Lensed CMB power spectra from all-sky correlation functions
更新时间:2023-08-15 09:37:01 阅读量: 人文社科 文档下载
- 冷色调有哪些颜色推荐度:
- 相关推荐
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
LensedCMBpowerspectrafromall-skycorrelationfunctions
AnthonyChallinor1, andAntonyLewis2,
1
AstrophysicsGroup,CavendishLaboratory,MadingleyRoad,CambridgeCB30HE,U.K.
2
CITA,60St.GeorgeSt,TorontoM5S3H8,ON,Canada.
arXiv:astro-ph/0502425v2 14 May 2005
WeaklensingoftheCMBchangestheunlensedtemperatureanisotropyandpolarizationpowerspectra.Accountingforthelensinge ectwillbecrucialtoobtainaccurateparameterconstraintsfromsensitiveCMBobservations.Methodsforcomputingthelensedpowerspectrausingalow-orderperturbativeexpansionarenotgoodenoughforpercent-levelaccuracy.Non-perturbative at-skymethodsaremoreaccurate,butcurvaturee ectschangethespectraatthe0.3–1%level.Wedescribeanew,accurateandfast,full-skycorrelation-functionmethodforcomputingthelensinge ectonCMBpowerspectratobetterthan0.1%atl 2500(withintheapproximationthatthelensingpotentialislinearandGaussian).Wealsodiscussthee ectofnon-linearevolutionofthegravitationalpotentialonthelensedpowerspectra.Ourfastnumericalcodeispubliclyavailable.
I.INTRODUCTION
TheCMBtemperatureandpolarizationanisotropiesarebeingmeasuredwitheverincreasingprecision.Thestatisticsoftheanisotropiesalreadyprovidevaluablelimitsoncosmologicalparameters,aswellasconstraintsonearly-universephysics.Asweentertheeraofprecisionmeasurement,withsignal-dominatedobservationsouttosmallangularscales,non-lineare ectswillbecomeincreasinglyimportant.Oneofthemostsigni cantoftheseoverscalesofmostinterestforparameterestimationisweakgravitationallensingbylargescalestructure.Fortunatelyitcanbemodelledaccuratelyasasecond-ordere ect:thelineargravitationalpotentialalongthelineofsightlensesthelinearperturbationsatthelastscatteringsurface(seee.g.Refs.[1,2,3]andreferencestherein).Modellingoffullynon-linearevolutionisnotrequiredforthenearfutureonscalesofseveralarcminutes(correspondingtomultipolesl 2000)forthetemperatureandelectricpolarizationpowerspectra.Non-linearcorrectionscaneasilybeappliedtothelensingpotentialifandwhenrequired,providedthatitsnon-Gaussianitycanbeignored[1].
Inprinciple,theweak-lensingcontributiontotheobservedskycanprobablybesubtractedgivensu cientlyaccurateandcleanhigh-resolutionobservations.Earlyworkinthisarea[4,5,6,7]suggestedalimitontheaccuracyofthisreconstructionduetothestatisticalnatureofthe(unknown)unlensedCMB elds.Morerecently,ithasbeenarguedthatpolarizationremovesthislimitinmodelswherelensingistheonlysourceofB-modepolarizationonsmallscales[8].IfsubtractioncouldbedoneexactlywecouldrecovertheunlensedGaussiansky,andusethisforallfurtheranalysis.Howevercurrentmethodsforsubtractingthelensingcontributionareapproximate,andnoteasytoapplytorealisticsurveygeometries.Theresultofimperfectlensingsubtractionisaskywithcomplicated,non-Gaussianstatisticsofthesignal,andsigni cantlymorecomplicatednoisepropertiesthantheoriginal(lensed)observations.Forobservationsinthenearfuture,amuchsimplermethodtoaccountforthelensinge ectistoworkwiththelensedskyitself,modellingthelensinge ectbytheexpectedchangeinthepowerspectraandtheircovariances.Thee ectsoflensingnon-GaussianitiesonthecovarianceofthetemperatureandE-modepolarizationpowerspectraarelikelytobesmall,butthiswillnotbethecasefortheB-modespectrumoncethermal-noiselevelspermitimagingofthelens-inducedBmodes[9].Inthispaperwediscusshowtocomputethelensedpowerspectraaccurately.Thesimulationoflensedskiesandthee ectonparameterestimationisdiscussedinRef.[10].
