Root cortical aerenchyma improves the drought tolerance of maize

更新时间:2023-07-17 23:03:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Plant,CellandEnvironment(2010)33,740–749doi:

10.1111/j.1365-3040.2009.02099.x

Rootcorticalaerenchymaimprovesthedroughttoleranceofmaize(ZeamaysL.)

JINMINGZHU,KATHLEENM.BROWN&JONATHANP.LYNCH

DepartmentofHorticulture,ThePennsylvaniaStateUniversity,UniversityPark,PA16802,USA

ABSTRACT

Rootcorticalaerenchyma(RCA)reducesrootrespirationinmaizebyconvertinglivingcorticaltissuetoairvolume.WehypothesizedthatRCAincreasesdroughttolerancebyreducingrootmetaboliccosts,permittinggreaterrootgrowthandwateracquisitionfromdryingsoil.Totestthishypothesis,recombinantinbredlineswithhighandlowRCAwereobservedunderwaterstressinthe eldandinsoilmesocosmsinagreenhouse.Inthe eld,lineswithhighRCAhad30%moreshootbiomassat oweringcomparedwithlineswithlowRCAunderwaterstress.Rootlengthdensityindeepsoilwassigni cantlygreaterinthehighRCAlinescomparedwiththelowRCAlines.Mid-dayleafrelativewatercontentinthehighRCAlineswas10%greaterthaninthelowRCAlinesunderwaterstress.ThehighRCAlinesaveragedeighttimestheyieldofthelowRCAlinesunderwaterstress.Inmesocosms,highRCAlineshadlessseminalrootrespiration,deeperrooting,andgreatershootbiomasscomparedwithlowRCAlinesunderwaterstress.TheseresultssupportthehypothesisthatRCAisbene cialfordroughttoleranceinmaizebyreducingthemetaboliccostofsoilexploration.

Key-words:aerenchyma;drought;rootgrowth;rootrespira-tion;soilwatercontent;yield;Zeamays.

Abbreviations:DAP,daysafterplanting;RCA,rootcorticalaerenchyma;RILs,recombinantinbredlines;RWC,relativewatercontent;TDR,timedomainre ectometry.

INTRODUCTION

Droughtstressisaprimarylimitationtocropproduction(Boyer1982;Tuberosaetal.2007),andimportantagroeco-sytemsmayfaceincreasingdroughtriskastheresultofglobalclimatechange(Easterlingetal.2000).Itisestimatedthatby2025,over60%ofthehumanpopulationwillinhabitcountrieswithwatershortage(Arnel1999).Theidenti ca-tionandunderstandingoftraitsimprovingcropdroughttoleranceareessentialforthedevelopmentofmoredrought-tolerantcropsandcroppingsystems.Plantshave

Correspondence:J.P.Lynch.Fax:8148636139;e-mail:JPL4@psu.edu740

evolvedavarietyofmechanismstoadapttodroughtcon-ditions(Blum1996;Cattivellietal.2008).Inrecentdecades,researchershaveidenti edanumberoftraitsthatmighthelpplantsuseacquiredwateref cientlyandtoleratedes-iccation,aswellasasmallernumberoftraitsthatmayassistsoilwateracquisition(Sinclair,Bennett&Muchow1990;Bruce,Edmeades&Barker2002;Richards2006;Nelsonetal.2007).Forinstance,rootgrowthoftencontinuesunderseveredroughtstressthatcompletelyinhibitsshootelonga-tioninmaize(Westgate&Boyer1985;Sharp&Davies1989;Zhuetal.2007),whichisconsideredtobeamecha-nismofplantadaptationtowater-limitedconditions(Sharp&Davies1989;Sharpetal.2004).

Aerenchymaisthegeneraltermfortissuewithlargeintercellularspaces(Esau1977).Theformationofcorticalaerenchymainmaizeroots(‘RCA’)variesamonggeno-typesandisassociatedwithtoleranceofhypoxiacausedby ooding(Jackson&Armstrong1999;Manoetal.2006).MaizerootaerenchymacanalsobeinducedbysuboptimalnutrientavailabilitysuchasN,PandSde ciencyinwell-aeratedsolution(Konings&Verschuren1980;Drew,He&Morgan1989;He,Morgan&Drew1992;Fanetal.2003;Bouranisetal.2006).Ethylenecantriggeraerenchymafor-mationinmaizerootsatlowphosphorusavailability(Heetal.1992;Fanetal.2003)andinhypoxia(Drew,Jackson&Giffard1979;Evans2004).Justin&Armstrong(1991)reportedthatalowconcentrationofNAApromotesrootaerenchymaformationinmaizeplants,possiblybecauseofauxin-inducedethylenerelease.TheinductionofRCAbynutrientstressinoxygenatedrootspromptedthehypoth-esisthatRCAenhancesadaptationtonutrientstressbyconvertinglivingcorticaltissuetoairspace,therebyreduc-ingtherespiratoryandnutrientcostofsoilexploration(Lynch&Brown1998).Evidenceinfavourofthishypoth-esiswasreportedformaizeandbeanunderlowPstress(Fanetal.2003).

Traitsthataffectthemetabolicef ciencyofrootgrowthandsoilexplorationshouldbeimportantcomponentsofdroughttoleranceinmaize(Palta&Gregory1997;Liedgens&Richner2001;Bruceetal.2002).Studieshaveshownthatthemetaboliccostsofsoilexplorationbyrootsystemsarequitesubstantial,andcanexceed50%ofdailyphotosynthesis(Lambers,Atkin&Millenaar2002).RCAcouldbeconsideredtocontributetodroughttoleranceif

©2010BlackwellPublishingLtd

Aerenchymaimprovesmaizedroughttolerance741

themetaboliccostassociatedwithitsproductionandmaintenancewasexceededbythemetabolicbene tsofenhancedwateracquisition(Lynch&Ho2005).RCAdis-proportionatelyreducesrootrespirationinmaizebycon-vertinglivingcorticaltissuetoairvolume;20%aerenchymacutsrootrespirationinhalfinphosphorus-stressedrootsinbothwell-aeratedsolutioncultureandsoilculturesystems(Fanetal.2003).Reductionofrootmetaboliccostspermitsmorecarbonresourcestobeallocatedtogreaterrootgrowthandwateracquisition.Reducedrootcostsmayalsobebene cialbyincreasingcarbohydrateavailabilityduringreproductivegrowth,sincereproductionandrootsarecom-petingsinksforcurrentphotosynthate.Toourknowledge,evaluationoftheimportanceofRCAhasneverbeencon-sideredinthecontextofdroughttolerance.

