数字频带传输系统研究

更新时间:2023-12-07 20:32:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

石家庄铁道大学四方学院毕业设计

数字频带传输系统研究

Research of Digital Frequency Transmission

System

指导教师签字 时 间 年 月 日

摘 要

本文主要研究数字频带传输系统基本原理,包括二进制和多进制数字调制和解调原理,然后对调制和解调原理进行仿真,并对结果进行分析。

对二进制的数字频带系统,重点研究二进制振幅键控(2ASK)、二进制频移键控(2FSK)、二进制相移键控(2PSK)、二进制差分相移键控(2DPSK)的调制和解调原理,并对各个系统的功率谱进行分析;对多进制数字调制系统,研究了多进制振幅调制、多进制频率调制、多进制相位调制的原理,并以四进制为例对各个系统进行仿真,最后对系统的有效性进行分析。

关键词:频带传输 调制与解调 幅度键控 频移键控 相移键控

Abstract

This paper studies the basic principles of digital band transmission systems, including binary and multi-band digital modulation and demodulation, Also principles of the modulation and demodulation are simulated, with the results analyzed.

For the binary digital frequency transmission system, this paper focuses on the modulation and demodulation of the binary amplitude shift keying (2ASK), binary frequency shift keying (2FSK), binary phase shift keying (2PSK), binary differential phase shift keying (2DPSK) , and the power spectrum of each system is analyzed. For the M-ary digital frequency transmission system, this paper focuses on the basic principles of M-ary amplitude modulation, M-ary frequency modulation, M-ary phase modulation. Also simulation is accomplished, with the results analyzed.

Keywords: Frequency-Band transmission Modulation and demodulation Amplitude

shift keying Frequency shift keying Phase shift keying

目 录

第1章 绪论 ····································································································································· 1 1.1 研究的背景 ···························································································································· 1 1.2 研究的意义 ···························································································································· 3 1.3 国内外研究现状 ····················································································································· 4 1.4 主要研究内容 ························································································································ 5 第2章 数字频带传输系统的研究 ··································································································· 6 2.1 数字频带传输系统的概述 ····································································································· 6 2.2 二进制数字频带传输系统 ····································································································· 6 2.2.1 二进制振幅键控(2ASK) ····························································································· 6 2.2.2 二进制频率键控(2FSK) ······························································································ 7 2.2.3 二进制相移键控(2PSK) ······························································································ 8 2.2.4 二进制差分相移键控(2DPSK) ··················································································· 9 2.3 多进制数字频带传输系统 ····································································································10 2.3.1 多进制振幅键控(MASK) ··························································································10 2.3.2 多进制频移键控(MFSK) ···························································································10 2.3.3 多进制相移键控(MPSK) ··························································································· 11 第3章 二进制数字频带传输系统设计 ··························································································13 3.1 2ASK系统设计 ·····················································································································13 3.1.1 2ASK系统框图设计 ······································································································13 3.1.2 2ASK系统仿真及波形分析 ···························································································13 3.2 2FSK系统设计 ·····················································································································14 3.2.1 2FSK系统框图设计 ·······································································································14 3.2.2 2FSK系统仿真及波形分析 ····························································································15 3.3 2PSK系统设计 ·····················································································································17 3.3.1 2PSK系统框图设计 ·······································································································17 3.3.2 2PSK系统仿真及结果分析 ····························································································18 3.4 2DPSK系统设计···················································································································20 3.4.1 2DPSK系统框图设计 ····································································································20 3.4.2 2DPSK调制解调系统波形仿真 ·····················································································20 第4章 多进制数字频带传输系统的仿真设计 ···············································································22 4.1 4ASK系统仿真及结果分析 ··································································································22 4.2 4FSK系统仿真及结果分析 ··································································································23 4.3 4PSK系统仿真及结果分析 ··································································································24 第5章 结论与展望 ························································································································26

I

参考文献 ···········································································································································27 致谢 ···················································································································································28 附录 ···················································································································································29 附录A 外文资料·························································································································29 附录B 程序清单 ·························································································································48