Onscaleswherethenon-Gaussianityofthelensingpotentialcanbeignored,thecalculationofthelensedpowerspectraisstraightforwardinprinciple.However,achievinggoodaccuracyonbothlargeandsmallscalesforalltheCMBobservablesissurprisinglydi cult.ThelensingactionontheCMB eldsatscalesapproachingther.m.s.ofthelensingde ectionangle(~3arcmin)cannotbeaccuratelydescribedwitha rst-orderTaylorexpansion,asinthefull-skyharmonicmethodofRef.[3].ThereisnotmuchpowerintheunlensedCMBonsuchscales,buta rst-orderTaylorexpansionstillgiveslensedpowerspectrathatareinaccurateatthepercentlevelforl 1000.ThelensedCMBonscaleswellbelowthedi usionscaleisgeneratedbytheactionofsmall-scaleweaklensesonthe(relatively)large-scaleunlensedCMB,andaTaylorexpansionshouldbecomemoreaccurateagain[11].(However,non-lineare ectsarealsoimportantonsuchscales.)ThebreakdownoftheTaylorexpansioncanbeeasily xedbyusingthe at-skycorrelation-functionmethodsofRefs.[1,2],whichcanhandlethedominante ectofthelensingdisplacement
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
2
inanon-perturbativemanner.However,anewproblemthenarisesonscaleswherethe at-skyapproximationisnotvalid.AsnotedinRef.[3],thisisnotcon nedtolargescalesduetothemode-couplingnatureoflensing:degree-scalelensescontributesigni cantlytothelensedpoweroverawiderangeofobservedscales.Inthispaperwedevelopanewmethodforcomputingthelensedpowerspectrathatisaccurateonallscaleswherenon-Gaussianityduetonon-lineare ectsisnotimportant.Wedothisbycalculatingthelensedcorrelationfunctionsonthesphericalsky.Thisallowsustoincludeboththenon-perturbativee ectsofdisplacingsmall-scaleCMB uctuations,andthee ectsofskycurvature.
Thispaperisarrangedasfollows.WestartinSectionIIwithabriefintroductiontoCMBlensing,theninSectionIIIwereviewpreviousworkon at-skycorrelation-functionmethodsandpresentournewfull-skymethodandresults.InSectionIVwecompareournewresultswiththe at-skycorrelation-functionresultsofRefs.[1,2]andtheperturbativeharmonicresultofRef.[3],andexplainwhythelatterisnotaccurateenoughforprecisioncosmology.Thee ectofnon-linearevolutionofthedensity eldonthelensedpowerspectraisconsideredinSectionV.Weendwithconclusions,andincludesometechnicalresultsintheappendices.
II.
CMBLENSING
Gradientsinthegravitationalpotentialtransversetothelineofsighttothelastscatteringsurfacecausedeviations
actuallycomefrompointsonthelastscatteringsurfaceininthephotonpropagation,sothatpointsinadirectionn
′ n)andtheunlensedtemperaturebyΘ( .DenotethelensedCMBtemperaturebyΘ( adisplaceddirectionnn),so
′ n)=Θ( thelensed eldisgivenbyΘ( n).Thechangeindirectionontheskycanbedescribedbyadisplacement
′=n + ψ.Hereψisthelensingpotentialwhichencapsulatesthevector eldα( n)≡ ψ,sothat(symbolically)n
′isobtainedfromdeviationscausedbypotentialsalongthelineofsight.Morerigorously,onaunitspherethepointn
bymovingadistance| ψ|alongageodesicinthedirectionof ψ( nn),where isthecovariantderivativeonthesphere[12].Weassumethatthelensingisweak,sothatthepotentialsmaybeevaluatedalongtheunperturbedpath(i.e.weusetheBornapproximation).Lensingde ectionsareafewarcminutes,butarecoherentoverdegreescales,sothisisagoodapproximation.
Intermsofthezero-shearaccelerationpotentialΨ,thelensingpotentialina atuniversewithrecombinationatconformaldistanceχ isgivenbytheline-of-sightintegral
χ
χ χ
;η0 χ)dχΨ(χnψ( n)= 2
(2π)3/2
andpowerspectrum
Ψ(k;η)Ψ(k;η) =
′
′
Ψ(k;η)eik·x,
(2)
2π2
χ
k
dχ
χ
00
dχ′PΨ(k;η0 χ,η0 χ′)jl(kχ)jl(kχ′)
χ χ
χ χ′
.(4)
Inlineartheorywecande neatransferfunctionTΨ(k,η)sothatΨ(k;η)=TΨ(k,η)R(k)whereR(k)isthe
primordialcomovingcurvatureperturbation(orothervariableforisocurvaturemodes).Wethenhave
2
dkψ
Cl=16π(5)
χ χ
wheretheprimordialpowerspectrumisPR(k).Thiscanbecomputedeasilynumericallyusingcamb1[13],andatypicalspectrumisshowninFig.1.
