叶绿素荧光研究背景知识介绍
更新时间:2024-07-04 04:14:01 阅读量: 综合文库 文档下载
- 叶绿素荧光参数推荐度:
- 相关推荐
Gene Company Limited
基因有限公司
叶绿素荧光研究背景知识介绍
前言
近些年来,叶绿素荧光技术已经逐渐成为植物生理生态研究的热门方向。荧光数据是植物光合性能方面的必要研究内容。目前这种趋势由于叶绿素荧光检测仪的改进而得到发展。然而荧光理论和数据解释仍然比较复杂。就我们所了解的情况来看,目前许多研究者对荧光理论不是很清楚,仪器应用仅仅限于简单的数据说明的基础上,本文在此基础上,目的在于简单明晰地介绍相关理论和研究要点,以求简单明确地使用叶绿素荧光检测设备,充分分析实验数据,重点在于植物生理生态学技术的应用和限制。
荧光测量基础
植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素荧光。三个过程之间存在竞争,其中任何一个效率的增加都将造成另外两个产量的下降。因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。尽管叶绿素荧光的总量很小(一般仅占叶片吸收光能总量的1-2%),测量却非常简单。荧光光谱不同于吸收光谱,其波长更长,因此荧光测量可以通过把叶片经过给定波长的光线的照射,同时测量发射光中波长较长的部分光线的量来实现。有一点需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。
调制荧光仪的出现是荧光研究技术的革命性的创新。在这类仪器中,测量光源是调制(高频率开关)的,其检测器也被调谐来仅仅检测被测量光激发的荧光。因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下)存在的条件下进行测量。目前绝大多数的荧光仪采用了调制系统,同时也强烈建议选择调制荧光仪(Kate Maxwell,2000)。
为什么荧光产量会发生改变?Kautsky效应和Beyond
叶绿素荧光产量的变化最早在1960年被Kautsky和其合作者发现。他们发现,当把植物叶片从黑暗中转入光下,荧光产量瞬间上升(大约在1秒左右)这种上升可以解释为光合途径中电子受体的还原(可接受电子的受体的减少)。一旦PSII吸收光能,初级电子受体QA(质体醌)接受了电子,它将不能再接受电子,直到它把电子传递给下一级电子载体QB。此期间,反应中心是关闭的,反应中心关闭的比
1
Gene Company Limited
基因有限公司
例导致光化学效率的整体下降,进而造成荧光产量的增长。
当叶片从黑暗条件转入光下,PSII(光系统2)反应中心逐渐关闭,这造成了叶绿素荧光产量(1秒钟之内)的上升,在此之后,荧光产量开始下降,持续大约几分钟或几十分钟,这种现象,被称为荧光淬灭。首先,电子被从PSII传递走的速率开始上升,这是由于光诱导对C代谢酶的活化和气孔开放的活化,这种淬灭被称为光化学淬灭。同时,能量转化为热能的效率也提高了,这种过程被称为“非光化学淬灭”(NPQ)。典型植物中,这两个过程变化将在15-20分钟内完成并达到稳定状态。当然这种时间在不同的植物种类之间差异明显。
荧光信号分析
为了通过叶绿素荧光产量的测量来获得植物光合性能的有用信息,我们有必要区分光化学过程与非光化学过程对淬灭的贡献的差异。通常的方法是关闭两者之一,尤其是光化学过程,这样我们就可以测量另外一种情况的影响。传统的方法是加入化学物质,如敌草隆(DCMU),这种物质抑制PSII活动,从而把光化学降到零。现在的方法是“加光” 技术,即它允许光化学淬灭的贡献瞬时减低到零。这种方法中,使用了高光强的短持续时间的光线(光脉冲,一般在0.8秒左右),这种方法可以在瞬间关闭PSII反映中心。假如这种闪光脉冲时间足够短的话,没有非光化学淬灭的发生,同时也没有诱导光化学效率的长期变化,那么在闪光期间,此时的荧光产量相当于没有光化学淬灭时达到的最大荧光(Fm)。如果我们把光照下荧光稳定状态(Fs)和活化光不存在下荧光产量的数值(Fo)相比较,我们就得出了光化学淬灭效率(可以理解为PSII的性能)的信息。