Theobjectivesofthisresearchweretotestthehypoth-esesthat:(1)RCAdecreasestherespirationofmaizeroots;and(2)maizegenotypeswithabundantRCAhavegreaterrootgrowthandrootdepthunderdroughtstress,resultingingreaterwateracquisition.Weusedmaizerecombinantinbredlines(RILs)withacommongeneticbackgroundbutcontrastingRCAunderwaterstress.

polyethylene lm,whichwereusedtofacilitaterootsam-pling.Thegrowthmediumconsistedofamixture(volumebased)of50%mediumsize(0.5–0.3mm)commercialgradesand(QuikreteCompaniesInc.,Harrisburg,PA,USA),25%horticulturalsize#3vermiculite,and25%peatmoss(Whit-temoreCompaniesInc.,Lawrence,MA,USA).Twenty-ninelitresofthemixturewereusedineachcylinder.Twodaysbeforeplanting,thecylinderswerewateredwith5LofanutrientsolutionadjustedtopH6.0andconsistingof(inmM):NO3(7000),NH4(1000),P(1000),K(3000),Ca(2000),SO4(500),Mg(500),Cl(25),B(12.5),Mn(1),Zn(1),Cu(0.25)Mo(0.25)andEDTA-Fe(25).Eachcylinderreceivedtwoplants,andafter2dtheywerethinnedtooneplant.Theplantsweregrowninatemperature-controlledgreenhouseinUniversityPark,PA,USA(40°49′N,77°49′W),withaphotoperiodof14/10hat28/24°C(light/darkness).Maximummiddayphotosynthetic uxdensitiesreached1200mmolphotonsm-2s-1.Therelativehumiditywas40%.Thewell-wateredtreatmentconsistedofdailyirrigationof50mLofdeionizedwaterfor5weeks.Inthewaterstresstreatment,therewasnoirrigationfor5weekstoprogres-sivelyreducesoilwatercontent.Whenplantswerehar-vested5weeksaftertransplanting,soilwaterpotentialwas0.0MPaat10,70,and110cmdepthsinwell-wateredmeso-cosms(WP4-Tmeter,Decagon,Pullman,WA,USA).Inwaterstresstreatments,soilwaterpotentialreached-0.91 0.04MPaat10cmdepth,-0.34 0.02MPaat70cmdepth,-0.10 0.02MPaat110cmdepth(n=24).

MATERIALSANDMETHODSGreenhousemesocosmstudy

Plantmaterials

SixRILsofmaize(ZeamaysL.),numbers33,34,248,284,331and364fromtheintermatedB73xMo17population(IBM)wereobtainedfromDrShawnKaepplerattheUni-versityofWisconsin,Madison,WI,USA,originallysuppliedbyCharlesStuberandLynnSenioratNorthCarolinaStateUniversity(Senioretal.1996;Kaeppleretal.2000).OurpreviousscreeningforRCAinthispopulationindicatedthatRILs33,248and331hadlowRCAandRILs34,284and364hadhighRCAunderwaterstress(Jaramillo2010).

Respirationofrootsegments

Measurementsofrootsegmentrespirationweremadeinseminalroots.Thesamplewastaken15cmfromthebaseandconsistedofa15cmlongsamplewiththerootlateralsremovedbyaTe onblade.Excisedsegmentswerepatteddryandplacedina40mLcustomchamberconnectedtotheLi-6250IRGA.Thecontainerwiththesamplewaskeptat22°Cinawaterbathfor2minwhiletherespirationwasmeasured.Followingrespirationmeasurement,sampleswerestoredin25%ethanolforanatomicalanalysisasdescribedasfollows.

Experimentaldesign

Thegreenhouseexperimentwasarandomizedcompleteblockdesignwitha2¥6factorialarrangementoftreat-ments.Thefactorsweretwowaterregimes(water-stressedandwell-wateredconditions)andsixgenotypes(RILs33,34,248,284,331and364),andfourreplicatesstaggered1dbetweenreplicateswithtimeofplantingastheblockeffect.

RCAmeasurement

Rootcrosssectionswereobtainedusingaprotocolsug-gestedbyRosemaryWhite(CSIRO,Australia,personalcommunication;http://roots.psu.edu/?q=en/node/151).Inshort,thisconsistedoffree-handsectioningwithTe on-coatedrazorbladesofrootsegmentsrestingondentalwaxinsideadropofwater,withtheaidofadissectingmicro-scope.ThesectionswereobservedwithaNikonDiaphotinvertedmicroscope,theimageswereacquiredusingImageMaster(PhotonTechnologyInternational,Birming-ham,NJ,USA)andanalysedinMATLAB7.62008a(TheMathWorksCompany,Natick,MA,USA),usingcodewedevelopedforthispurpose.Thecodeconsistsofthreephases.PhaseIoftheanalysisinvolvesseparationofthecross-sectionfromanydebrisandfromthebackgroundof

Growthconditions

Seedswereselectedforuniformsize,surface-sterilizedin0.05%NaOClfor15minandimbibedfor24hinaerated1mMCaSO4.Theseedswereplacedindarknessat28 1°Cinagerminationchamberfortwodays.Beforetransplanting,theendospermwasremovedfromtheseed-lings.Seedlingsofsimilarsizeweretransplantedtomeso-cosmsconsistingofPVCcylinders15.7cmindiameterand155cmhigh.Thecylinderswerelinedinsidewithplasticsleevesmadeof4mil(0.116mm)transparenthi-density

©2010BlackwellPublishingLtd,Plant,CellandEnvironment,33,740–749

742J.Zhuetal.

theimage.InPhaseII,aseriesofstepsisolatesthestelefromthecortex,allowingforseparateanalysesoftheseareas.InPhaseIII,datacollectionincludesareameasure-mentofdesiredfeatures.Correctidenti cationofthesefeaturesisbasedonnumberofpixelsandvaluethreshold-ingforedgedetection.Areasofthecross-sectionandaerenchymalacunaewereobtainedbypixelcounting.Mea-surementswereinmm2,andwerecalibratedfrompixelsusinganimageofa1mmmicrometertakenatthesamemagni cationastheanalysedimages.Thepercentageaer-enchymaasareaofthecortexwasestimatedforfourdif-ferentsectionsperreplicate.