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
liljCψleil·(x x′
)(2π)
2.canonlydependonδijandthetrace-freetensorr irj ,wherebytakingthetraceofthecorrelator,anditscontractionx)α) =1
j(x′2π
dll3CψlJ2(lr) r ir j xri3
(10)
Bysymmetry,thecorrelatorr≡ x′.Evaluating
thecoe cientsofthesetwotermswithrj,we nd
αi(,(11)
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
4
whereJn(x)isaBesselfunctionofordern.Notethatthetrace-freetermisanalyticatr=0duetothesmall-rbehaviourofJ2(lr).FollowingRef.[1],letusdenote α(x)·α(x′) byCgl(r)sothat
Cgl(r)=
1
2π
sothat
αi(x)αj(x′) =
1
dll3ClψJ2(lr),
(13)
ClΘeil·r eil·[α(x) α(x)] ,2(2π)
′
(15)
wherewehaveassumedthattheCMBandlensingpotentialareindependent(i.e.weareneglectingthelargescale
correlationthatarisesfromtheintegrated-Sachs-Wolfee ectandhasonlyatinye ectonthelensedCMB).SinceweareassumingαisaGaussian eld,l·[α(x) α(x′)]isaGaussianvariateandtheexpectationvalueinEq.(15)reducesto
′1
eil·[α(x) α(x)] =exp
l2[σ2(r)+cos2(φl φr)Cgl,2(r)],(16)2wherewehaveusedliljr ir j =l2cos2(φl φr)/2andde nedσ2(r)≡Cgl(0) Cgl(r).Here,e.g.φlistheanglebetweenlandthex-axis.Thecos2(φl φr)terminEq.(16)isdi culttohandleanalytically.Instead,weexpandtheexponentialandintegratetermbyterm.ExpandingtosecondorderinCgl,2,we nd
1122 (r)=l4Cgll4Cgl(17)ξ,2(r)J0(lr)+,2(r)J4(lr).1616Expandingtothisorderissu cienttogetthelensedpowerspectrumtosecondorderinClψ;higherordertermsin
Cgl,2onlycontributeattheO(10 4)levelonthescalesofinterest.Notethattheexp( l2σ2/2)termiseasilyhandledwithoutresortingtoaperturbativeexpansioninClψ.Sinceσ2issigni cantlylessthanCgl,2(asshowninFig.2),theperturbativeexpansioninCgl,2convergesmuchfasterthanoneinσ2.Equation(17)extendstheresultofRef.[1]tosecondorderinCgl,2.
1.
Polarization
Thepolarizationcalculationisalsostraightforwardinthe at-skylimit[14].Weusethespin 2polarizationP≡Q+iU,whereQandUaretheStokes’parametersmeasuredwithrespecttothe xedbasiscomposedofthexand yaxes.ExpandingP(x)intermsoftheFouriertransformsofitselectric(E)andmagnetic(B)parts,wehave
2
dl
P(x)=
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
5
FIG.2:Thefunctionsσ2(β)≡Cgl(0) Cgl(β)[solid]andCgl,2(β)[dashed]asafunctionofangularseparationβ(inradians)foratypicalconcordancemodel.Theresultsarecalculatedusingthefull-skyde nitionsofEqs.(35),andusethelinearpower
ψ
spectrumforCl.
whereπ φristheangletorotatethex-axisontothevectorjoiningxandx′,sothate.g.e2iφrP(x)isthepolarizationonthebasisadaptedtoxandx′.Thenthelensedcorrelationfunctionstosecond-orderinCgl,2are
12 +(r)=ξl4Cgl,2(r)J0(lr)16
12+l4Cgl(22),2(r)J4(lr),16
12 (r)=l4Cglξ,2(r)J4(lr)16
11+[J2(lr)+J6(lr)]+[J0(lr)+J8(lr)],(23)
22
112 X(r)=l4Cgl[J0(lr)+J4(lr)]ξ,2(r)J2(lr)+162
1+[J2(lr)+J6(lr)].(24)
2HereClEandClBaretheE-modeandB-modepowerspectra,andClXistheΘ-Ecross-correlation.ThisisthestraightforwardextensionoftheresultinRef.[14]tohigherorder;2seethatpaperforfurtherdetailsofthecalculation.
+(r)hasthesamestructureasforthetemperaturesincetheunlensedcorrelationfunctionsinvolveThelensedξ
thesameJ0(lr),andtherearenocomplicationsduetothedi erentlocalbasesde nedbythedisplacementranditsimageunderlensingr α′+αsincethephasefactorsfromtherotationscancel.Thisisnotthecaseforthelensed (r)andξ X(r).ξ
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
2.
Limberapproximation
AthighlthepowerspectrumPΨ(k)variesslowlycomparedtothesphericalBesselfunctionsinEq.(4),whichpickoutthescalek~l/χ.Using
π
k2dkjl(kχ)jl(kχ′)=
χ
l3
χdχPΨ(l/χ;η0 χ)
χ χ
χ
2
J0(kχr),(27)
inagreementwithRef.[1]ifwenotethathisPφ(k)=PΨ(k)/(4πk3)outsideradiation-domination.Ref.[1]alsode nesCgl,2(r)as(inournotation)
Cgl,2(r)≈4π
dk
dχPΨ(k;η0 χ)
χ χ
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
4π
l(l+1)Clψdl11(β)≡Cgl(β).
