四川省资阳市2014届高三第一次诊断性考试数学理试题 Word版含答
更新时间:2024-03-28 14:41:01 阅读量: 综合文库 文档下载
四川省资阳市高中2011级第一次诊断性考试
数 学(理工类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。第Ⅰ卷1至2页,第Ⅱ卷3至4页。考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。满分150分。考试时间120分钟,考试结束后,将本试题卷和答题卡一并收回。
第Ⅰ卷 (选择题 共50分)
注意事项:
必须使用2B铅笔在答题卡上将所选答案的标号涂黑。
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={4,5,6,8},B={3,5,7,8},则A∩B= (A){3,5} (C){5,8}
(B){6,8}
(D){3,4,5,6,7,8}
2.已知向量a=(3, 4),b=(1, 3),则a-2b= (A)(1, 3) (C)(2, 1)
(B)(1, -2) (D)(2, -2)
3.已知i是虚数单位,a,b∈R,且(a?i)i?b?2i,则a+b= (A)1
(B)-1
(C)-2
(D)-3
4. 函数f(x)?x的定义域为
lg(x?1)(A)(1,2)?(2,??) (C)(2,??)
(B)(0,1)?(1,??) (D)(1,??)
5. 命题p:?n?Z,n?Q,则 (A)?p:?n?Z,n?Q
(B)?p:?n?Z,n?Q (D)?p:?n0?Z,n0?Q
(C)?p:?n0?Z,n0?Q
6. ?ABC中,若sin2B?sin2C?sin2A?sinBsinC?0,则A? (A)(C)
2? 3
(B)(D)
5? 6? 3? 67. 若把函数y?sin?x(??0)的图象向左平移是
?个单位后与函数y?cos?x的图象重合,则?的值可能3第1页
(A)13
(B)12 (C)
32
(D)
23 8. 函数y?xln|x|的图象大致是
(A)
(B)
(C)
(D)
9.已知函数f(x)?ex?me?x,若f?(x)?23恒成立,则实数m的取值范围是 (A)[0,??) (B)[2,??) (C)[3,??)
(D)(??,3]
10.如图,在边长为2的正六边形ABCDEF中,动圆Q的半径为1,CD(含端点)上运动,P是圆Q上及内部的动点,设向量???AP??mAB?????nAF????(m,n为实数),则m?n的取值范围是 (A)(1,2] (B)[5,6] (C)[2,5]
(D)[3,5]
第2页
圆心在线段
第Ⅱ卷 (非选择题 共100分)
注意事项:
必须使用0.5毫米黑色签字笔在答题卡上题目指示的答题区域内作答。作图时可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。答在试题卷上无效。
二、填空题:本大题共5小题,每小题5分,共25分。 11.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,若角α终边经过点P(2,4),则tan(??)?___________.
412.若2a?10,b?log510,则
11??______. ab?13.已知向量a,b的夹角为45?,|a|?|b|?2, 且向量a与?b?a垂直,则实数??________. 14.已知x?R,根据右图所示的程序框图,则 1不等式f(x)≥?x?2的解集是____________.
215.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点.如果函数f(x)的图象恰好通过k(k?N*)个整点,则称f(x)为k阶整点函数.给出下列函数:
11①f(x)?cosx;②f(x)??(x?1)2;③f(x)?()x?2;④f(x)?log0.6(x?1);⑤f(x)?.
3x?1其中是1阶整点函数的序号有______________.(写出所有满足条件的函数的序号) 三、解答题:共6大题,共75分。解答应写出文字说明,证明过程或演算步骤。 16.(本小题满分12分)在等比数列{an}中,a1?1,且4a1,2a2,a3成等差数列. (Ⅰ)求an;
(Ⅱ)令bn?log2an,求数列{bn}的前n项和Sn.
17.(本小题满分12分)设向量m?(cos?,1),n?(sin?,2),且m∥n,其中??(0,(Ⅰ)求sin?;
3?(Ⅱ)若sin(???)?,??(0,),求cos?.
52?2).