UT,USA)spreadrandomlyacrossplotsandplacedat25and50cmdepthsinthesoilloggedbyaCR23Xdatalogger(CampbellScienti cInc.)inwaterstressandwell-wateredplotswithfourreplicatesthroughoutthegrowingseason.Leafrelativewatercontent(RWC)ofthesecondfullyexpandedleafwasdeterminedmid-dayat42DAPaccord-ingtothemethodofBarr&Weatherley(1962).

Rootdepth

Rootdevelopmentwithdepthwasmonitoredwithminirhizotrons(BTC100X,BartzTechnologyCo.,SantaBarbara,CA,USA).Oneclearacrylicminirhizotronrootobservationtubewithadiameterof5.1cmwasinstalledineachplotata30°anglefromperpendiculartoadepthofabout65cm.Rootlengthdensityandrootnumberperframewereimagedfrom10to50cmdepthinthesoilwithanintervalof10cmat42DAPandanalysedbyRoot ysoftwareversion2.0(https:///projects/root y).Destructiveharvestsat56DAPwereusedtomeasurerootlengthandnumberdensitywithdepthbysoilcoring(GiddingsMachineCo.,Windsor,CO,USA)from10to50cmdepthinthesoilwithanintervalof10cm.Thediameterofsoilcoreswas5.1cm.

Shootandrootgrowth

Rootswereseparatedfromthesoilbysubmergingcylindersinacontainer lledwithwaterandrinsingtherootscare-fullyindeionizedwater.Rootswereseparatedfromevery20cmsoildepth.Totalrootlengthinvarioussoildepthswereobtainedbyscanningwithimageanalysissoftware(WinRhizoPro,RégentInstruments,Québec,QuébecCityCanada).Maximumrootlengthofeachplantwasrecordedat35DAP.Theshootsandrootsweredriedat60°Cfor72hpriortodryweightdetermination.

Fieldstudy

Plantmaterials,experimentaldesignand eldconditions

MaizeseedsofthesixIBMRILshavingcontrastingRCAunderwaterstressinmesocosms,rsonExperimentalFarmofPenn-sylvaniaStateUniversityatRockSprings,PA(40°43′N,77°56′W)in2008.Theexperimentwasarandomizedcom-pleteblockdesignwithasplit-plotarrangementoftreat-ments.Therewerefourbiologicalreplicatesforeachgenotype,andeachreplicatehad30plantsgrowninthree2.1mrows.Theshelters(10¥30m)werecoveredwithcleargreenhouseplastic lm(0.184mm)(Grif nGreenhouse&NurserySupply,Morgantown,PA,USA)andwereauto-maticallytriggeredbyrainfalltocovertheplotsandexcludenaturalprecipitationthroughouttheentiregrowingseason.Thesheltersautomaticallyopenedquicklyafterrainfalls,exposingexperimentalplotstoambientradia-tionandtemperatureconditions.Adjacentnon-shelteredcontrolplotsweredrip-irrigatedasneededthroughoutthegrowingseasontoprovideunstressedcomparisons.ThesoilwasaMurrillsiltloam( ne-loamy,mixed,semiactive,mesicTypicHapludult).SoilpHwas6.2,andsoilnutrientlevelsofN,P,K,Ca,Mg,Zn,Cu,Swereoptimumformaizeproduc-tionasdeterminedbysoiltests.

RCA,shootdryweightat oweringstage,andindividualplantyield

Rootsandshootswereharvestedat owering.RCAwassampledfromtheoldestnodalrootinthematurationzoneat56DAPwithfoursubsamplesperreplicate.TissuesectioningandRCAquanti cationwereaspreviouslydescribed.Shootdryweightwascollectedwiththreesub-samplesperreplicate(n=4).Atmaturity,individualseednumberperplantandindividualseeddryweightwererecordedtocalculateindividualyieldwiththreesubsamplesperreplicate.

Statisticalanalysis

DatawereanalysedusingtheMinitabstatisticalpackage(MinitabInc.,UniversityPark,PA,USA).Rootdepth,RCA,shootandrootdryweight,speci crootrespiration,relativewatercontent,yield,individualseeddryweight,seednumberperplant,rootlengthandnumberperframewere rstsubjectedtoanovaformaineffectsand rst-orderinterac-tionsusingagenerallinearmodelthatincludedwaterregimeandgenotypefactors.Genotypeandwaterregimewereconsidered xedeffects,andreplicateswererandom.Fisher’sLeastSigni canceDifferencewasusedformultiplecomparisonsatP 0.05levelunderposthocanova.

RESULTS

Greenhousemesocosmstudy

WaterstressincreasedRCAofthesixlinesbyanaverageof382%at35DAPinmesocosms(Fig.1).Inwaterstress,lines34,284,and364(highRCAlines)averaged5.5%RCA,

Soilvolumetricwatercontentandleafrelativewatercontent

Soilvolumetricwatercontentwasmonitoredwithamulti-plexedTDR-100system(CampbellScienti cInc.,Logan,

©2010BlackwellPublishingLtd,Plant,CellandEnvironment,33,740–749

Aerenchymaimprovesmaizedroughttolerance743

8Percentage ofroot cortical aerenchyma

642

33

Specific seminal root respiration(µmol s–1cm–1)

0.200.150.10

0.050.006005004003002001000

33

248

331

34

284

364

High RCALow RCA

Recombinant inbred lines24833134284Recombinant inbred lines

364

Figure1.Productionofrootcorticalaerenchymaofsix

genotypesat35dafterplantinginbothwell-watered(WW)andwater-stressed(WS)conditionsinthemesocosms.Datashownaremeans SEofthemean(n=4).Meanswiththesamelettersarenotsigni cantlydifferent(P 0.05).