随着光化学效率的变化,热耗散(非光化学效率)效率也发生了改变,这取决于多种内部和外部因素。这种变化可以通过Fm值的变化来体现,和光化学淬灭不同,我们不可能阻断热耗散的发生,因此不可能测量非光化学淬灭不存在的时候叶绿素荧光的产量。因此,所有非光化学淬灭的估计严格对应于暗适应点(Fmo)。由于这个原因,我们有必要设计这样一种实验,通过这种实验,我们可以估计暗适应的非胁迫的参考点。这种需求是野外条件(通常估计Fm的黎明前的值)的主要限制。
淬灭分析
测量过程可以通过图1来很好地解释。测量开始时首先打开测量光,测量最小荧光信号(Fo),然后给一个强闪光,测量暗适应状态的最大荧光(Fmo)。紧接着,打开活化光进行持续光照(或者利用野外自然光线进行照射),并且每隔一个间隔,重复一次饱和闪光照射,通过这个过程,光照下的最大荧光Fm’可以测量到。闪光之前的稳态荧光称为Fs,闪光后,关掉活化光(同时给一个瞬时的远红外光线照射)可以测量Fo’。
图1 典型荧光测量顺序
2
Gene Company Limited
基因有限公司
表1 通常使用的荧光参数
光化学淬灭参数 ?PSII QP Fv/Fm 非光化学淬灭参数 NPQ NPQF NPQS PSII的量子产量 PSII开放比例 PSII最大量子产量 {Fm’-Fs}/Fm’ (Fm’-Fs)/(Fm’-Fo’) (Fm-Fo)/Fm ooo非光化学淬灭 快速弛豫的非光化学淬灭 慢速弛豫的非光化学淬灭 ( Fm-Fm’ )/Fm’ ( Fm/Fm’ )-( Fm/Fm) ( Fm-Fm) /Fm r ror 光化学过程
光化学淬灭参数总是和Fm’和Fs的值相关的。最有用的信息是PSII光化学效率(?PSII)。这个参数测量了与PSII相关的叶绿素吸收的光用于光化学过程的比例。它可以提供线性电子传递的速率测量(整个光合的指示)。在实验室条件下,这个参数与C固定的效率有显著的线性关系,然而这两个参数在一定的胁迫条件下会存在差异,这是由于光呼吸速率或Pseudocyclic电子传递速率的改变。由于 ?PSII是PSII光化学的量子产量,它可以用于计算线性电子传递速率(J),因此,光合速率可以描述为:
J=?PSII×PFDa×0.5
这里PFDa是吸收的光强(μmolm-2s-1),0.5是在PSII和PSI之间能量的分配系数。另外一个广泛应用的参数是光化学淬灭qP。尽管与?PSII很相似,但是qP是PSII反应中心开放的比例,相反1-qP是反应中心关闭的比例。?PSII和qP都和Fv/Fm(PSII内禀效率,即所有PSI反应中心全部开放)相关联。Fv/Fm=(Fm-Fo)/Fm=?PSII/qP。qP的变化由于饱和光导致的反映中心的关闭。Fv/Fm的变化是由于非光化学淬灭的效率的变化。暗适应的Fv/Fm反应了潜在的PSII的量子效率,可以用于植物光合能力的灵敏的指示,绝大多数植物在0.83左右。低于此值将说明植物处于胁迫,尤其是光抑制现象。
qP和Fv/Fm估计的困难在于需要估计测量时的Fo值。在实验室中,这通常可以通过遮挡植物叶片和远红外光线照射几秒种。后者可以确保所有PSII反应中心迅速开放。然而在野外的条件下,遮光仍然存在困难,一般是通过黑布瞬时遮光并同步提供远红外光线照射。
非光化学过程
需要暗适应的问题在量化非光化学淬灭时依然存在。需要测量Fm的暗适应值。这个值在实验室通常采取24小时的暗适应,而且在实验开始之前不能存在任何胁迫。这个过程是为了获得光化学效率最大,热耗散最小的Fm的参考值。可以在黎明前测量Fm值并用做参考值,黎明前Fv/Fm的变化可以说明环境胁迫对植物的影响。量化非光化学淬灭的最直接的方法是Fm的改变除以Fm的值:
NPQ=(Fmo-Fm’)/Fm’
NPQ和热耗散线性相关,其范围大致在0-具体的数字。在一个典型植物中,在饱和光强下大致在0.5-3.5之间。这取决于物种和植物以前的经历过程。qN是非光化学淬灭的比较传统的(老的)术语,有的时候也会被用到。它的范围在0-1之间,因此在淬灭较高时不很敏感。同样的淬灭在参考点淬灭较高时可能会表现为很小的上升,因此直接的比较不很明确。通常,如果暗适应的Fv/Fm明显不同,那
3
Gene Company Limited
基因有限公司
么NPQ也不能直接进行比较。
一般而言,非光化学淬灭的增长可能是由于叶片为免受光破坏的保护机制。研究此过程的一种方法是照光后弛豫的速率。不同的过程有不同的弛豫速率。其时间范围从几分钟到几个小时。这些不同过程的弛豫(Relaxation)动力学用于区分他们。
