5、2011中考压轴之四边形存在性问题 - 图文
更新时间:2024-06-04 03:20:01 阅读量: 综合文库 文档下载
- 中考四边形综合压轴题分类推荐度:
- 相关推荐
1、(2009年黑龙江齐齐哈尔) 直线y??3x?6与坐标轴分别交于A、B两点,动点P、Q4同时从O点出发,同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S?48时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第5y B 四个顶点M的坐标.
(1)A(8,0)B(0,6) ························ 1分 (2)?OA?8,OB?6 ?AB?10
8?点Q由O到A的时间是?8(秒)
16?10?2(单位/秒) ··· 1分 ?点P的速度是8P x O Q A 当P在线段OB上运动(或0≤t≤3)时,OQ?t,OP?2t
S?t2 ······································································································································ 1分
当P在线段BA上运动(或3?t≤8)时,OQ?t,AP?6?10?2t?16?2t, 如图,作PD?OA于点D,由
PDAP48?6t?,得PD?, ······································ 1分 BOAB51324?S?OQ?PD??t2?t ························································································· 1分
255(自变量取值范围写对给1分,否则不给分.)
(3)P?,? ····················································································································· 1分
?824??55???824??1224??1224?································································· 3分 I1?,?,M2??,?,M3?,?? ·
555555??????2、(2010河南)在平面直角坐标系中,已知抛物线经过A(?4,0),B(0,?4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y??x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
yAOCxMB
3、(2011黑龙江鸡西)已知直线y=3x+43与x轴,y轴分别交于A、B两点, ∠ABC=60°,BC与x轴交于点C. (1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发
沿CBA向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,
使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出A N点的坐标;若不存在,请说明理由.
解:( 1 )由已知得A点坐标(-4﹐0),B点坐标(0﹐43﹚
∵OA=4 OB=43 ∴∠BAO=60o ∵∠ABC=60o ∴△ABC是等边三角形 ∵OC=OA=4 ∴C点坐标﹙4,0﹚
设直线BC解析式为y=kx﹢b
??b?43?4k?b?0 ∴?k??3 ????b?43∴直线BC的解析式为y=-3x?43 ------------------------------------------ (2分) ﹙2﹚当P点在AO之间运动时,作QH⊥x轴。
∵QHCQOB?CB ∴QH43?2t8 ∴QH=3t ∴S△APQ=
12AP·QH=12t·3t=32t2(0<t≤4)---------------------------------------(2分) 同理可得S1△APQ=
2t·﹙83?3t﹚=-32t2?43t﹙4≤t<8﹚--------------(2分) (3)存在,(4,0),(-4,8)(-4,-8)(-4,833) ----------------------(4分)
Q
P
H
Q 4、(2007河南)如图,对称轴为直线x=
7的抛物线经过点A(6,0)和B(0,4). 2(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存
在,请说明理由.
yx=72B(0,4)FOEA(6,0)x
5、(2010年大兴安岭) 如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y
轴于A、B两点.过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.△ABP△AOB
(1)求直线AM的解析式;
(2)试在直线AM上找一点P,使得S△ABP=S△AOB ,请直接写出点P的坐标;
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、
M、H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
解:(1)函数的解析式为y=2x+12 ∴A(-6,0),B(0,12) ………………1分
∵点M为线段OB的中点 ∴M(0,6) ……………………………1分 设直线AM的解析式为:y=kx+b
b=6 ∵ ………………………………………………2分
-6k+b=0 ∴k=1 b=6 ………………………………………………………1分 ∴直线AM的解析式为:y=x+6 ………………………………………1分 (2)P1(-18,-12),P2(6,12) ………………………………………………2分
618
(3)H1(-6,18),H2(-12,0),H3(- , )………………………………3分
556、(2009抚顺)已知:如图所示,关于x的抛物线y?ax?x?c(a?0)与x轴交于点
2A(?2,0)、点B(6,0),与y轴交于点C.
(1)求出此抛物线的解析式,并写出顶点坐标;
(2)在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;
(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由. 解:(1)根据题意,得
C y A O B x (第26题图)
C y D P1 Q1 O Q3 第26题图
Q4 B P4 x ?4a?2?c?0 ·············································· 1分 ??36a?6?c?0C P2 A 1??a??解得?·················································· 3分 4 ·
??c?31········· 4分 ?抛物线的解析式为y??x2?x?3 ·
4Q2 P3 顶点坐标是(2,4) ··············································································································· 5分
3) ·(2)D(4,························································································································· 6分
设直线AD的解析式为y?kx?b(k?0)
0)点D(4,3) ?直线经过点A(?2,、??2k?b?0 ······················································································································ 7分 ??4k?b?3?1?k????······························································································································· 8分 2 ·??b?1?y?1x?1 ·························································································································· 9分 2(3)存在. ·························································································································· 10分 ······················································································································ 11分 Q1(22?2,0) ··············································································································· 12分 Q2(?22?2,0) ·
······················································································································ 13分 Q3(6?26,0) ······················································································································ 14分 Q4(6?26,0)
(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由. 解:(1)根据题意,得
C y A O B x (第26题图)
C y D P1 Q1 O Q3 第26题图
Q4 B P4 x ?4a?2?c?0 ·············································· 1分 ??36a?6?c?0C P2 A 1??a??解得?·················································· 3分 4 ·
??c?31········· 4分 ?抛物线的解析式为y??x2?x?3 ·
4Q2 P3 顶点坐标是(2,4) ··············································································································· 5分
3) ·(2)D(4,························································································································· 6分
设直线AD的解析式为y?kx?b(k?0)
0)点D(4,3) ?直线经过点A(?2,、??2k?b?0 ······················································································································ 7分 ??4k?b?3?1?k????······························································································································· 8分 2 ·??b?1?y?1x?1 ·························································································································· 9分 2(3)存在. ·························································································································· 10分 ······················································································································ 11分 Q1(22?2,0) ··············································································································· 12分 Q2(?22?2,0) ·
······················································································································ 13分 Q3(6?26,0) ······················································································································ 14分 Q4(6?26,0)
正在阅读:
清塘坝煤矿验收报告书11-26
赶集作文300字06-27
医疗过错鉴定申请书(实用4篇)03-31
初中化学碳酸钠与碳酸氢钠的性质应用11-25
新版电气《安规》试题库(运行部分)007-11
消费者心理学论文05-13
雅思考试易错常考词汇04-25
红白喜事制度06-03
码头堆场施工方案05-14
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 四边形
- 压轴
- 中考
- 存在
- 图文
- 问题
- 2011
- 事故案例汇编
- 渑池县嘉良煤业有限公司2012年灾害预防和处理计划
- 1房屋构造
- 主持词
- 一年级数学求被减数的简单实际问题教案
- 绿色食品标志使用申请书初次申请续展申请申请人盖章申 - 图文
- 人教版 一年级 教材 解读
- 八年级英语上册Unit2学教案4
- 掘进工作面文明生产精细化管理标准
- 防震锤的安装距离
- 青岛大学电子技术基础数字逻辑实验课指导书答案
- 2015保险公司述职报告
- 第一次团课教案
- 2018年湖北省随州市中考数学试卷
- 【物理】2010-2011-2012三年高考真题试题分类汇编:电磁感应
- 轻型井点降水施工方案(标准版)
- 初级会计实务试题十一
- 乌鲁木齐市河西污水处理厂设计计算
- 2018年聚氨酯模具板行业现状及发展趋势分析(目录)
- 从Matlab Simulink生成易读可重用代码