Specific seminal root respiration (µmol s–1 g–1)

whilelines33,248,and331(lowRCAlines)averaged0.29%RCA.Inwell-wateredconditions,therewasnosig-ni cantdifferenceforRCAamongallsixlines(P 0.05).Waterstressreducedshootbiomassofthesixlinesby39%at35DAPinmesocosms(Fig.2).Underwaterstress,thethreelineswithhighRCAhad86%moreshootbiomass

864Shoot dry weight (g)

2086420

Figure3.Speci cseminalrootrespirationperlength(upper

panel)orweight(lowerpanel)ofsixgenotypesat35dafterplanting(DAP)inbothwell-watered(WW)andwater-stressed(WS)conditionsinthemesocosms.Datashownaremeans SEofthemean(n=4).Meanswiththesamelettersarenotsigni cantlydifferent(P 0.05).

3324833134284364

High RCALow RCA

Recombinant inbred lines

Figure2.Shootdryweightofsixgenotypesat35dafter

plantinginbothwell-watered(WW)andwater-stressed(WS)conditionsinthemesocosms.Datashownaremeans SEofthemean(n=4).Meanswiththesamelettersarenotsigni cantlydifferent(P 0.05).

at35DAPcomparedwiththethreelineswithlowRCA(P 0.05)(Fig.2).

Waterstressreducedspeci crootrespirationperunitofrootlengthandweightby61%and94%,respectively(Fig.3).Inwaterstress,thehighRCAlineshad53–57%lessspeci crootrespirationperunitofrootlengthandweightthanthelowRCAlines(Fig.3).Thediameterofrootsegmentsusedforrespirationmeasurementswas0.43–0.45mmunderwaterstress,withnosigni cantdifferencesamonggenotypes(datanotshown).

Waterstresssigni cantlyincreasedrootlengthdensityindeepersoillayersat35DAPinmesocosms(P 0.05)(Fig.4).Underwaterstress,thehighRCAlineshadsigni -cantlygreaterrootlengthin100–140cmsoillayersthanthelowRCAlines(Fig.4).

Rootdryweightwassigni cantlyassociatedwithshootdryweight(Fig.5),butrootdryweightwasnotsigni cantlycorrelatedwithpercentageofrootcorticalaerenchymaforthesixmaizelinesat35DAPinbothwell-wateredandwaterstressconditionsinthemesocosms.Covariateanaly-sisshowedrootdryweightwasnon-signi cantforpercent-ageofRCA(F=0.65,P=0.57)(Fig.5).

©2010BlackwellPublishingLtd,Plant,CellandEnvironment,33,740–749

744J.Zhuetal.

0–20

20–4040–6060–8080–100100–120120–140

0–20

Soil layer (cm)

20–4040–6060–8080–100100–120120–140

0–2020–4040–6060–8080–100100–120120–140

15

30

45

Figure4.Rootlengthdistributionin

soillayersofsixgenotypes(lowRCAlinesontheleft,andhighRCAlinesontheright)at35dafterplanting(DAP)inbothwell-watered(WW)and

water-stressed(WS)conditionsinthemesocosms.Datashownaremeans SEofthemean(n=4).**showssigni cantlydifferentpairedmeansinWSandWW(P 0.05).

60

75

15

30

45

60

75

90

Root length (m)

Fieldstudy

Volumetricsoilmoisturewasmaintainedaround30%atboth25cmand50cmdepthsinwell-wateredconditionsthroughoutthegrowingseason(Fig.6).Forwater-stressedplants,volumetricsoilmoistureprogressivelydecreasedfrom30%to10%at25cmdepth,andto15%at50cmdepthinrainoutshelters(Fig.6).

WaterstressincreasedRCAinthehighRCAlinesat56DAPinthe eld(Fig.7).Lines34,77,284and364(highRCAlines)averaged12.6%RCA,whilelines33,248and331(lowRCAlines)averaged1.98%RCA.Inwell-wateredconditions,therewasnosigni cantdifferenceforRCAamongthelines(P<0.05).Water-stressedplantshaddoubledrootlengthdensityandrootnumberdensityat40–50cmdepthinthesoilcomparedwithwell-wateredplantsat56DAPinallsevenlines(Fig.8).Rootlengthdensityat40–50cmdepthwassigni cantlygreaterinthefourhighRCAlinescomparedwiththethreelowRCAlinesat56DAP(Fig.8).ThefourhighRCAlinesaveraged3.4timestherootnumberdensityat40–50cmdepthcom-paredwiththethreelowRCAlinesunderwaterstress(Fig.8).Resultsfromminirhizotronmeasurementsfurthercon rmedthathighRCAlineshaddeeperrootingintermsofrootlengthperframeandrootnumberperframecom-paredwiththelowRCAlinesat42DAP(Fig.9).Therewassigni cantcorrelationbetweenrootlengthdensitymea-suredbysoilcoringandbytheminirhizotrontechnique(R2=0.63,P<0.01)(Fig.10).Rootnumberdensitywasalsosigni cantlycorrelated(R2=0.31,P<0.01)betweensoilcoringandminirhizotrontechniques(Fig.10).

Mid-dayleafrelativewatercontent(RWC)at42DAPinthehighRCAlineswassigni cantlygreaterthanforthelowRCAlinesinwater-stressedconditions,whiletherewasnosigni cantdifferenceamonggenotypesforRWCinwell-wateredconditions(Fig.11).

Shootbiomassofthesevenlineswasreducedbyanaverageof46%underwaterstressat oweringcomparedwithwell-wateredplantsinthe eld(Fig.12).Underwaterstress,thefourlineswithhighRCAhad43%moreshootbiomassat oweringcomparedwiththethreelineswithlowRCA.ThehighRCAlinesaveragedeighttimestheyieldofthelowRCAlinesunderwaterstress(P<0.001)(Fig.12).Theincreasedyieldunderwaterstresswascausedbyincreasesofbothkernelnumbersperplantandindividualkernelweight(Fig.13).

