∴抛物线y?3ax2?2bx?c与x轴有两个公共点,顶点在x轴下方. ························· 8分 又该抛物线的对称轴x??b, 3ay 由a?b?c?0,c?0,2a?b?0, 得?2a?b??a, ∴

O 1 x 1b2???. 33a3又由已知x1?0时,y1?0;x2?1时,y2?0,观察图象,

可知在0?x?1范围内,该抛物线与x轴有两个公共点. ····································· 10分

15 解:(1)由题意:BP=tcm,AQ=2tcm,则CQ=(4-2t)cm, ∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm ∴AP=(5-t)cm,

∵PQ∥BC,∴△APQ∽△ABC,

∴AP∶AB=AQ∶AC,即(5-t)∶5=2t∶4,解得:t=∴当t为

10 710秒时,PQ∥BC 7………………2分

(2)过点Q作QD⊥AB于点D,则易证△AQD∽△ABC ∴AQ∶QD=AB∶BC

∴2t∶DQ=5∶3,∴DQ=t

65116×AP×QD=(5-t)×t 22532∴y与t之间的函数关系式为:y=3t?t

5∴△APQ的面积:

………………5分

(3)由题意:

当面积被平分时有:3t?t=

352115?5××3×4,解得:t= 222 当周长被平分时:(5-t)+2t=t+(4-2t)+3,解得:t=1

∴不存在这样t的值

………………8分

(4)过点P作PE⊥BC于E

1QC时,△PQC为等腰三角形,此时△QCP′为菱形 24∵△PAE∽△ABC,∴PE∶PB=AC∶AB,∴PE∶t=4∶5,解得:PE=t

5410∵QC=4-2t,∴2×t=4-2t,解得:t=

5910∴当t=时,四边形PQP′C为菱形

9827此时,PE=,BE=,∴CE=

933 易证:△PAE∽△ABC,当PE=

………………10分

在Rt△CPE中,根据勾股定理可知:PC=PE2?CE2=()?()=892732505 9∴此菱形的边长为505cm 9………………12分

16 解:(1)∵D(-8,0),∴B点的横坐标为-8,代入y?1x中,得y=-2. 4∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2) 从而k=8×2=16

(2)∵N(0,-n),B是CD的中点,A,B,M,E四点均在双曲线上, ∴mn=k,B(-2m,-

n),C(-2m,-n),E(-m,-n) 21111S矩形DCNO=2mn=2k,S△DBO=mn=k,S△OEN=mn=k.

2222∴S矩形OBCE=S矩形DCNO―S△DBO―S△OEN=k.∴k=4. 由直线y?14x及双曲线y?,得A(4,1),B(-4,-1) 4x∴C(-4,-2),M(2,2)

设直线CM的解析式是y?ax?b,由C、M两点在这条直线上,得

??4a?b??22,解得a=b= ?3?2a?b?2∴直线CM的解析式是y=

22x+. 33yQDBC(3)如图,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1,M1

设A点的横坐标为a,则B点的横坐标为-a.于是p?MAM1A1xOEN MAA1M1a?m, ??MPM1Om同理q?MBm?a? MQma?mm?a

-=-2 mm

∴p-q=

本文来源:https://www.bwwdw.com/article/kwg.html

Top