二次函数y=a(x-h)2+k(a≠0)图象与性质
更新时间:2024-06-06 17:26:01 阅读量: 综合文库 文档下载
函数y?a(x?h)2?k(a?0)的图象与性质
要点一、函数y?a(x?h)2(a?0)与函数y?a(x?h)2?k(a?0)的图象与性质 1.函数y?a(x?h)2(a?0)的图象与性质
a的符号 a?0 开口方向 顶点坐标 对称轴 向上 0? ?h,0? ?h,性质 x?h时,y随x的增大而增大;x?h时,y随x=h x的增大而减小;x?h时,y有最小值0. x?h时,y随x的增大而减小;x?h时,y随a?0 向下 x=h x的增大而增大;x?h时,y有最大值0. 2.函数y?a(x?h)2?k(a?0)的图象与性质
a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?h时,y随x的增大而增大;x?h时,y随?h,k? ?h,k? x=h x的增大而减小;x?h时,y有最小值k. x?h时,y随x的增大而减小;x?h时,y随a?0 向下 x=h x的增大而增大;x?h时,y有最大值k. 要点诠释:
二次函数y?a(x?h)2+k(a≠的图象常与直线、三角形、面积问题结合在一起,借助它的图象与0)性质.运用数形结合、函数、方程思想解决问题.
要点二、二次函数的平移 1.平移步骤:
k?; ⑴ 将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标?h,2⑵ 保持抛物线y?ax2的形状不变,将其顶点平移到?h,k?处,具体平移方法如下:
2.平移规律:
在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”. 概括成八个字“左加右减,上加下减”.
例1.将抛物线y?2(x?1)2?3作下列移动,求得到的新抛物线的解析式. (1)向左平移2个单位,再向下平移3个单位; (2)顶点不动,将原抛物线开口方向反向; (3)以x轴为对称轴,将原抛物线开口方向反向. 【答案与解析】
抛物线y?2(x?1)2?3的顶点为(1,3).
(1)将抛物线向左平移2个单位,再向下平移3个单位后,顶点为(-1,0),而开口方向和形状不变,
所以a=2,得到抛物线解析式为y?2(x?1)2?2x2?4x?2. (2)顶点不动为(1,3),开口方向反向,则a??2, 所得抛物线解析式为y??2(x?1)2?3??2x2?4x?1.
(3)因为新顶点与原顶点(1,3)关于x轴对称,故新顶点应为(1,-3).又∵ 抛物线开口反向, ∴ a??2.故所得抛物线解析式为y??2(x?1)2?3??2x2?4x?5.
【总结升华】当抛物线的形状确定以后,其位置完全决定于顶点,方向决定于a的符号,故可利用移动后
的顶点坐标与开口方向求移动后的抛物线的解析式.
举一反三:
【变式】将抛物线y??3x2向右平移2个单位,再向上平移5个单位,得到的抛物线解析式为 .
例2.二次函数
的图象可以看作是二次函数1的图象向 平移4个单位,再向 平122y?xy?(x?3)?422移3个单位得到的.
例3.已知y1?a(x?h)2与y2?kx?b的图象交于A、B两点,其中A(0,-1),B(1,0).
(1)确定此二次函数和直线的解析式; (2)当y1?y2时,写出自变量x的取值范围.
【答案与解析】
(1)∵ y1?a(x?h)2,y2?kx?b的图象交于A、B两点,
??1?a(0?h)?k?b?0,∴ ?且? 2?b??1.?0?a(1?h)解得?2?a??1,?k?1, 且?
?h?1,?b??1.
∴ 二次函数的解析式为y??(x?1)2,直线方程为y?x?1. (2)画出它们的图象如图所示,由图象知当x<0或x>1时,y1?y2.
【总结升华】可先由待定系数法建立方程组求出两个函数的解析式,然后利用函数图象写出自变量的取
值范围.
例4.在同一直角坐标系中,画出下列三条抛物线:
y?1211x,y?x2?3,y?x2?3. 222(1)观察三条抛物线的相互关系,并分别指出它们的开口方向、对称轴和顶点坐标; (2)请你说出抛物线y?