DISCUSSION

OurresultssupportthehypothesisthatRCAincreasesdroughttolerancebyreducingrootmetaboliccosts,permit-tinggreaterrootgrowthandwateracquisition.Inmeso-cosmsundercontrolledwaterstressconditions,threehighRCAlineshadlowerspeci crootrespiration,greatermaximumrootdepthandgreatershootbiomassthanthreelowRCAlines.Inthe eldunderwaterstressconditionsinrainoutshelters,fourhighRCAlineshadgreaterrootdepth,greaterleafrelativewatercontentandsubstantiallygreatergrainyieldthanthreelowRCAlines.

FortheanalysisofthephysiologicalfunctionofRCA,weusedRILs,whichpermitthecomparisonofcloselyrelatedgenotypeswithidenticalgeneticbackgrounds,yetwithout

©2010BlackwellPublishingLtd,Plant,CellandEnvironment,33,740–749

Aerenchymaimprovesmaizedroughttolerance745

8Shoot dry weight (g)

6420

0.5

1.0

1.5

2.0

25

a

Percentage ofroot cortical aerenchyma

r2= 0.423, P < 0.05

201510

cd50

33WSWW

bc

b

cd

d

77

284

364

Root dry weight (g)

Percentage ofroot cortical aerenchyma

86

24833134

Recombinant inbred lines

Figure7.Productionofrootcorticalaerenchyma(RCA)of

r2= 0.0576 (ns) 4200.5

1.01.5Root dry weight (g)

2.0

sevengenotypesinbothwell-watered(WW)andwater-stressed(WS)conditionsinthe eld.Datashownaremeans SEofthemean(n=4).Meanswiththesamelettersarenotsigni cantlydifferent(P 0.05).

Figure5.Correlationofrootdryweightandshootdryweight

(upperpanel),androotdryweightandpercentageofroot

corticalaerenchyma(lowerpanel)forsixmaizelinesat35DAPinthemesocosms.Covariateanalysisshowedrootdryweightwasnon-signi cantforpercentageofRCA(F=0.65,P=0.57).Datashownaremeansfrom4replicates.

arti ciallyinducedmutationsortransformationevents(Zhu&Lynch2004;Zhu,Kaeppler,Lynch2005a,b;Zhuetal.2006).EachRILisadistinctgenotype,andcomparisonofsixtosevenRILsallowstheanalysisofaphenotypeindistinctgenomes,therebyreducingtheriskofconfounding

0.40

effectsfrompleiotropy,epistasis,orothergeneticinterac-tions(Zhu&Lynch2004).RILsareparticularlyvaluableintheanalysisofphenotypictraitsgovernedbymultiplegenes,asisthecaseforRCAinmaize(unpublisheddata).

Weusedmesocosmsinagreenhouseandmovablerainoutsheltersinthe eldtoobtainprogressivereductionofsoilwatercontent,astypicallyoccursinseasonaldrought.Plantbiomassandyieldweresigni cantlyreducedbytheimposedstresstreatment(Figs2,12&13).Wealsofoundsigni cantlydeeperrootingintermsofrootlengthdensityandrootnumberdensityinwater-stressedcom-paredwithwell-wateredplantsofallgenotypesinthetwodifferentculturesystems(Figs4,8&9),asevidencedbysoilcoresandminirhizotronmeasurements(Figs8and9).Ourresultsareconsistentwithotherstudiesofrootingdepthincropsincludingmaizeunderwaterstress(Blum&Ritchie1984;Hoadetal.2001;Sharpetal.2004;Hoetal.2005).Deeperrootinginresponsetowaterstressenhanceswater

Volumetric soil moistur

e (m3m–3)

0.350.300.250.200.15

0.100.050.00

188191194197200203206209212215218221224227230233236239242245248251255258261264267270273276279283286290293296

Figure6.Fieldsoilvolumetricwater

contentat25and50cmdepthsinbothwell-watered(WW)andwater-stressed(WS)conditionsthroughoutthegrowingseasonin2008.Datashownaremeans SEofthemean(n=4).

Ordinal date 2008

©2010BlackwellPublishingLtd,Plant,CellandEnvironment,33,740–749

746J.Zhuetal.

consistentwiththeresponsetolowphosphorusavailability(Fanetal.2003;Zhu&Lynch2004).HigherRCAlineshavemorecorticalairspaceinroottissues(Figs1&7),whichmayreducerootcarboncostforrootmaintenanceinhigherRCAlines.Thus,higherRCAlinesmayhavemorecarbonandenergyavailableforrootconstruction,permittingexplorationofdeepersoilsunderwaterstress(Figs3,4,6,9&10).Covariateanalysisshowedthattherewasnosigni -cantrelationshipbetweentotalrootdryweightandper-centageofRCA(F=0.65,P=0.57).Inotherwords,RCAwasnotdrivenbythesizeofrootsystemorthesizeoftheplant(Fig.5).WefoundhighRCAlineswithdeeperrootingunderwaterstresshadhigherleafrelativewatercontent(Fig.11).Takentogether,these ndingsdemonstrateRCAplaysanimportantroleforplantadaptationtodrought.Wefoundthatseminalrootrespirationperunitlength(y1)wassigni cantlyassociatedwithpercentageofRCA

50Root length 40–50 cm deep

4030

2010080Root number 40–50 cm deep

ef

WSWW

a

ab

abc

cd

dde

de

WSWW

c–1

)Total root length (cm frame

60

bc

15

40

20

33

248

331

34

77

10

5

284364

Low RCAHigh RCA

Root counts (No. frame-1)

Recombinant inbred lines

Figure8.Rootlengthdensity(upperpanel)androotnumberdensity(lowerpanel)at56dafterplanting(DAP)from40to50cmdeepsoilcoresegmentsforsevengenotypesinbothwell-watered(WW)andwater-stressed(WS)conditionsinthe eld.Datashownaremeans SEofthemean(n=4).Meanswiththesamelettersarenotsigni cantlydifferent(P 0.05).

25201510

acquisition,sincedeepersoildomainsgenerallyhavegreaterwatercontentcomparedwithshallowsoildomains,asevidencedinthisstudybytimedomainre ectometry(TDR)measurementsinthe eld(Fig.6)andsoilwaterpotentialmeasurementsat35DAPinmesocosms.