II

石家庄铁道大学四方学院毕业设计

第1章 绪 论

1.1 研究的背景

通信是人类文明发展历史中一个永恒的话题,通信的历史演进伴随着通信技术的发展,它与人类社会的进步和科学技术的发展有极为密切的关系。通信技术的发展深刻地改变着人们的生产方式和生活习惯,推动人类社会向前迈进。从通信的发展可以看到社会进步的过程。从古时的烽火狼烟、飞鸽传书、驿站邮递到近代电报与电话的发明,再到现代以计算机和数字通信融合为代表的信息技术,每一次通信技术的飞跃,都深刻影响着人类的经济和社会生活。19世纪中叶以后,由于电报、电话的发明以及电磁波的发现,人类地通信手段发生了根本性的变革,开创了电气通信的新时代,随着科技水平的不断提高,相继出现了无线电、固定电话、移动电话、互联网等各种通信手段,先进的通信技术拉近了人与人之间的距离,回顾通信发展的历程,每一次相关重大技术的进步都孕育着通信技术水平的进一步提高。通信发展史也是一部人类科技进步史。1837年,美国人莫尔斯展示了世界上第一台电磁式电报机。1864年,英国人麦克斯韦预言了电磁波的存在。1875年,苏格兰人亚历山大·贝尔发明了世界上第一部电话机。1901年,意大利人马可尼成功实现了跨大西洋两岸的无线通信。1906年,美国人费森登研究出无线电广播发送机。1925年,美国无线电公司研制出第一部实用的传真机。1937年,英国人里夫斯首次提出用脉冲编码调制来进行数字语言通信的思想。1940年,美国人古马尔研制出机电式彩色电视系统。1945年,英国人克拉克提出静止人造卫星通信的设想。1946年,美国人埃克特和莫奇利发明了世界上第一台电子计算机。1947年,美国贝尔实验室提出来蜂窝网移动通信的概念。1957年,前苏联成功发射了人类第一颗人造卫星。1959年,美国人基尔比和诺伊斯发明了集成电路。1965年,第一部由计算机控制的程控电话交换机在美国问世。1966年英籍华人高锟提出以玻璃纤维进行远距离激光通信的设想。1969年,在美国投入运营的ARPA网形成了互联网的雏形。1974年,首次提出传输控制协议/互联网协议(TCP/IP),成为当代互联网的基础。1977年,美日科学家研制出超大规模集成电路。1982年,欧洲成立了移动通信特别组,制定了泛欧移动通信漫游标准。1983年,采用模拟蜂窝技术的先进移动电话系统(AMPS)在美国芝加哥开通。1991年,泛欧网数字移动通信系统投入商用。1993年,美国政府提出了建设国家“信息高速公路”的建设计划。20世纪80年代初,随着我国改革开放政策的实施,人们对通信业务的

1

石家庄铁道大学四方学院毕业设计

需求日益膨胀,为国内通信事业的快速成长提供了巨大的发展机会。通信业务以超常规、成倍数、跳跃式的发展速度和发展规模取得了令世人瞩目的成就。1982年,福州引进了第一套万门程控电话交换机。1983,上海率先开通了第一个模拟通信寻呼系统。1984,年东方红二号同步通信卫星发射成功。1984年,中外合资上海贝尔电话设备有限公司成立。1986年,国家对通信技术设备进口实行10年关税减免政策。1987年,第一个TACS制式模拟蜂窝移动电话系统在广东建成并投入使用。1988年,第一个实用单模光纤通信系统(34Kbit/s)在扬州、高邮之间开通。1990年,第一条长途光缆——宁汉光缆干线工程建成投产。1991年,自主研发的HJD-04型程控交换机研制成功。此后,以大唐、中兴、华为公司,以及武汉邮电科学研究院等为代表的民族通信制造业实现了群体突破。1993年,第一条公用数据通信网—公用分组交换网(CHINAPAC)正式开通。此后陆续开通了公用数字数据网(CHINADDN)和中国公用计算机互联网(CHINANET)。1993年,第一条国际光缆——中日海底光缆投入使用。1994年,广东开通了GSM数字蜂窝移动电话网。1995年,联通GSM130数字移动电话网在北京、天津、上海、广州建成开通。1996年,移动电话实现全国漫游,并开始提供国际漫游服务。1998年,正式向国际电联提交第三代移动通信标准(简称3G)——TD-SCDMA,该标准成为第一个具有自主知识产权并被国际上广泛接受和认可的无线通信国际标准。1999年,第一条传输速率为8×2.5Gbit/s的密集波分复用(DWDM)系统开通。2002年,中国移动通信GPRS业务正式投入商用,中国移动迈入2.5G时代。2006年,TD-SCDMA被宣布成为我国的国家通信行业标准。2009年初,3G牌照正式发放,标志着我国进入第三代移动通信的普及阶段,WCDMA、cdma2009和TD-SCDMA三大主流无线移动通信标准竞争并存的时代来临。