第3页
18.(本小题满分12分)设f(x)是定义在实数集R上的奇函数,当x?0时,f(x)??x2?4x. (Ⅰ)求f(x)的解析式,并解不等式f(x)≥x;
(Ⅱ)设g(x)?2x?1?m,若对任意x1?[?1,4],总存在x2?[2,5],使f(x1)?g(x2),求实数m的取值范围.
19.(本小题满分12分)已知函数f(x)?2sin(x?)cosx?sinxcosx?3sin2x(x?R).
3(Ⅰ)求f(x)在[0,?]内的单调递增区间;
(Ⅱ)在?ABC中,B为锐角,且f(B)?3,AC?43,D是BC边上一点,AB?AD,试求AD?DC的最大值.
20.(本小题满分13分)如图,将一矩形花坛ABCD扩建成一个花坛AMPN,要求点B在AM上,点D在AN上,点C在MN上,
更大的矩形
?AB?3米,
AD?2米.
(Ⅰ)要使扩建成的花坛面积大于27米2,则AN的长度应在内?
(Ⅱ)当AN的长度是多少米时,扩建成的花坛面积最小?并求出最小面积.
21.(本小题满分14分)已知函数f(x)?2lnx?x2?ax(a?R). (Ⅰ)当a?2时,求f(x)的图象在x?1处的切线方程;
1(Ⅱ)若函数g(x)?f(x)?ax?m在[,e]上有两个零点,求实数m的取值范围;
e什么范围
(Ⅲ)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0),且0?x1?x2, 求证:f?(
x1?x2. )?0(其中f?(x)是f(x)的导函数)
2资阳市高中2011级第一次诊断性考试数学参考答案及评分标准(理工类)
一、选择题:CBDAD,ACBCC.二、填空题:11.?3;12.1;13.2;14.[0,4];15.①②④. 16.【解】(Ⅰ)设{an}的公比为q,由4a1,2a2,a3成等差数列,得4a1?a3?4a2. 又a1?1,则4?q2?4q,解得q?2. ∴an?2n?1(n?N* ). ········································· 6分 (Ⅱ)bn?log22n?1?n?1,∴bn?1?bn?1,{bn}是首项为0,公差为1的等差数列,
第4页
n(n?1). ·································································································· 12分 217.【解】(Ⅰ)∵m//n,∴2cos??sin?, ··································································· 2分
14又sin2??cos2??1,∴sin2??sin2??1,∴sin2??, ·········································· 4分
4525?∵??(0,),∴sin??0,故sin??. ······································································ 6分
52它的前n项和Sn?(Ⅱ)∵??(0,),??(0,),∴??????.
222225534∵sin(???)?,∴cos(???)?;sin??,cos??. ································· 9分
5555··············································· 11分 cos??cos[??(???)]?cos?cos(???)?sin?sin(???)
5425325. ························································································· 12分 ????5555518.【解】(Ⅰ)当x?0时,f(x)?0; ·············································································· 1分
?????当x?0时,有?x?0,由f(x)??f(?x)??[?(?x)2?4(?x)]?x2?4x. ···························· 3分
??x2?4x,x?0,?∴f(x)的解析式为f(x)??2 ······································································ 4分
x?4x, x?0.??当x?0时,f(x)?x为?x2?4x?x,解得0?x?3;当x?0时,f(x)?x为x2?4x?x,解得x??3.故不等式f(x)?x的解集是{x|x??3或0?x?3}. ···································································· 6分
(Ⅱ)当?1?x?0时,f(x)?x2?4x?(x?2)2?4,知f(x)?[?3,0);当0?x?4时, ·· 8分 f(x)??x2?4x??(x?2)2?4,知f(x)?[0,4]时,f(x1)?[?3,4]. ·4],∴当x1?[?1,∵g(x)?2x?1?m是R上的增函数,∴当x2?[2,·········· 9分 5]时,g(x2)?[2?m,16?m], ·∵对任意x1?[?1,··· 10分 4],总存在x2?[2,5]使f(x1)?g(x2),∴[?3,4]?[2?m,16?m], ·?2?m??3,则?解得?12?m??5,故实数m的取值范围是[?12,···························· 12分 ?5]. ·
16?m?4,?1319.【解】(Ⅰ)f(x)?2(sinx?cosx)cosx?sinxcosx?3sin2x
22?2sinxcosx?3(cos2x?sin2x)?sin2x?3cos2x?2sin(2x?). ································ 2分
3????5?由??2k??2x???2k?,得??k??x?························· 3分 ?k?(k?Z). ·
2321212?5?5?取k?0,得??x?,又x?[0,?],则x?[0,]; ·············································· 4分
12121211?17?11?取k?1,得,又x?[0,?],则x?[············································· 5分 ?x?,?]. ·
1212125?11?∴f(x)在[0,?]上的单调递增区间是[0,],[················································ 6分 ,?].