绝大多数条件下,对NPQ的主要贡献,是高能状态淬灭(也被成为qE),也被认为在保护叶片免受光诱导破坏的过程中是必须的。当叶片转入黑暗时,高能状态淬灭在几分钟内弛豫。第二个过程称为状态转化,范围为几分钟(qT)。状态转化涉及捕光蛋白可逆磷酸化过程,被认为在低光条件下平衡光能在PSI和PSII之间的分配中非常重要。这两种形式不容易通过弛豫动力学中分离出来。然而qT通常只对整个淬灭起到很小的贡献而且仅在低光下存在。一般认为,几分钟内的弛豫过程都被认为是蛋白磷酸化过程。
较长时间尺度的弛豫过程通常归因于光抑制(qI)。为更好地理解快速与慢速淬灭的贡献,我们需要进行弛豫分析来测量。实验中,淬灭执行弛豫,在固定间隔内测量Fm的值,间隔选择非常重要,因为,必须保证前一次闪光在间隔期内被充分弛豫。一般而言,5分钟的间隔是充足的,整个弛豫的持续时间在45-60分钟之间。在此基础上做图,横坐标是时间,纵坐标是Fm。数据点可以推断至活化光被关闭的时间。如果在光下仅存在慢速弛豫淬灭,就可以计算 Fm(Fmr)的值。慢速和快速弛豫淬灭可以通过以下公式计算:
NPQs=(Fmo-Fmr)/Fmr NPQF=(Fmo/Fm’)-(Fmo/Fmr)
NPQ的程度和组分已经被成功用于研究不同基因型和不同表现型之间光保护和光抑制的差别。研究表明,基因型之间在NPQ方面存在差异。在高光生长下和低光条件下不同生态型的qE更高。这样的测量过程在野外不可能实现,一般方法是在关闭光源2-5分钟后单一的闪光来用于估计Fmr。5分钟后,可能快速弛豫仍然存在,所以此时会造成NPQF的低估和NPQs的高估。而在野外条件下30分钟
4
Gene Company Limited
基因有限公司
后的闪光可以给出足够的Fmr的估计。
Fmr称为可恢复的最大荧光产量。它的获得是在活化光诱导达到光下最大荧光平稳时,关闭活化光,测量Fo’后,把饱和光的闪光延长到180秒/次。得到一组逐渐增大的最大荧光产量,将该组最大荧光产量放在半对数坐标系中即成直线,该直线在Y轴上的截距即为Fmr。以(Fm-Fmr)/ Fmr可以反映不可逆的非光化学淬灭产率,即发生光抑制的可能程度。
荧光诱导动力学
用于分析叶片从黑暗中转入光下造成的荧光上升动力学。此种方法的优点主要在于他可以使用比较廉价的非调制荧光仪。这种研究方法目前还存在争议,需要更多的理论支持。
叶绿素荧光的研究范围
叶绿素荧光可以给出光系统2的状态信息。它可以说明光系统2使用叶绿素吸收能量的程度和它被过量光线破坏的程度。这看起来好象只对那些对光系统2感兴趣的专家才有意义,其实它对于植物生理学家更有意义。通过光系统2的电子流动在许多条件下很明显是整个光合的速率。它提供我们在其他方法无法实现的情况下,快速估计植物光合能力的潜在能力。光系统2也被认为是光合机构中对光诱导破坏最为脆弱的部分。光系统2的破坏是植物叶片胁迫的最早的表现。当然,荧光技术本身也不是没有局限的,荧光的最强有力的应用不是单独使用这一技术,而是结合其他技术,尤其是气体交换,从而获得植物对环境响应的完整说明。
光系统2产量作为光合测量的指针
实验室条件下电子传递速率可以和CO2的固定显著线性相关,但是在野外条件下,这种情况可能不会出现,这是因为CO2固定的相对速率和竞争过程如光呼吸、N代谢和氧对电子利用等过程的变化所造成的。这种差异本身是非常有意义的。但同时也意味着精确的CO2固定速率无法单独依靠荧光测量来实现。电子传递速率的计算首先假定每个光系统2吸收的光线是恒定的,这显然是不准确的。当然,如果我们可以利用积分球来直接测量吸收的话,其中缺陷是可以部分克服的。但是仍然存在光系统化学计量的差异,因此荧光从来也不能用于比较不同植物或不同叶片之间的测量。由于以上原因,使用红外线气体分析仪进行的气体交换测量仍然是植物生理生态研究的核心。
荧光可以提供具体样品的非破坏性的快速测量方法,例如荧光可以被用于研究两个水稻栽培品种在不同发育阶段全天的电子传递速率。个体叶片需要标记并且接下来的测量要在相同的叶片上进行,以确保测量间的可比性。相同的方法用于火炬松在FACE(开放式CO2倍增Free-Air CO2 Enrichment)条件下测量电子传递速率日变化。这些研究者认为,在夏天,CO2浓度的升高将导致电子传递速率的上升;而在冬天,CO2浓度的升高将导致电子传递速率的下降。CAM植物如凤梨科植物,在太阳黑子期间观察到的光系统2量子产量(?PSII)与C3植物种类(雨林内)相比有较大的上升。这反映了相对于C3植物光合成本(包括光呼吸)而言,CAM植物夜里积累有机酸的脱羧作用需要大量能量,这支持了在潜在瞬时强光破坏下的光利用。