回顾国内外通信发展史,不难看出未来通信产业发展的一些显著特征:伴随着一系列新技术的不断涌现,通信技术和手段会进一步得到提升。以光信号作为信息的载体,以微电子学和光电技术为基础,结合计算机技术,网络信息处理技术,预示着高速、宽带、无缝连接的数字化信息时代即将到来。

随着通信系统复杂性的增加,传统的手工分析与电路板实验的分析设计方法已经不能适应发展的需要,通信系统计算机模拟仿真技术日益显示出巨大的优越性。计算机仿真是根据被研究的真实系统的模型,利用计算机进行试验研究的一种方法。它具有利用模型进行仿真的一系列优点,如费用低易于进行真实系统难于实现的各种试验,以及易于实现完全相同的条件下的重复性试验等。Matlab仿真软件就是分析通信系统常用的工具之一。Matlab是一种交互式的,以矩阵为基础的软件开发环境,它用于科学和工程的计算与可视化。Matlab的编程功能简单并且很容易扩展和创造新的命令与函数。应用Matlab可方便的解决复杂数值计算问题。Matlab具有很强大的

2

石家庄铁道大学四方学院毕业设计

Simulink动态仿真环境,可以实现可视化建模和多工作环境间文件互用和数据交换。Simulink支持连续、离散及两者混合的线性和非线性系统,也支持多采样速率的多速率系统,Simulink为用户提供了用方框图建模的图形接口,它与传统的仿真软件包用差分方程和微分方程建模相比,更直观、方便和灵活。用户可以在Matlab和Simulink两种环境下对自己的模型进行仿真、分析和修改。用于实现通信仿真的通信工具包是Matlab语言中一个科学性工具包,提供通信领域中计算、研究模拟发展、系统设计和分析的功能,可以在Matlab环境下独立使用,也可以配合Simulink使用。因此,Matlab在通信仿真系统中得到了广泛的应用。

1.2 研究的意义

数字调制是指用基带信号对载波的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。根据控制载波参量的不同,数字调制有调幅、调频、调相三种基本形式,并可以派生出多种其他形式。由于传输失真、传输损耗以及保证带内特性的原因,基带信号不适合在各种信道上进行长距离传输。为了进行长途传输,必须对数字信号进行载波调制,将信号频谱搬移到高频处才能在信道中传输。因此,大部分现代通信系统都使用数字调制技术。另外,由于数字通信具有建网灵活,容易采用熟悉差错控制技术和数字加密,便于集成化,并能够进入综合业务数字网(ISDN),所以通信系统都有由模拟方式向数字方式过度的趋势。因此,对数字通信系统的分析与研究越来越重要,数字调制作为数字通信系统的重要组成部分之一,对它的研究也是有必要的。通过对调制系统的仿真,我们可以更加直观的了解数字调制解调的原理及性能,从而便于改进系统,获得更佳的传输性能。而数字频带传输系统的研究是在数字基带的传输系统的基础上进行改进。为使数字基带信号能够在信道中传输,要求信道具有低通形式的传输特性。但在实际信道中大多数新道具有带通传输特性,因此,必须用数字信号来调制某一较高频率的正弦载波,使已调信号能通过带限信道传输。这种用基带数字信号控制高频载波,把基带数字信号变换为频带数字信号的过程称为数字调制。而已调信号通过信道传输到接收端,在接收端通过解调器把频带数字信号还原成基带数字信号,这种数字信号的反变换称为数字解调。一般说来,数字调制技术可分为两种类型:一是利用模拟调制方法去实现数字调制,即把数字基带信号当做模拟信号的特殊情况来处理;二是利用数字信号的离散取值特点键控载波,从而实现数字调制。第二种技术通常称为键控法,比如对载波的振幅,频率及相位进行键控,便可相应获得振幅键控(ASK),频移键控(FSK)及相移键控(PSK)调制方式。