(35)
Asinthe at-skylimit,itisconvenienttode neσ2(β)≡Cgl(0)
Cgl(β).ThecovarianceoftheGaussianvariates
1α¯( n1), 1α¯( n1), 1α¯( n2)and 1α¯( n2)aredeterminedbyEq.(35).Transformingvariablestoα1,ψ1,α2andψ2
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
we ndtheirprobabilitydistributionfunction
Pr(α1,α2,ψ1,ψ2)=
4α1α2
22
2(α1cosψ1+α2cosψ2)/(σ+2Cgl Cgl,2)
2σ+2Cgl Cgl,2
e 1
(α1cosψ1 α2cosψ2)2/(σ2
+Cgl,2)
×2σ2+Cgl,2
1
×
e
σ2
α
4π
ClΘ
X2
8
000dl00+
4
4π
ClΘ=
2l+1
l
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
thoroughintroduction).Thepolarizationcorrelationfunctionscanbede nedintermsofthespin±2polarizationde nedinthephysicalbasisofthegeodesicconnectingthetwopositions.Asforthetemperature,weevaluatethe
1alongthez-axisandn 2inthex-zplaneatangleβtothez-axis.polarizationcorrelationfunctionsbytakingn
1andn 2sothatthelensedWiththisgeometry,thepolar-coordinatebasisisalreadythegeodesicbasisconnectingn
correlationfunctionsare
+(β)≡ P ( ( ξn1)Pn2) , (β)≡ P ( ( ξn1)Pn2) , X(β)≡ Θ( n1)P ( ξn2) .
(43)(44)(45)
Underalensingde ectionthepolarizationorientationispreservedrelativetothedirectionofthede ection(weare
neglectingthesmalle ectof eldrotation[8]),i.e.thepolarizationundergoesparalleltransport.Thegeometryofthede ectionsisshowninFig.3.
1andn 2)asWecaneasilyevaluatethelensedpolarizationontheconnectinggeodesicbasis(betweenn
( Pn1)=P(α1,ψ1)e 2iψ1.
(46)
Therotationangleψ1isthatneededtorotatethespin 2polarizationfrompolarcoordinates(coincidingwiththe
1– ′ 1andn 2.thenn′1basisatn1)tothegeodesicbasisconnectingn
2alittlemoreworkisrequired.Letχ′denotetheanglebetweenthegeodesicsForthelensedpolarizationatn
2ton ′ 1(alongthez-axis)ton ′ 2onthegeodesicbasisconnectingn2,andn2(seeFig.3).Thelensedpolarizationatn 1andn 2isthenadaptedton
2iχ′ 2iψ2 ( .Pn2)=P( n′)ee2
(47)
′Wecanwriten2asthedirectionobtainedbyrotatingadirectionwithpolarangles(α2,ψ2)byanangleβaboutthe
′y-axis,i.e.n2=D(0,β,0)(α2,ψ2).WritingPas(Q iU),andusingEq.(42),wehave
P( n)=(Elm+iBlm) +2Ylm( n).(48)
lm
Usingtherotationpropertiesofthespin-sharmonics(seeAppendixA),wethen nd
2iχ′ 2iψ2 2iκl eP( n2)=ee(Elm+iBlm) Dmm′(0,β,0)2Ylm′(α2,ψ2).
lmm′
(49)
′Theangleκistherotationaboutn2thatisrequiredtobringthepolarbasisthereontothatobtainedbyrotating (0,β,0).Sincethelatterisalignedwiththegeodesicbasisadaptedton 2andn ′thepolarbasisat(α2,ψ2)withD2,
′ 2simpli estowehaveκ=χandthelensedpolarizationatn
( Pn2)=e 2iψ2(Elm+iBlm) dl(50)mm′(β)2Ylm′(α2,ψ2).
lmm′
Wecannowquicklyproceedtothefollowingexpressionsforthelensedpolarizationcorrelationfunctions:
2iψ1 2iψ2 ξ+(β)=(ClE+ClB)dl ,2Ylm(α1,ψ1)2Ylm′(α2,ψ2)emm′(β) e
lmm′
(51)(52)(53)
(β)=ξ
lmm′
X(β)=ξ
lmm′
2iψ1 2iψ2
(ClE ClB)dl , 2Ylm(α1,ψ1)2Ylm′(α2,ψ2)emm′(β) e 2iψ2ClXdl ,mm′(β) Ylm(α1,ψ1)2Ylm′(α2,ψ2)e
wheretheexpectationvaluesareoverlensingrealizations.Here,ClEandClBarethepowerspectra |Elm|2 and
|Blm|2 respectively.Thecross-correlationpowerspectrumisClX≡ ΘlmElm .
WeevaluatetheexpectationvaluesinEqs.(51–53)followingtheearliercalculationforthetemperature,i.e.ex-pandingPr(α1,α2,ψ1,ψ2)tosecondorderinCgl,2beforeintegrating.Asforthetemperature,Cgltermscontribute
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
negligibly(seeAppendixCforthefullresult).We ndthefollowingresultsforthelensedpolarizationcorrelationfunctionstosecondorderinCgl,2:
+≈ξ
2l+1
lmm′
(ClE ClB)
X0222dl2 2+Cgl,2[X1212dl1 1+X1322dl
4π
3 3]
+
1
C2XlX
022X000dl02+Cgl,2
000
′
4π
Xl(l+(X112dl11+X132dl
1)
3 1)
+1
2
2
4
4π
(ClE+ClB)=
2l+1
l
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
11
ClΘ/ClΘ
0.1 0.05 0 0.05 2 10 40 100 200 400 700 1000 1500 2000
ClX/(ClE ClΘ )1/2
0.1 0.05 0 0.05 0.1 2 10 40 100 200 400 700 1000 1500 2000
0.2
ClE/ClE
0.1 0 0.1 2 10 40 100 200 400 700 1000 1500 2000
l(l+ 1)ClB/2πµK 2
0.2 0.15 0.1 0.05 0 2 10
40 100 200 400 700 1000 1500 2000
l
FIG. 4: Di erence between the lensed and unlensed temperature, cross-correlation and E-polarization power spectra (top three plots), and the lensed B power spectrum (bottom) for a ducial concordance model. The unlensed model has no tensor component (so no B-mode power), and the lensed B power spectrum shown is not highly accurate due to the neglect of non-linear evolution in the lensing potential. The magnitude of the lensing e ect depends on the uctuation amplitude in the model; here the model has curvature perturbation power As= 2.5× 10 9 on 0.05 Mpc 1 scales and spectral index ns= 0.99.