1212?3???2?(Ⅱ)由f(B)?3得sin(2B?)?.又0?B?,则??2B??,从而
322333?333由AB?AD知?ABD是正三角形,AB?AD?BD,∴AD?DC?BD?DC?BC,
2B????,∴B??. ······································································································· 8分
在?ABC中,由正弦定理,得43sin?3?BC,即BC?8sin?BAC.
sin?BAC32?,∴?sin?BAC?1,知43?BC?8.
23第5页
∵D是BC边上一点,∴
?3??BAC?
当?BAC??2,C??6时,AD?CD取得最大值8. ···························································· 12分
【另】在?ACD中,由正弦定理,得
ADDC43,∴AD?8sinC, ???2?sinCsin(?C)sin3331??cosC?sinC) CD?8sin(?C),则AD?DC?8sinC?8sin(?C)?8(sinC?223331?2????2?,∴0?C?,?C??, ?8(cosC?sinC)?8sin(C?).∵?ADC?22333333当C??3??2,即C??6时,AD?DC取得最大值8. ························································ 12分
DNDC, ?ANAM20.【解】(Ⅰ)设AN?x(米),则x?2.∵?DCN??AMN,∴则
x?233x,AM?. ······························································································ 2分 ?xAMx?23x2∴花坛AMPN的面积S?AM?AN?(x?2). ························································ 4分
x?223x由S?27,得?27,则x2?9x?18?0,∴2?x?3或x?6,
x?2故AN的长度范围是2?AN?3或AN?6(米). ······························································ 8分
3x23[(x?2)2?4(x?2)?4]4(Ⅱ)由S?······················ 12分 ??3[(x?2)??4]?24, ·
x?2x?2x?24当且仅当x?2?,即x?4(米)时,等号成立.
x?2∴当AN的长度是4米时,扩建成的花坛AMPN的面积最小,最小值为24米2. ············ 13分
DNDC【另】(Ⅰ)设DN?x(米)(x?0),则AN?x?2. ∵?DCN∽?AMN,∴, ?ANAMx36则,AM?3?. ······························································································ 2分 ?x?2AMx612∴花坛AMPN的面积S?AM?AN?(3?)(x?2)?3x??12(x?0). ····················· 4分
xx12由S?27,得3x??12?27,则x2?5x?4?0,∴0?x?1或x?4,
x故AN的长度范围是2?AN?3或AN?6(米). ······························································ 8分
(Ⅱ)由S?(3?6)(x?2)?3x?12?12?23x?12?12?24, ··············································· 12分
xxx12,即x?2(米)时,等号成立. x∴当AN的长度是4米时,扩建成的花坛AMPN的面积最小,最小值为24米2. ············ 13分
221.【解】(Ⅰ)当a?2时,f(x)?2lnx?x2?2x,f?(x)??2x?2,切点坐标为(11),,
x切线的斜率k?f?(1)?2,则切线方程为y?1?2(x?1),即y?2x?1. ···························· 2分
当且仅当3x?(Ⅱ)g(x)?2lnx?x2?m,则g?(x)?2?2x??2(x?1)(x?1),
xx11∵x?[,e],故g?(x)?0时,x?1.当?x?1时,g?(x)?0;当1?x?e时,g?(x)?0.