3

石家庄铁道大学四方学院毕业设计

1.3 国内外研究现状

数字通信的主要优点是抗干扰能力强,无噪声积累,可利用数字技术进行加/解密和检纠错,便于实现通信设备的集成化、微型化和智能化,有利于信号的存储、传输与交换的综合,可兼容语音、数据、文本、图像等多业务,因此自20世纪70年代以来,取得了飞速发展。最早的电通信形式,即1837年S.莫尔斯演示的电报试验就是一个数字通信系统。1937年提出的脉冲编码调制是应用最早和最广泛的数字语音通信方式,1960年世界上第一台数字电话终端机开始用于市内电话网改造,从此数字通信的优势和潜力逐渐被人们所认识和挖掘。随着集成电路、超大规模集成电路、光纤传输技术的应用,数字通信进入全盛时期,成为世界各国主要研究、应用和发展的领域。调制技术最初是从模拟信号的调制与解调技术开始发展的,这是因为当时的通信系统为模拟系统。后来,随着数字通信技术的发展,数字调制技术也得到了迅速发展和广泛应用。随着各种通信系统数量的日益增多,为了充分地利用有限的频谱资源,广大通信科研工作者致力于研究具有更高频谱利用率的数字调制技术,而且原CCITT一直在促进并鼓励开发新奇的频谱使用技术,由于原CCITT科学地将频段分别分配给各种通信系统,以便各种通信系统能够有效地进行通信,因而,许多用户团体、科研院所和通信公司都在开发先进的调制技术来提高给定频谱的利用率。众所周知,调制技术是通信系统中的关键技术之一,尤其对于数字通信系统,字调制技术更关系到系统性能的优劣。对于数字调制技术的主要要求是:已调信号要具有比较窄的频谱宽度和较快的带外衰减(即已调信号所占频带窄,或者称频谱利用率高);对于已调信号要容易采用相干或非相干方法解调;而且已调信号要具有较强的抗噪声和抗干扰能力,并适宜在衰落信道中传输。提高频谱利用率是提高通信系统容量的重要措施,也是人们规划和设计通信系统的关注焦点。高的频谱利用率就是要求已调信号所占的带宽要窄,即已调信号频谱从天线发射时功率的主瓣要窄,同时旁瓣的幅度要低(也就是要求辐射到相邻频道的功率要小)。对于数字调制系统而言,频谱利用率指的是传输效率问题,也就是说,不仅要关心通信系统的传输速率,还要看在这样的传输速率下所占用的信道频带宽度是多少。如果系统的频谱利用率高,则说明通信系统的传输效率高,否则传输效率就低。频谱利用率通常定义为单位频带(1Hz)内信息传输速率(单位为bit/s)和码元传输速率的高低。这里指的“高效”就是指具有较高的频谱利用率。从频谱利用率的定义可以看出,要提高通信系统的利用率有两种途径:一是降低已调信号的频谱宽度,二是提高该调制系统的信息传输速率。由于恒包络调制技术具有相对较窄的频谱,因而得到了重视和利用,并且获得了飞速的发展。另一种获得迅速发展的调制技术是振幅和相位联合调制(QAM)技术,该技术具有较高

4

石家庄铁道大学四方学院毕业设计

的信息传输速率。由于移动通信、导航控制技术的迅速发展,使得码分多址通信系统发展非常迅猛,也使得正交频分复用(OFDM)技术获得了新生,并得到极快的发展,该技术可以克服码间干扰并极大地提高系统的容量。随着通信技术的迅速发展,通信速度已经越来越不适应发展的要求了,因此多进制数字调制应运而生,它指的是调制信号的不同状态数大于2的数字调制,当信道频带受限时可以使信息传输率增加,从而提高频带利用率。现在多进制数字调制技术得到了越来越广泛的应用。它也可以相应地分为多进制振幅键控、频移键控和移相键控。多进制振幅键控(MASK),即载波的振幅有M种取值:A0,A1,A2,AM-1,每个符号间隔TS内发送一种振幅载波信号。MASK的调制方法与2ASK的方法相同,不同的只是基带信号由二电平变为多电平。多进制移相键控(MPSK),即载波的相位有M种取值。常用的有4PSK(又称QPSK)和8PSK。4PSK可以采用0、π/2、π、3π/2四种相位,也可以采用π/4、3π/4、5π/4、7π/4四种相位。另外,为了提高传输速率,现在经常采用幅度和相位联合调制方式(QAM)。所谓幅相联合调制是指调制载波的振幅和相位都随独立的基带信号而变化。CCITTV.29“点对点四线租用电话型电路上使用的标准化9600bit/s调制解调器”标准就是采用4QAM调制方式。在4QAM中,要传送的组合数据流经扰频后分为4比特一组,每4比特中的第一个比特决定了要传送信号的幅度,而其余3比特则决定要采用的相位变化。另外,目前较常使用的有16QAM、64QAM和256QAM[1]。