Thereisincreasingevidencethatrootmetaboliccostsareanimportantcomponentofplantgrowthandadaptationunderlowphosphorusavailability(Zhu&Lynch2004;Lynch&Ho2005;Zhu,Kaeppler&Lynch2005c).Rootcostcanbeestimatedastotalbelow-groundexpenditureofcarbon,whichisusedforrootconstruction,rootmainte-nance,andionuptake(Lambers,Atkin&Scheurwater1996;Lambersetal.2002;Lynch&Ho2005).Inthisstudy,speci crootrespirationperunitoflengthandweightweresigni cantlyreducedbywaterstress(Fig.3),whichis

5

33

248

331

34

77

284

364

Low RCAHigh RCA

Recombinant inbred lines

Figure9.Rootlengthperframe(upperpanel)androotcounts

perframe(lowerpanel)byminirhizotrontechniqueat42dafterplanting(DAP)at50cmdeepsoilforsevengenotypesinbothwell-watered(WW)andwater-stressed(WS)conditionsinthe eld.Datashownaremeans SEofthemean(n=4).Meanswiththesamelettersarenotsigni cantlydifferent(P 0.05).

©2010BlackwellPublishingLtd,Plant,CellandEnvironment,33,740–749

Aerenchymaimprovesmaizedroughttolerance747

Root length (cm) per frame at 50cm deep soil by minirhizotron

200

12

WSWW

a

b

f

cd

e

g

gh

bc

Shoot dry weight (g)

96300

10

20

30

40

50

Root length (cm) 40–50 cm deep from soil coring

r² = 0.632 (P < 0.01)

150

b

cd

100

i

50

j

Root counts per frame at 50 cmdeep soil by minirhizotron

5040

ab

cd

a

90Yield (g)/plant

r² = 0.309 (P < 0.05)

30201000

20

40

WSWW

60

e

30

ef

g0

33

248

331

34

77

284

364

6080

Root number 40–50 cm deep from soil coring

g

g

Figure10.Correlationsbetweenmeasurementsmadeat50cm

deepsoilbyminirhizotrontechniqueand40–50cmdeepbysoilcoringtechniqueforrootlength(upperpanel)androotnumber(lowerpanel)inthe eld.

Low RCAHigh RCA

Recombinant inbred lines

Figure12.Shootdryweightat oweringstage(upperpanel)

underwaterstress(x)(Figs1&3).Thelinearregressionformulawasy1=-0.014x+0.148(r2=0.94,P<0.001).Asimilarcorrelationwasfoundforseminalrootrespirationperunitweight(y2)andpercentageofRCAunderwaterstress(x)(Figs1&3).Thelinearregressionformulawas

andgrainyield(lowerpanel)ofsevengenotypesinwell-watered(WW)andwater-stressed(WS)conditionsinthe eld.Data

shownaremeans SEofthemean(n=4).Meanswiththesamelettersarenotsigni cantlydifferent(P 0.05).

100%

ab

Relative water content

WWWS

ab

abbcd

ab

90%

cd

e

d

80%

e

e

70%

332483313477284364

Low RCAHigh RCA

Recombinant inbred lines

Figure11.Leafrelativewatercontentat56dafterplanting

(DAP)forsevengenotypesinwell-watered(WW)and

water-stressed(WS)conditionsinthe eld.Datashownare

means SEofthemean(n=4).Meanswiththesamelettersarenotsigni cantlydifferent(P 0.05).

y2=-30.4x+293(r2=0.77,P<0.05).Theseindicatethatabout6%RCAinseminalrootshalvesrootrespirationperunitlengthorweightunderwaterstress.Fanetal.(2003)reportedthat20%RCAcutsrootrespirationperunitvolumeinhalfatlowphosphorusavailabilityinasolutionculturestudy.

Inmaize,anadditionalbene ttoreducingrootcostsisthatyieldlossestodroughtarerelatedtocarbohydrateavailabilityduringreproductivegrowth(Boyer&Westgate2004).ReducedrootcarbondemandinhighRCAgeno-typesmaybebene cialbyincreasingcarbohydrateavail-abilityduringreproductivegrowth,sincereproductionandrootsarecompetingsinksforcurrentphotosynthate(Figs3,12&13).

WeobservedthatwaterstressinducedgreaterexpressionofRCAindrought-tolerantlinesinbothseminalrootsof5-week-oldplantsinmesocosmsandnodalrootsof8-week-oldplantsinthe eld,comparedwiththesensitivelines(Figs1,2,7,12&13),althoughtheabsolutevaluesofincreasedRCAdifferedinvariousroottypes.Seminalrootsof5-week-oldplantsandnodalrootsof8-week-oldplantsaremajorcomponentsofrootsystemarchitecture.Thisresponsetowaterstressallowsmorecarbonallocationfor

©2010BlackwellPublishingLtd,Plant,CellandEnvironment,33,740–749

748J.Zhuetal.

700600Seed number/plant

500400

3002001000Individual seed dry weight (g)

0.2

thatRCAreducesthemetaboliccostsofsoilexploration,leadingtogreaterwateracquisitionindryingsoil.WesuggestthatRCAdeservesconsiderationasatraittoimprovethedroughttoleranceofmaizeinbreedingprograms.

ACKNOWLEDGMENTS

ThisresearchwassupportedbyUSDA-CSREESgrant207-35100-18365toJPL,SMKaepplerandKMB.WeacknowledgeDrShawnKaepplerattheUniversityofWis-consinforprovidingseedsandRobertSnyderfortechnicalassistance.WealsothankAmyBurtonforassistanceinquanti cationofaerenchyma.

REFERENCES

ArnelN.W.(1999)Climatechangeandglobalwaterresources.GlobalEnvironmentalChange9,31–49.

BarrH.D.&WeatherleyP.E.(1962)Are-examinationoftherela-tiveturgiditytechniqueforestimatingwaterde citinleaves.AustralianJournalofBiologicalScience15,413–428.

BlumA.(1996)Cropresponsestodroughtandtheinterpretationofadaptation.PlantGrowthRegulation20,135–148.

BlumA.&RitchieJ.T.(1984)Effectofsoilsurfacewatercontentonsorghumrootdistributioninthesoil.FieldCropsResearch8,169–176.

