高中数学知识点总结:双曲线

更新时间:2023-05-31 02:56:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高中数学知识点总结:双曲线

数学网整理高中数学知识点总结:包括有关函数、数列、平面解析几何、立体几何等知识点的整理。

数学网各科复习资料:

http://gaokao.xdf/list_1019_1.html

双曲线方程

1. 双曲线的第一定义:

⑴①双曲线标准方程:

一般方程:

⑵①i. 焦点在x轴上:

顶点:焦点:准线方程

渐近线方程:

ii. 焦点在轴上:顶点:. 焦点:. 准线方程:

渐近线方程:或,参数方程:

或.

②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c.

③离心率.

④准线距(两准线的距离);通径

⑤参数关系

⑥焦点半径公式:对于双曲线方程

(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)

“长加短减”原则:

构成满足

(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)

⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.

⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:

⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为

时,它的双曲线方程可设为.

例如:若双曲线一条渐近线为且过,求双曲线的方程?

解:令双曲线的方程为:,代入得.

⑹直线与双曲线的

位置关系:

区域①:无切线,2条与渐近线平行的直线,合计2条;

区域②:即定点在双曲线上,1条切线,2条与渐近线平行

的直线,合计3条;

区域③:2条切线,2条与渐近线平行的直线,合计4条; 区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;

区域⑤:即过原点,无切线,无与渐近线平行的直线.

小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.

(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积

同号.

⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.

简证:

常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.

本文来源:https://www.bwwdw.com/article/kv34.html

Top