【答案与解析】 (1)列表: x … 12x?c的开口方向,对称轴及顶点坐标. 2-3 -2 2 -1 0 0 1 2 2 3 … … y?12x 2… 14 21 21 214 2描点、连线,可得抛物线y?将y?12x. 2121212x的图象分别向上和向下平移3个单位,就分别得到y?x?3与y?x?3的图象(如222图所示).
抛物线y?1211x,y?x2?3与y?x2?3开口都向上,对称轴都是y轴,顶点坐标依次 222是(0,0)、(0,3)和(0,-3).
12x?c的开口向上,对称轴是y轴(或直线x?0),顶点坐标为(0,c). 212【总结升华】先用描点法画出y?x的图象,再用平移法得到另两条抛物线,并根据图象回答问题.
2(2)抛物线y?向上平移向下平移2?y?ax2?????y?ax2?k(k?0). 规律总结:y?ax?k?????k个单位k个单位练习
1.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( )
A. B. C. D.
2.在平面直角坐标系中,二次函数y=a(x﹣h)2+k(a<0)的图象可能是( )
A. B. C. D.
3.二次函数y=(x+1)2﹣2的图象大致是( )
A. B. C. D.
4.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为( )
A.C.
B.
D.
5.二次函数y=(x+2)2﹣1的图象大致为( )
A. B. C. D.
6.二次函数y=2(x+2)2﹣1的图象是( )
A. B. C. D.
7.已知函数y=a(x﹣h)2+k,其中a<0,h>0,k<0,则下列图象正确的是( )
A. B. C. D.
8.抛物线y=a(x+1)2+2的一部分如图所示,该抛物线在y轴右侧部分与x轴交点的坐标是( )
A.(,0)
B.(1,0)
C.(2,0) D.(3,0)
9.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是( )
A.h=m B.k=n C.k>n
10.与函数y=2(x﹣2)2形状相同的抛物线解析式是( ) A.y=1+
11.与抛物线y=2(x﹣1)2+2形状相同的抛物线是( ) A.
B.y=2x2 C.y=(x﹣1)2+2 D.y=(2x﹣1)2+2
B.y=(2x+1)2 C.y=(x﹣2)2 D.y=2x2
D.h>0,k>0
12.函数y=a(x﹣1)2,y=ax+a的图象在同一坐标系的图象可能是( )
A. B. C. D.
13.同一坐标系中,抛物线y=(x﹣a)2与直线y=a+ax的图象可能是( )
A. B. C. D.
14.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过( )象限.
A.一、二、三 B.一、二、四 C.二、三、四 D.一、三、四
正在阅读:
二次函数y=a(x-h)2+k(a≠0)图象与性质06-06
part V essay writing05-17
碎片化与非碎片化作文500字07-14
电力安装安全培训记录103-18
关于农村优秀党支部书记先进事迹材料范本08-08
我在北京天安门广场作文500字06-18
青岛版五年级科学下册教学计划05-09
古代汉语(文选)09-06
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 图象
- 函数
- 性质
- 28(2)导学案模板
- 警务综合平台建设方案
- 2019年普陀区高三语文试卷及答案
- 校本课程系列教材---中国的传统节日
- 咸阳市第31届青少年科技创新大赛获奖名单模板 - 图文
- 淮北矿业组干系统技术比武试题库(新)201308
- 中南大学冶金原理题库
- 2018年全国名区县小升初语文毕业试卷10套含答案
- 屯昌县农业机械化管理局2017年度
- 专题07圆锥曲线第03期备战2018高考高三数学文全国各地优质模拟试
- 信息技术部各岗位职责细分量化考核标准
- 重庆某桥梁检测、评估方案
- 购物分享社区走红“人人逛街”时代来临本文转自腾讯由亿买风尚购
- Word文档中插入图片
- 创新业务模式的3A能力
- 建筑废弃物的减量、分类、运输、污染防治措施
- 电工初级工理论试题
- 化工热力学习题集(附答案)
- 2007—2011历年湖南数学理工类高考试题 - 图文
- 《环球财经资讯》2010-8-11