BouranisD.,ChorianopoulouS.N.,KolliasC.,ManiouP.,Protono-tariosV.E.,SiyiannisV.F.&HawkesfordM.J.(2006)Dynamicsofaerenchymadistributioninthecortexofsulfate-deprivedadventitiousrootsofmaize.AnnalsofBotany97,695–704.

BoyerJ.S.(1982)Plantproductivityandenvironment.Science218,443–448.

BoyerJ.S.&WestgateM.E.(2004)Grainyieldswithlimitedwater.JournalofExperimentalBotany55,2385–2394.

BruceW.,EdmeadesG.&BarkerT.(2002)Molecularandphysi-ologicalapproachestomaizeimprovementfordroughttoler-ance.JournalofExperimentalBotany53,13–25.

CattivelliL.,RizzaF.,BadeckF.W.,MazzucotelliE.,MastrangeloA.M.,FranciaE.,MareC.,TondelliA.&StancaA.M.(2008)Droughttoleranceimprovementincropplants:anintegratedviewfrombreedingtogenomics.FieldCropsResearch105,1–14.ClarksonD.T.,CarvajalM.,HenzlerT.,WaterhouseR.N.,SmythA.J.,CookeD.T.&SteudleE.(2000)Roothydraulicconduc-tance:diurnalaquaporinexpressionandtheeffectsofnutrientstress.JournalofExperimentalBotany51,61–70.

DrewM.C.,HeC.J.&MorganP.W.(1989)Decreasedethylenebiosynthesisandinductionofaerenchymabynitrogen-starvationorphosphorus-starvationinadventitiousrootsofZeamaysL.PlantPhysiology91,266–271.

DrewM.C.,JacksonM.&GiffardS.(1979)Ethylene-promotedadventitiousrootinganddevelopmentofcorticalairspaces(aer-enchyma)inrootsmaybeadaptiveresponsesto oodingZeamaysL.Planta147,83–88.

EasterlingD.R.,MeehlG.A.,ParmesanC.,ChangnonS.A.,KarlT.R.&MearnsL.O.(2000)Climateextremes:observations,modeling,andimpacts.Science289,2068–2074.

EsauK.(1977)AnatomyofSeedPlants.JohnWileyandSons,NewYork,NY,USA.

EvansD.E.(2004)Aerenchymaformation.NewPhytologist161,35–49.

FanM.S.,BaiR.Q.,ZhaoX.F.&ZhangJ.H.(2007)Aerenchymaformedunderphosphorusde ciencycontributestothereducedroothydraulicconductivityinmaizeroots.JournalofIntegrativePlantBiology49,598–604.

0.1

33

248

331

34

77

284

364

Low RCAHigh RCA

Recombinant inbred lines

Figure13.Seednumberperplantandindividualseeddryweightofsevengenotypesat oweringstageinwell-watered(WW)andwater-stressed(WS)conditionsinthe eld.Data

shownaremeans SEofthemean(n=4).Meanswiththesamelettersarenotsigni cantlydifferent(P 0.05).

rootexplorationofdeepersoil,greaterwateracquisition,andgreatershootbiomassandyieldunderstress(Figs2,3,4,6,8,11,12&13).Collectively,theseindicate(1)anincreaseofRCAindifferentroottypesatvariousdevelop-mentalstagesinwaterstresstobeapositiveadaptationforplants;and(2)themagnitudeofRCAresponsestowaterstressmayberelatedtoroottype,plantdevelopmentalstage,anddroughtseverity.

Roothydraulicconductivityisanimportantparameterforplantwateracquisition.Roothydraulicconductivitywasreducedundernitrogen,phosphorusandsulfurde ciencies(Karmokeretal.1991;Clarksonetal.2000).Fanetal.(2007)reportedthataerenchymaformedunderphosphorusde ciencycontributestothereducedroothydrauliccon-ductivityinmaizerootsinasolutionculturesystem.Poten-tialtradeoffsforRCAunderwaterstress,includingreducedhydraulicconductance,meritfurtherresearch.

WeobservedsubstantialgeneticvariationforRCAamongsevenmaizegenotypesunderwater-stressedcondi-tions.Ourresultsareentirelyconsistentwiththehypothesis

©2010BlackwellPublishingLtd,Plant,CellandEnvironment,33,740–749

Aerenchymaimprovesmaizedroughttolerance749

FanM.S.,ZhuJ.,RichardsC.,BrownK.&LynchJ.(2003)Physi-ologicalrolesforaerenchymainphosphorus-stressedroots.FunctionalPlantBiology30,493–506.

HeC.J.,MorganP.W.&DrewM.C.(1992)Enhancedsensitivitytoethyleneinnitrogen-starvedorphosphate-starvedrootsofZeamaysL.duringaerenchymaformation.PlantPhysiology98,137–142.

HoM.D.,RosasJ.C.,BrownK.M.&LynchJ.P.(2005)Rootarchi-tecturaltradeoffsforwaterandphosphorusacquisition.Func-tionalPlantBiology32,737–748.

HoadS.P.,RussellG.,LucasM.E.&BinghamI.J.(2001)Theman-agementofwheat,barleyandoatrootsystems.AdvancesinAgronomy74,193–246.

JacksonM.B.&ArmstrongW.(1999)Formationofaerenchymaandtheprocessofplantventilationinrelationtosoil oodingandsubmergence.PlantBiology1,274–287.

JaramilloR.E.(2010)Theedaphiccontrolofplantresponsetoclimatechange:extent,interactionsandmechanismsofplantadaptation.PhDthesis.PennsylvaniaStateUniversity,UniversityPark,USA.

JustinS.&ArmstrongW.(1991)Areassessmentofthein uenceofNAAonaerenchymaformationinmaizeroots.NewPhysiolo-gist117,607–618.

KaepplerS.M.,ParkeJ.L.,MuellerS.M.,SeniorL.,StuberC.&TracyW.F.(2000)VariationamongmaizeinbredlinesanddetectionofquantitativetraitlociforgrowthatlowPandresponsivenesstoarbuscularmycorrhizalfungi.CropScience40,358–364.