ee故g(x)在x?1处取得极大值g(1)?m?1. ··········································································· 4分
11111又g()?m?2?2,g(e)?m?2?e2,g(e)?g()?4?e2?2?0,则g(e)?g(),
eeeee1∴g(x)在[,e]上的最小值是g(e). ··················································································· 6分
e
第6页
?g(1)?m?1?0,11解得, g(x)在[,e]上有两个零点的条件是?1?m?2?21?1ee?g()?m?2?2?0,?ee1······················································································ 8分 ]. ·e2(Ⅲ)∵f(x)的图象与x轴交于两个不同的点A(x1,,0)B(x2,0),
∴实数m的取值范围是(1,2?2??2lnx1?x1?ax1?0,∴方程2lnx?x?ax?0的两个根为x1,x2,则?两式相减得22lnx?x?ax?0,??2222(lnx1?lnx2)2.又f(x)?2lnx?x2?ax,f?(x)??2x?a,则a?(x1?x2)?x1?x2x2f?(x1?x22(lnx1?lnx2)44. ···················································· 10分 )??(x1?x2)?a??2x1?x2x1?x2x1?x2x2(lnx1?lnx2)4,即证明2(x2?x1)?lnx1?0,t?1, ??0(*)
x2x1?x2x2x1?x2x1?x2∵0?x1?x2,∴0?t?1,即证明u(t)?2(1?t)?lnt?0在0?t?1上恒成立. ··················· 12分
t?1?t)114(t?1)2∵u?(t)??2(t?1)?2(1,又0?t?1,∴u?(t)?0, ????(t?1)2tt(t?1)2t(t?1)2∴u(t)在(0,1)上是增函数,则u(t)?u(1)?0,从而知2(x2?x1)?lnx1?0,
x1?x2x2故(*)式<0,即f?(x1?x2)?0成立. ·················································································· 14分
2下证
第7页
正在阅读:
四川省资阳市2014届高三第一次诊断性考试数学理试题 Word版含答03-28
经典励志人生哲理的散文03-30
2018年哈尔滨市中考物理试题09-27
初中语文知识点《基础知识及语言表达》《扩展语句、压缩语段》同步课后测试(含答案考点及解析)03-14
简单的计算练习题05-22
给兄弟留言重情义的话大全02-21
花满楼散文03-30
静静的夜晚想老婆了散文03-30
市政道路绿化工程施工组织设计01-30
中国银行舆情5月报09-18
- 1四川省资阳市2008届第一次高考模拟考试数学(理科)试题
- 2四川省资阳市2014届高三第二次诊断考试物理试题
- 32022届四川省凉山州高三第一次诊断性检测数学(理科)试题Word版含
- 42019届四川省绵阳市高三第一次诊断性考试数学文试题Word版含答案
- 5四川省南充市2011届高三第一次高考适应性考试(word版):数学理
- 6(WORD版)四川省绵阳市高中2014届高三11月第一次诊断性考试物理试题
- 7四川省资阳市2015届高三第二次诊断性考试政治试题 Word版含答案
- 8四川省眉山市2015届高三第一次诊断性考试英语试题
- 9四川省绵阳市高中2015届高三第一次诊断性考试生物试题
- 10四川省德阳市2015届高三第一次诊断考试 生物试题
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 资阳市
- 四川省
- 学理
- 高三
- 试题
- 诊断
- 第一次
- 考试
- 2014
- Word
- 《毛泽东思想和中国特色社会主义理论体系概论》练习题(辨析题部
- 2014-2015少先队活动方案资料 - 图文
- 《泵与泵站》课程设计
- 会议通知2号-知名教授和教学骨干 - 图文
- 英汉衔接手段的对比及其翻译 - 以奥巴马诺贝尔和平奖获奖演说稿
- P2V常见问题
- 2018年毕业生就业质量年度报告 doc
- 南派藏医药的起源与发展
- 医患沟通制度-附详细内容及样表
- 在改变中寻求班级发展
- 微观经济学各校考研试题及答案整理 - 第4章
- 修路实习报告
- PLC考试题目整理
- 会计继续学习 企业内部控制 课后题目
- 小学冀教版第二学期语文能力测试题
- 交通部下四大研究院
- 2019届高三语文上学期期中试题(1)
- 基于Protuse仿真的AD模数转换设计 - 图文
- 2013年三级心理咨询师考试命题点分析:青年期的一般特征和思维发
- L6599功能(中文) - 图文