3.
Numerical implementation
The correlation function method is inherently very e cient, only requiring the evaluation of one dimensional sums and integrals. For an accurate calculation of ClB it is essential to compute the full range of the correlation function because it is sensitive to large and small scales. However, when ClB is not needed the lensing is only a small-scale e ect and we only need to integrate some of the angular range to computeξ(β) ξ(β) (and hence the lensing contribution l Cl ). We nd that usingβmax=π/16 is su cient for 0.1% accuracy to l= 2000, providing a signi cant factor of C 16 gain in speed. Truncating the correlation function does induce ringing on very small scales, so if accuracy is needed on much smaller scales the angular range can be increased. For all but very small scales, and the ClB spectrum, we can accurately evaluate the sums over l to compute the lensed correlation functions by sampling only every 10th l, yielding an additional signi cant time saving. Our code is publicly available as part of camb,3 with execution time being dominated by that required to compute the transfer functions for the CMB and the lensing potential. Once these have been computed, the time required to
3
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
bd336x280();rc="-15-png_6_0_0_0_0_0_0_918_1188-164-0-246-164.jpg" alt="Lensed CMB power spectra from all-sky correlation functions" />12
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
resultisequivalenttoexpandingthecorrelationfunctionresultself-consistentlyto rstorderinClψ.AsdiscussedinSec.IIIB,thisisinaccuratebecausel2σ2intheisotropictermsisnotverysmallforlargel,somanytermsneedtoberetainedtogetaccurateresults.Itispossibletoextendtheharmonicresulttohigherorder[20],howeverthemulti-dimensionalintegralsrequiredscaleexponentiallybadlywithincreasingorder.Evenaself-consistentexpansiontosecondorderinClψisnotgoodenoughatl>2000,soatleastthirdorderwouldberequired.Furthermorewe
Bthemethodisalsosomewhatinaccurateonlargescales:becausetheB-modesignalcomesfromaseethatforCl
widerangeofl,andtheE-modepowerpeaksonsmallscales,thenon-perturbativee ectscanbesigni cantonallscales.Infact,thelarge-scalelensedE-modepoweralsoreceivesmostofitscontributionfromsmall-scalemodessincetheunlensedpolarizationpowerspectrumrisessteeplywithlonlargescales.However,lensingisstillonlyasmallfractionale ectforE-polarizationonlargescalesandsotheperturbativeexpansionisrelativelymoreaccurateforEthanB.
Thecorrelationfunctionmethodscaneasilyhandletheisotropictermnon-perturbatively.Theaccurate at-skyresultismuchmoreaccuratethanthelowest-orderharmonicfull-skyresult,withonly~0.3%curvaturecorrections
B.Althoughthisistothetemperature.5Thepolarizationerrorsareratherlarger,withpercent-leveldi erenceonCl
smallerthanthee ectofnon-linearitiesinthelensingpotential(seeSectionV),thelattercanbeaccuratelyaccountedforwithbettermodelling(e.g.Ref.[21])orsimulations.Whiletheaccurate at-skyresultisprobablysu cienttoPlancksensitivities,curvaturee ectsmustbetakenaccountfortrulyaccurateresultsapproachingthecosmic-variancelimit.Althoughthecurvatureisnegligibleonthescaleofthede ectionangles,putingourfull-skyaccurateresultisnotmuchharderorslowerthancomputingthe atresult,sowerecommendournewcalculationforfuturework.
NotethattheabsoluteprecisionofthelensedresultsislimitedbytheaccuracyofthecomputedlensingpotentialandtheunlensedCMBpowerspectra.Inparticular,uncertaintiesintheionizationhistorymaygenerateerrorssigni cantlyabovecosmicvarianceontheunlensedCl.WeusetherecfastcodeofRef.[22]thatmaywellbeinaccurateatabovethepercentlevel6[23,24].Howeveriftheionizationhistorycanbecomputedreliablytohighaccuracyournewlensingmethodcanthenbeusedtocomputethelensedpowerspectraaccurately.
V.