KarmokerJ.L.,ClarksonD.T.,SakeL.R.,RooneyJ.M.,PurvesJ.V.(1991)Sulphatedeprivationdepressesthetransportofnitrogentothexylemandhydraulicconductivityofbarley(HordeumvulgareL.)roots.Planta185,269–278.

KoningsH.&VerschurenG.(1980)FormationofaerenchymainrootsofZeamaysinaeratedsolutions,anditsrelationtonutri-entsupply.PhysiologiaPlantarum49,265–279.

LambersH.,AtkinO.&ScheurwaterI.(1996)Respiratorypat-ternsinrootsinrelationtotheirfunctioning.InPlantRoots,theHiddenHalf(edsY.Waisel,A.Eshel&K.Kafkaki),pp.323–362.MarcelDekkerInc,NewYork.

LambersH.,AtkinO.&MillenaarF.F.(2002)Respiratorypatternsinrootsinrelationtotheirfunctioning.InPlantRoots,theHiddenHalf(edsY.Waisel,A.Eshel&K.Kafkaki),pp.521–552.MarcelDekkerInc,NewYork,NY,USA.

LiedgensM.&RichnerW.(2001)Minirhizotronobservationsofthespatialdistributionofthemaizerootsystem.AgronomyJournal93,1097–1104.

LynchJ.P.&BrownK.E.(1998)Regulationofrootarchitecturebyphosphorusavailability.InPhosphorusinPlantBiology:Regu-latoryRolesinEcosystem,Organismic,Cellular,andMolecularProcessses(edsJ.Lynch,J.Deikman,U.Kafkaki&R.Munns),pp.148–156.AmericanSocietyofPlantPhysiologists,Rockville,MD,USA.

LynchJ.P.&HoM.(2005)Rhizoeconomics:carboncostsofphos-phorusacquisition.PlantandSoil269,45–56.

ManoY.,OmoriF.,TakamizoT.,KindigerB.,BirdR.M.&LoaisigaC.H.(2006)Variationforrootaerenchymaformationin oodedannon- oodedmaizeandteosinteseedlings.PlantandSoil281,269–279.

NelsonD.E.,RepettiP.P.,AdamsT.R.etal.(2007)Plantnuclear

factorY(NF-Y)Bsubunitsconferdroughttoleranceandleadtoimprovedcornyieldsonwater-limitedacres.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica104,16450–16455.

PaltaJ.A.&GregoryP.J.(1997)Droughtaffectsthe uxesofcarbontorootsandsoilin13Cpulse-labelledplantsofwheat.SoilBiologyandBiochemistry29,1395–1403.

RichardsR.(2006)Physiologicaltraitsusedinthebreedingofnewcultivarsforwater-scarceenvironments.AgriculturalWaterMan-agement80,197–211.

SeniorM.L.,ChinE.C.L.,LeeM.,SmithJ.S.C.&StuberC.W.(1996)SimplesequencerepeatmarkersdevelopedfrommaizesequencesfoundinGenbankdatabase:mapconstruction.CropScience36,1676–1683.

SharpR.E.&DaviesW.J.(1989)Regulationofgrowthanddevelopmentofplantsgrowingwitharestrictedsupplyofwater.InPlantsunderStress(edsH.G.Jones,T.L.Flowers&M.B.Jones),pp.71–93.CambridgeUniversityPress,Cambridge,UK.

SharpR.E.,PoroykoV.,HejlekL.G.,SpollenW.G.,SpringerG.K.,BohnertH.J.&NguyenH.T.(2004)Rootgrowthmaintenanceduringwaterde cits:physiologytofunctionalgenomics.JournalofExperimentalBotany55,2343–2351.

SinclairT.R.,BennettJ.M.&MuchowR.C.(1990)Relativesensi-tivityofgrainyieldandbiomassaccumulationtodroughtin eld-grownmaize.CropScience30,690–693.

TuberosaR.,SalviS.,GiulianiS.,SanguinetiM.C.,BellottiM.,ContiS.&LandiP.(2007)Genome-wideapproachestoinvesti-gateandimprovemaizeresponsetodrought.CropScience47(Suppl3),S120–S141.

WestgateM.E.&BoyerJ.S.(1985)Osmoticadjustmentandtheinhibitionofleaf,root,stem,andsilkgrowthatlowwaterpoten-tialsinmaize.Planta164,540–549.

ZhuJ.&LynchJ.P.(2004)Thecontributionoflateralrootingtophosphorusacquisitionef ciencyinmaize(Zeamays)seedlings.FunctionalPlantBiology31,949–958.

ZhuJ.,KaepplerS.M.&LynchJ.P.(2005a)MappingofQTLforlateralrootbranchingandlengthinmaize(Zeamays)underdifferentialphosphorussupply.TheoreticalandAppliedGenetics111,688–695.

ZhuJ.,KaepplerS.M.&LynchJ.P.(2005b)MappingofQTLcon-trollingroothairlengthinmaize(Zeamays)underphosphorusde ciency.PlantandSoil270,299–310.

ZhuJ.,KaepplerS.M.&LynchJ.P.(2005c)Topsoilforagingandphosphorusacquisitionef ciencyinmaize(Zeamays).Func-tionalPlantBiology32,749–762.

ZhuJ.,MickelsonS.M.,KaepplerS.M.&LynchJ.P.(2006)Detec-tionofquantitativetraitlociforseminalroottraitsinmaize(ZeamaysL.)seedlingsgrownunderdifferentialphosphoruslevels.TheoreticalandAppliedGenetics113,1–10.

ZhuJ.,AlvarezS.,MarshE.L.,LeNobleM.E.,ChoI.J.,SivaguruM.,ChenS.,NguyenH.T.,WuY.,SchachtmanD.P.&SharpR.E.(2007)Cellwallproteomeinthemaizeprimaryrootelongationzone.II.Region-speci cchangesinwatersolubleandlightlyionicallyboundproteinsunderwaterde cit.PlantPhysiology145,1533–1548.Received12September2009;receivedinrevisedform19November2009;acceptedforpublication22November2009

©2010BlackwellPublishingLtd,Plant,CellandEnvironment,33,740–749

本文来源:https://www.bwwdw.com/article/kt81.html

Top