《解直角三角形的应用》教案1

更新时间:2024-01-04 17:48:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

4.4解直角三角形的应用 (1)

(一)教学三维目标 (一)知识目标

使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决. (二)能力目标

逐步培养学生分析问题、解决问题的能力. (三)情感目标

渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识. 二、教学重点、难点

1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.

2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决. 三、教学过程 1.导入新课

上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决. 2.例题分析

例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,

求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米).

分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?

由题意知,△ABC为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解Rt△ABC的方法求出BC和AB.

例2.如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南

0方向航行一段时间后,到达位于灯塔P的南东34方向上的B处。这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?

引导学生根据示意图,说明本题已知什么,求什么,利用哪个三角形来求解,用正弦、余弦、正切、余切中的哪一种解较为简便?

3巩固练习

为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.01米).

首先请学生结合题意画几何图形,并把实际问题转化为数学问题.

Rt△ACD中,∠D=Rt∠,∠ACD=52°,CD=BE=15米,CE=DB=1.72米,求AB?

(三)总结与扩展

请学生总结:通过学习两个例题,初步学会把一些实际问题转化为数学问题,通过解直角三角形来解决,具体说,本节课通过让学生把实际问题转化为数学问题,利用正切或余切解直

P 340065A B 角三角形,从而把问题解决.

本课涉及到一种重要教学思想:转化思想. 四、布置作业

1.某一时刻,太阳光线与地平面的夹角为78°,此时测得烟囱的影长为5米,求烟囱的高(精确到0.1米).

2.在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为10°,求西楼高(精确到0.1米).

全 品中考网

本文来源:https://www.bwwdw.com/article/kmax.html

Top