NON-LINEAREVOLUTION
ThemostimportantassumptionwehavemadesofaristhatthelensingpotentialislinearandGaussian.Onsmallscalesthiswillnotbequitecorrect.Althoughourmethoddoesnotallowustoaccountforthenon-Gaussianity,wecantakeintoaccountthee ectofnon-linearevolutiononthepowerspectrumofthelensingpotential[andhenceσ2(β)andCgl,2(β)[1]].Onscaleswherethenon-Gaussianityofthede ection eldissmallthisshouldbeagoodapproximation,assumingwehaveanaccuratewaytocomputethenon-linearpowerspectrumofthedensity eld.WeusethehalofitcodeofRef.[21]tocomputeanapproximatenon-linear,equal-timepowerspectrumgivenanaccuratenumericallinearpowerspectrumatagivenredshift.halofitisexpectedtobeaccurateatthefewpercentlevelforstandardΛCDMmodelswithpowerlawprimordialpowerspectra(butcannotbereliedonforothermodels,forexamplewithanevolvingdarkenergycomponent).WesimplyscalethepotentialtransferfunctionsTΨ(k,η)ofEq.(5)sothatthepowerspectrumofthepotentialΨhasthecorrectnon-linearformatthatredshift:
TΨ(k,η)→TΨ(k,η)
PΨ(k,η)
.
(67)
Sincenon-lineare ectsonClψareonlyimportantwheretheLimberapproximationholds,Eq.(67)shouldbeveryaccurate.
Thee ectofthenon-linearevolutiononthepowerspectrumofthelensingpotentialisshowninFig.1.Althoughthereisverylittlee ectonscaleswherethepowerpeaks(l~60),non-linearevolutionsigni cantlyincreasesthepoweronsmallscales.ThecorrespondingchangestothelensedCMBpowerspectraareshowninFig.6.Thetemperature
Θischangedby 0.2%forl~2000,buttherearepercentlevelchangesonsmallerscales.ThuspowerspectrumCl
inclusionofthenon-linearevolutionwillbeimportanttoobtainresultsaccurateatcosmic-variancelevels,butisnotlikelytobeimportantatl<2000forthenearfuture.Thee ectontheB-modepowerspectrumismoredramatic,
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
140.02
ClΘ/ClΘ
0.01 0 0.01
2 10
40
100
200
400
700
1000
1500
2000
3000
ClX/(ClE ClΘ )1/2
0.01
0
0.01
2 10
40
100
200
400
700
1000
1500
2000
3000
0.01
ClE/ClE
0
0.01
2 10
40
100
200
400
700
1000
1500
2000
3000
0.4
ClB/ClB
0.3 0.2 0.1 0 2 10 40 100 200 400 700 1000 1500 2000 3000
lFIG. 6: The fractional change in the lensed Cl due to non-linear corrections using halofit[21] for the same model as Fig. 4. The lensed Cl are computed using our new accurate method.
giving a> 6% increase in power on all scales. On scales beyond the peak in the B-mode power (l 1000) the extra non-linear power becomes more important, producing an order unity change in the B-mode spectrum on small scales. On these scales the assumption of Gaussianity is probably not very good, and the accuracy will also be limited by the precision of the non-linear power spectrum. For more accurate results, more general models, and on very small scales where the non-Gaussianity of the lensing potential becomes important, numerical simulations may be required (e.g. see Refs.[25, 26]). There are, of course, other non-linear e ects on the CMB with the same frequency spectrum as the primordial (and lensed) temperature anisotropies and polarization. The kinematic Sunyaev-Zel’dovich (SZ) e ect is the main such e ect for the temperature anisotropies, and current uncertainties in the reionization history and morphology make the spectrum ClΘ uncertain at the few percent level at l= 2000[27]. This is a little larger than the error in the rst-order harmonic lensing result, but this doesn’t mean that one should be content with the error in the latter. Precision cosmology from the damping tail will require accurate modelling of both lensing and the kinematic SZ e ect. Errors at the percent level in the lensing power on these scales would seriously limit our ability to constrain reionization scenarios with future arcminute-resolution observations. For the polarization spectra, the kinematic SZ e ect is much less signi cant[28].VI. CONCLUSIONS
We have presented a new, fast and accurate method for computing the lensed CMB power spectra using spherical correlation functions. Previous perturbative methods were found to be insu ciently inaccurate for precision cosmology,
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
andnon-perturbativeresultsinthe at-skyapproximationareinerroratabovethecosmic-variancelevel.Themethoddevelopedhereshouldenableaccuratecalculationofthelensinge ecttowithincosmic-variancelimitstol 2500undertheassumptionsoftheBornapproximationandGaussianityoftheprimordial elds.Non-linearcorrectionstothelensingpotentialhaveonlyasmalle ectonthelensedtemperaturepowerspectrum,butareimportantonallscalesforanaccuratecalculationofthelensedB-modepowerspectrum.
VII.
ACKNOWLEDGMENTS
WethankGayoungChonforherworktowardsimplementingthefull-skylowest-orderlensingresultofRef.[3]incamb,andALthanksMatiasZaldarriaga,MikeNolta,OliverZahn,PatriciaCastro,PatMcDonaldandBenWandeltfordiscussionandcommunication.ACacknowledgesaRoyalSocietyUniversityResearchFellowship.
