2008-2013辽宁省高考文科数学导数压轴题汇总 2

更新时间:2024-04-19 20:35:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2008-2012辽宁省高考文科数学导数压轴题汇总

2008年辽宁高考文数22.(本小题满分14分)

设函数{ EMBED Equation.DSMT4 |f(x)?ax?bx?3ax?1(a,b?R)在,处取得极值,且. (Ⅰ)若,求的值,并求的单调区间;

(Ⅱ)若,求的取值范围.

22.本小题主要考查函数的导数,单调性、极值,最值等基础知识,考查综合利用导数研究函数的有关性质的能322力.满分14分 解:.① ··································································································································· 2分 (Ⅰ)当时, ;

由题意知为方程的两根,所以 .

由,得. ································································································································· 4分 从而,. 当时,;当时,.

故在单调递减,在,单调递增. ··························································································· 6分 (Ⅱ)由①式及题意知为方程的两根, 所以. 从而,

由上式及题设知. ·················································································································· 8分 考虑, . ··········································································································································· 10分 故在单调递增,在单调递减,从而在的极大值为.

又在上只有一个极值,所以为在上的最大值,且最小值为. 所以,即的取值范围为. ····································································································· 14分

2009年辽宁高考文数(21)(本小题满分12分) 设,且曲线y=f(x)在x=1处的切线与x轴平行。 求a的值,并讨论f(x)的单调性; 证明:当 (21)解:

(Ⅰ).有条件知,

,故. ………2分 于是.

故当时,<0; 当时,>0.

从而在,单调减少,在单调增加. ………6分 (Ⅱ)由(Ⅰ)知在单调增加,故在的最大值为, 最小值为. 从而对任意,,有. ………10分 而当时,.

从而 ………12分

2010年辽宁高考文数 (21)(本小题满分12分)

已知函数.

1

(Ⅰ)讨论函数的单调性; (Ⅱ)设,证明:对任意,。

2011年辽宁高考文数(20)(本小题满分12分)

2

2012年辽宁高考文数(21)(本小题满分12分) 设,

证明: (Ⅰ)当x﹥1时, ﹤ ( ) (Ⅱ)当时,

3

21.(2013辽宁,文21)(本小题满分12分) (1)证明:当x∈[0,1]时,sin x≤x; (2)若不等式ax+x2++2(x+2)cos x≤4对x∈[0,1]恒成立,求实数a的取值范围.

(1)证明:记F(x)=,则F′(x)=. 当时,F′(x)>0,F(x)在上是增函数;

4

当时,F′(x)<0,F(x)在上是减函数.

又F(0)=0,F(1)>0,所以当x∈[0,1]时,F(x)≥0,即sin x≥.

记H(x)=sin x-x,则当x∈(0,1)时,H′(x)=cos x-1<0,所以,H(x)在[0,1]上是减函数,则H(x)≤H(0)=0,

即sin x≤x.

综上,≤sin x≤x,x∈[0,1]. (2)解法一:因为当x∈[0,1]时, ax+x2++2(x+2)cos x-4 =(a+2)x+x2+ ≤(a+2)x+x2+ =(a+2)x.

所以,当a≤-2时,

不等式ax+x2++2(x+2)cos x≤4对x∈[0,1]恒成立. 下面证明,当a>-2时,

不等式ax+x2++2(x+2)cos x≤4对x∈[0,1]不恒成立. 因为当x∈[0,1]时, ax+x2++2(x+2)cos x-4 =(a+2)x+x2+ ≥(a+2)x+x2+ =(a+2)x-x2- ≥(a+2)x- .

所以存在x0∈(0,1)(例如x0取和中的较小值)满足+2(x0+2)cos x0-4>0, 即当a>-2时,

不等式ax+x2++2(x+2)cos x-4≤0对x∈[0,1]不恒成立. 综上,实数a的取值范围是(-∞,-2].

解法二:记f(x)=ax+x2++2(x+2)cos x-4,则f′(x)=a+2x++2cos x-2(x+2)sin x. 记G(x)=f′(x),则

G′(x)=2+3x-4sin x-2(x+2)cos x. 当x∈(0,1)时,cos x>,因此 G′(x)<2+3x-4·x-(x+2) =.

5

于是f′(x)在[0,1]上是减函数,因此,当x∈(0,1)时,f′(x)<f′(0)=a+2,故当a≤-2时,f′(x)<0,从而f(x)

在[0,1]上是减函数,所以f(x)≤f(0)=0,即当a≤-2时,不等式ax+x2++2(x+2)cos x≤4对x∈[0,1]恒成立.

下面证明,当a>-2时,

不等式ax+x2++2(x+2)cos x≤4对x∈[0,1]不恒成立.

由于f′(x)在[0,1]上是减函数,且f′(0)=a+2>0,f′(1)=a++2cos 1-6sin 1.

当a≥6sin 1-2cos 1-时,f′(1)≥0,所以当x∈(0,1)时,f′(x)>0,因此f(x)在[0,1]上是增函数,故f(1)>f(0)

=0;

当-2<a<6sin 1-2cos 1-时,f′(1)<0,又f′(0)>0,故存在x0∈(0,1)使f′(x0)=0,则当0<x<x0时,f′

(x)>f′(x0)=0.所以f(x)在[0,x0]上是增函数,所以当x∈(0,x0)时,f(x)>f(0)=0. 所以,当a>-2时,

不等式ax+x2++2(x+2)cos x≤4对x∈[0,1]不恒成立. 综上,实数a的取值范围是(-∞,-2].

6

7

本文来源:https://www.bwwdw.com/article/kr2p.html

Top