另外一个应用方面是荧光可用于检查植物对不同微环境的适应。例如,研究?PSII可以对野外条件下不同植物光饱和行为进行快速简单的测量。不允许不同生境条件下绝对光合速率的比较,但对于一些植物来说是有效的,如地衣和苔藓等其结构使得他们难以用通常的气体交换来研究。
在实验室条件下,由于实验人员造成的CO2浓度的波动使得研究光线和光合暗反应之间的深入分
5
Gene Company Limited
基因有限公司
析非常困难。因此,特定的密封性能很好的叶室应该和光纤探针结合来进行测量是必要的(6400-40是唯一一款集成在一起的仪器)。系统应该防止光纤对光的遮挡,最好可以控制CO2气体的浓度(这是6400-40以外其他仪器所无法避免的缺陷)。
电子传递与CO2固定的相关性
尽管荧光发射仅来自于绿色组织中的上面几层,但是气体交换数据则测量整个叶片厚度,同步的测量在研究光能利用效率和CO2固定和光抑制之间的关系时至关重要。相对简单并广泛使用的是研究电子传递速率和CO2固定之间的关系,同步地测量不同光强下在非光呼吸条件(升高CO2或通入1-2%的氧气)下CO2同化和?PSII的关系。在CO2同化的量子产量(?CO2)和PSII量子产量(?PSII)之间的线性图,使得每摩尔CO2固定需要的电子数可以得到测量。假定这种关系是在无光呼吸存在的条件下进行,可以估计光呼吸。例如,这个指针被用于研究光呼吸(在干旱胁迫下光保护维持机制)的意义。
Meyer和Genty采用高分辨率的光系统2量子产量来解释脱落酸处理后叶片胞间CO2浓度(Ci)。干旱期间,Ci的测量传统上采用气体交换的技术可能会由于气孔的不均匀响应而高估,同时因为表皮的蒸腾而低估。叶绿素荧光的使用已经表明干旱胁迫的主要影响是气孔关闭减少了Ci从而限制了羧化。此项技术不需要荧光图象技术,其结合了气体交换和荧光技术。Sanchez等人研究了光系统2量子产量和CO2同化速率和Ci之间的关系。然而这种方法要求胁迫强度不能改变,而且Ci可以通过气体交换精确确定(需要排除那些低气孔导度和表面导度的物种)。
荧光分析也能被应用于理解高低温的影响。例如,CO2同化的量子产量(?CO2)和PSII量子产量(?PSII)的比较可以用于此方面的研究。处于低温时,玉米增加了电子向电子受体的传递,这可能会产生好氧的物种。在生长季早期完全展开的叶片测量,?PSII/?CO2比非胁迫的高,表明电子利用的途径不是CO2固定。这种增长伴随着抗氧化系统能力的增长,表明叶片正在遭受氧胁迫。
图2 胞间CO2浓度和光合以及?PSII之间的关系
(6400-40荧光叶室测量得到的荧光ACi曲线数据在其面板上可以即时显示,
这是其他荧光仪所无法提供的,因为他们无法真正控制CO2浓度)
实际显示荧光ACi曲线期间荧光的数据变化,从350ppm到0,
然后在回到1000ppm的浓度变化过程。
测量胁迫和胁迫耐受力
尽管荧光测量有时会提供植物光合能力的测量,但是他的真正的长处在于别的测量无法提供的信息。因为荧光可以提供植物耐受环境胁迫的能力和胁迫已经损害光系统的程度的有价值的信息。测量日变化可以产生包括NPQ、量子效率、电子传递速率和对光响应的光抑制的程度对光、温度和其他环境胁迫的响应的信息。早期测量往往采用暗适应后Fv/Fm的减少和Fo的增长来表明由于高温、低温、过高的光强和水分胁迫造成的光抑制破坏的发生。尽管现在的测量技术已得到了很大的改进,这些观
6
Gene Company Limited
基因有限公司
察值仍然被广泛使用。然而近些年荧光技术中调制技术的发展已经可以在光下进行测量,可以测量光化学效率、光合和叶黄素循环。研究表明叶片在高光强下通常有高的NPQ,同样的情况也会出现在低温下。我们可以采用NPQ的变化来很好地表现叶黄素循环。另一个实验表明,在野外测量Fmr,耐阴植物比阳生植物表现了更高的响应光抑制的NPQ。
结论
本综述试图解释叶绿素荧光研究可以应用在那些生理生态研究领域。叶绿素荧光测量很容易,但是同时它也容易产生大量无意义的数据,这取决与您的良好的实验设计以确保数据的意义。