APPENDIXA:ROTATINGSPIN-WEIGHTHARMONICS
n istherotationoperatorcorrespondingtoEuleranglesα,βandγ.This ,whereDConsiderevaluatingsYlmatD
1andevaluatingatn .Forspin-0harmonicsweisthesameasrigidlyrotatingthefunctionsYlm(asascalar)byD
knowthat
l n )=Dmn).Ylm(D′m( γ, β, α)Ylm′(
(A1)
Forspin-sharmonics,wenotethat
n)sYlm(
,sothatwhere(θ,φ)referton
l
Dmn)=( 1)m′m( γ, β, α)sYlm′(
′
=( 1)m
4π
l
D ms(φ,θ,0),
(A2)
=( 1)m=( 1)m
4π4π
llDm′m( γ, β, α)D m′s(φ,θ,0)llD mm′(α,β,γ)Dm′s(φ,θ,0)l′′D ms(φ,θ,κ)
4π
n )e isκ.=sYlm(D
(A3)
(α,β,γ)D (φ,θ,0)=D (φ′,θ′,κ),sothat(θ′,φ′)refertotheimageofn (α,β,γ),andκ underDHere,wehaveusedD
n tomapthepolarbasisvectorsthereontotheimageofthepolarbasisistheadditionalrotationrequiredaboutD
′ underD(α,β,γ).Denotingthepolarbasis(unit)vectorsatn byeθandeφ,andatn ′bye′atnθandeφ,wehave
′±iκ e′D(eθ±ieφ).θ±ieφ=e
(A4)
Thisensuresthatthe2l+1rank-stensor elds±Ylm( n)≡±sYlm( n)(eθ ieφ) ··· (eθ ieφ)transformirreducibly
l ±Ylm=underrotationsasDm′Dm′m±Ylm′.
APPENDIXB:EVALUATIONOFXimn
Theintegrals
Ximn≡
∞
2α
σ2
thatarerequiredforthenon-perturbativecalculationofthelensedpowerspectraonthesphericalskycaneasilybe
evaluatedasseriesinσ2.Fromthede nitionoftherotationmatrices,wehave
iαLy
|ln ,dlmn(α)= lm|e
i
e α
2
/σ2l
dmn(α)dα
(B1)
(B2)
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
zandL 2angularmomentumoperators,whereweadopttheCondon–Shortleyphasefortheeigenstates|lm oftheL
andwehaveset =1.Expandingtheexponentialasaseriesinα,wehave
Ximn=
∞ 1j=0
2
2
2
i
e (l+1/2)
2
σ2/4
fori=m n.(B6)
Inpractice,weobtainanexcellentapproximationtoXimn,validforalll,byadjustingthel-independentterminthe
exponentoftheasymptoticresult,andtheprefactor,sothatitsseriesexpansionagreeswithadirectevaluationofEq.(B3)toO(σ2).
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
APPENDIXC:FULLSECONDORDERRESULT
ThefullresultforthelensedcorrelationfunctionsaccuratetosecondorderinCglandCgl,2is8 ≈ξ
2l+1
l
+≈ξ
2l+1
l
22l′′′′l
X000(X000+2CglX000)Cgl,2dl+Cdgl11+Cgl,2X220d2 21 1
l(l+1)
22′l+CglX220dl22 4CglCgl,2X000X220d20
(C1)
2
22
CglX220dl00
2l′l′l
+Cgl,2X220X242d40 2CglCgl,2(X220X022d20+X242X022d42)+
1
4π
EB2′2′′′22′2
(Cl Cl)X022+2CglX022X022+Cgl(X022X022+2X022)+Cgl,2X022dl2 2
′′l
+Cgl,2X132(X132+2CglX132)dl3 3+Cgl,2X121(X121+2CglX121)d1 1
1′′
+2Cgl(X121X132+Cgl[X121X132+X132X121])dl+3 1
22l
Cgl,2X242d4 4
2
X≈ξ
2l+1
l
2
X220)
(C3)
2
+
2l2l
X242X220(Cgl,2d4 2+Cgld42).
(C4)
1
2
Asdiscussedinthemaintext,theCgltermsmaybeneglectedattheO(10 4)levelforrealisticlensingde ection
amplitudes.
[1][2][3][4]U.Seljak,Astrophys.J.463,1(1996),astro-ph/9505109.
M.ZaldarriagaandU.Seljak,Phys.Rev.D58,023003(1998),astro-ph/9803150.W.Hu,Phys.Rev.D62,043007(2000),astro-ph/0001303.
U.SeljakandM.Zaldarriaga,Phys.Rev.Lett.82,2636(1999),astro-ph/9810092.
Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed
[5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29]
J.Guzik,U.Seljak,andM.Zaldarriaga,Phys.Rev.D62,043517(2000),astro-ph/9912505.W.Hu,Astrophys.J.557,L79(2001),astro-ph/0105424.
W.HuandT.Okamoto,Astrophys.J.574,566(2002),astro-ph/0111606.
C.M.HirataandU.Seljak,Phys.Rev.D68,083002(2003),astro-ph/0306354.
K.M.Smith,W.Hu,andM.Kaplinghat,Phys.Rev.D70,043002(2004),astro-ph/0402442.A.Lewis(2005),astro-ph/0502469.
U.SeljakandM.Zaldarriaga,Astrophys.J.538,57(2000),astro-ph/9907254.A.ChallinorandG.Chon,Phys.Rev.D66,127301(2002),astro-ph/0301064.
A.Lewis,A.Challinor,senby,Astrophys.J.538,473(2000),astro-ph/9911177.M.ZaldarriagaandU.Seljak,Phys.Rev.D58,023003(1998),astro-ph/9803150.M.ZaldarriagaandU.Seljak,Phys.Rev.D55,1830(1997),astro-ph/9609170.
A.Lewis,A.Challinor,andN.Turok,Phys.Rev.D65,023505(2002),astro-ph/0106536.
G.Chon,A.Challinor,S.Prunet,E.Hivon,andI.Szapudi,Mon.Not.Roy.Astron.Soc.350,914(2004),astro-ph/0303414.A.LewisandS.Bridle,Phys.Rev.D66,103511(2002),astro-ph/0205436.A.LewisandS.Bridle,/notes/cosmomc.ps.gz.A.R.Cooray,NewAstron.9,173(2004),astro-ph/0309301.
R.E.Smithetal.(TheVirgoConsortium),Mon.Not.Roy.Astron.Soc.341,1311(2003),astro-ph/0207664.S.Seager,D.D.Sasselov,andD.Scott,Astrophys.J.Suppl.128,407(2000),astro-ph/9912182.V.K.DubrovichandS.I.Grachev(2005),astro-ph/0501672.
P.K.Leung,C.-W.Chan,andM.-C.Chu,Mon.Not.Roy.Astron.Soc.349,632(2004),astro-ph/0309374.M.J.WhiteandC.Vale,Astropart.Phys.22,19(2004),astro-ph/0312133.M.J.WhiteandW.Hu,Astrophys.J.537,1(2000),astro-ph/9909165.
O.Zahn,M.Zaldarriaga,L.Hernquist,andM.McQuinn(2005),astro-ph/0503166.W.Hu,Astrophys.J.529,12(2000),astro-ph/9907103.
I.S.GradshteynandI.M.Ryzhik,TableofIntegrals,SeriesandProducts,6thedn.(AcademicPress,SanDiego,2000).
正在阅读:
Lensed CMB power spectra from all-sky correlation functions08-15
洋葱生长小记作文500字07-17
特色烹饪专业可行性分析报告11-13
2010年十一学校小升初入学测试数学真题03-28
圆的周长与直径之间的关系07-10
小学的第一天07-17
初二数学试题及复习资料免费05-07
标准件与常用件画法12-17
神州数码交换机路由器常用命令操作03-11
- 1otis - sky故障码
- 2ALL THE CABBIE HAD WAS A LETTER
- 3Starry☆Sky in Winter中文攻略
- 4POWER - ABNORMAL告警
- 5POWER - ABNORMAL告警
- 6An experimental investigation and correlation on buoyant gas
- 7DETERMINANT EXPRESSIONS FOR HYPERELLIPTIC FUNCTIONS IN GENUS THREE
- 8schott-datasheet-all-english
- 9如何在 LoadRunner 脚本中做关联(Correlation)
- 10当李晓峰成为SKY
- 粮油储藏基础知识
- 论文范文(包括统一封面和内容的格式)
- 经典解题方法
- 综合部后勤办公用品管理办法+领用表
- 学生宿舍突发事件应急预案
- 16秋浙大《生理学及病理生理学》在线作业
- 四分比丘尼戒本(诵戒专用)
- 浙江财经大学高财题库第一章习题
- 九大员岗位职责(项目经理、技术负责人、施工员、安全员、质检员、资料员、材料员、造价员、机管员)
- 旅游财务管理习题(学生版)
- 德阳外国语高二秋期入学考试题
- 投资学 精要版 第九版 第11章 期权市场
- 控制性详细规划城市设计认识
- bl03海运提单3国际贸易答案
- 2010-2011学年湖北省武汉市武珞路中学七年级(上)期中数学试卷
- VB程序填空改错设计题库全
- 教师心理健康案例分析 - 年轻班主任的心理困惑
- 民间借贷司法解释溯及力是否适用?
- 三联书店推荐的100本好书
- 《化工原理》(第三版)复习思考题及解答
- correlation
- functions
- spectra
- Lensed
- power
- CMB
- sky
- 有理数加减混合运算(2)
- 与设计、发包人、监理人等三建方的协调、配合措施
- 普及康熙历史必备的五本书
- 政府绩效管理
- 边坡工程及其加固
- 在FactoryTalk View Studio ME 6.0 中转换MER文件
- 最新小企业会计报表
- 小学数学教育叙事
- 2014北京顺义高三二模化学试卷与解析(易题库教研团队出品)
- 2012届高考化学二轮专题复习定时精练(十一)
- 六年级上语文期末试题-全能练考-鄂教版(无答案)【小学学科网】
- 13 联通品牌战略规划
- 浙江省政府采购供应商质疑处理办法
- 高三物理计算题训练
- 第十章 系统抽样(抽样调查理论与方法-北京商学院,李平)
- 全国执业医师定期考核临床精简版复习题
- 初中英语语法练习题
- Excel中根据出生日期计算年龄的公式
- 四年级科学下册实验通知单
- 外卖人员工作期间协议书