参考文献
1. Adriano et al. Chlorophyll Fluorescence as a predictive method for Detection of Browing
Disorders in conference pears and Jonagold apples during controlled atmosphere storage, p571-576,2002
2. Carl J. Bernacchi, Archie R. Portis, Hiromi Nakano, Susanne von Caemmerer, and Stephen P.
Long*,Temperature Response of Mesophyll Conductance.Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis in Vivo, Plant Physiology, December 2002, Vol. 130, pp. 1992–1998,
3. Kate Ma2well and Giles N.Johnson,Chlorophyll Fluorescence—a Practical Guide,Journal of
E2perimental Botany,2000,345:659-668
4. Michal Koblizek, On The Realtion Between the Non-Photochemical quenching of the Chlorophyll
Fluorescence and Photosystem II Light Harvesting Efficiency. A Repetitive Flash Fluorescence induction Study, Photosynthesis Research 68:141-152,2001
5. Patricia Mu¨ ller, 2iao-Ping Li, and Krishna K. Niyogi*, Non-Photochemical Quenching. A
Response to E2cess Light Energy, Plant Physiology, April 2001, Vol. 125, pp. 1558–1566 6. 许大全,2002,光合作用效率,上海科学技术出版社。
7. 张守仁,叶绿素荧光动力学参数的意义及讨论,植物学通报,1999,16(4):444-448
7
正在阅读:
叶绿素荧光研究背景知识介绍07-04
实验7答案及实验809-24
上半年个人工作总结范文参考08-02
房地产集团公司精装修房设计管理流程03-05
2017-2018年度第一学期八上语文期末测试试卷(初稿)20180101-12
藏木电站总体施工组织05-26
教育局局长在全市学校安全工作会议上的讲话10-13
小学生二年级关于家乡的冬天的作文06-13
生理学习题及答案09-23
高分子物理_课后答案06-03
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 叶绿素
- 荧光
- 背景
- 知识
- 研究
- 介绍
- 新版北师大六年级数学下册第二单元知识点及配套练
- 基坑土钉墙支护及土方开挖施工方案
- 2017中华诗词之美课后答案
- 中华人民共和国农业部饲料原料目录 - 图文
- 太阳能幕墙板项目可行性研究报告
- 大希庇阿斯篇
- 2017学年滨江区九上期末考试试卷
- 杭州市学前教育促进条例
- 2012年3月证券从业资格考试《证券投资分析》考前押题第2套
- 飞机缩略语大全
- 2015会计从业财经法规与职业道德考试重点总结= - 图文
- 亭南煤矿瓦斯抽放设计02
- 钢结构基本原理 重庆大学 习题答案 - 图文
- 2017二年级语文下册第三单元教案设计苏教版
- 八年级生物下册第七单元第一章第一节《植物的生殖》导学案新人教
- 景区员工奖惩条例
- 利州区国道212线至滨河北路连接线道路工程PPP项目实施方案
- 哪些因素影响你的工作满意度?
- Peking University Address硕博英语精读阅读课堂练习
- 《奥林匹斯的陷落》情节激荡让你high到极限