1.4 主要研究内容

本文主要研究二进制和多进制数字频带传输系统,利用MATLAB仿真了2ASK、2FSK、2PSK、2DPSK的信号时间波形和功率谱密度,分析了频谱特性和带宽,并根据设计的调制解调原理框图仿真出了它们的调制解调波形,在多进制调制原理的基础上,以四进制为例仿真了4ASK、4FSK、4PSK的信号时间波形和功率谱,分析了与二进制数字频带传输系统的异同和优劣,着重对4PSK进行调制解调仿真。

5

石家庄铁道大学四方学院毕业设计

第2章 数字频带传输系统的研究

2.1 数字频带传输系统的概述

数字调制就是把数字基带信号变换为数字带通信号(已调信号)的过程。通常把包括调制和解调过程的数字传输系统称为数字带通传输系统。在远距离传输情况下,特别是在无线或者光纤信道传输时,因为信道都是带限信道或带通信道,含有丰富低频成分的数字基带信号无法直接传输,必须经过调制器进行解调,使其成为数字频带(载波)信号后再进行传输,在接收端经过相应解调器,将其还原成数字基带信号,从实际的应用上来看,数字频带传输比基带传输的应用更加广泛。数字调制技术有两种方法:利用模拟调制的方法去实现数字式调制;通过开关键控载波,通常称为键控法。基本的键控方式分为振幅键控、频移键控、相移键控。数字调制可分为二进制调制和多进制调制。

所谓多进制数字调制,就是利用多进制数字基带信号去调制高频载波的某个参量,如幅度、频率或相位的过程。根据被调参量的不同,多进制数字调制可分为多进制幅度键控(MASK)、多进制频移键控(MFSK)以及多进制相移键控(MPSK或MDPSK)。也可以把载波的两个参量组合起来进行调制,如把幅度和相位组合起来得到多进制幅相键控(MAPK)或它的特殊形式多进制正交幅度调制(MQAM)等。由于多进制数字已调信号的被调参数在一个码元间隔内有多个取值,因此,与二进制数字调制相比,多进制数字调制有以下几个特点:(1)在码元速率(传码率)相同条件下,可以提高信息速率(传信率),使系统频带利用率增大。码元速率相同时,进制数传系统的信息速率是二进制的log2M倍。在实际应用中,通常取M?2k,k为大于1的正整数。(2)在信息速率相同条件下,可以降低码元速率,以提高传输的可靠性。信息速率相同时,M进制的码元宽度是二进制的log2M倍,这样可以增加每个码元的能量,并能减小码间串扰影响等。正是基于这些特点,使多进制数字调制方式得到了广泛的使用。不过,获得以上几点好处所付出的代价是,信号功率需求增加和实现复杂度加大[2]。

2.2 二进制数字频带传输系统

2.2.1 二进制振幅键控(2ASK)

振幅键控是利用载波的幅度变化来传递数字信息的,而其频率和初始相位保持不

6

石家庄铁道大学四方学院毕业设计

变。在2ASK中,载波的幅度只有两种变化状态,分别对应二进制信息“0”和“1”。一种常用的也是最简单的二进制振幅键控方式称为通-断键控,2ASK信号的一般表达式为:

e2ASK(t)?s(t)cos?ct (2-1)

其中

s(t)??ang(t?nTs) (2-2)

Ts为码元持续时间;g(t)为持续时间为Ts的基带脉冲波形,通常假设是高度为1,宽度等于Ts的矩形脉冲;?n为第N个符号的电平取值,若取

n?1,概率为p (2-3) an??1-p?0,概率为则相应的2ASK信号就是OOK信号。

二进制振幅键控信号的产生方法有两种:模拟调制法(相乘器法)和键控法。2ASK信号与模拟调制中的AM信号类似,所以对2ASK信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法)。

由于2ASK信号是随机的功率信号,故研究它的频谱特性时,应该讨论它的功率谱密度。若设s(t)的功率谱密度为Ps(f),2ASK信号的功率谱密度为:

1P2ASK(f)?[Ps(f?fc)?Ps(f?fc)] (2-4)

42.2.2 二进制频率键控(2FSK)

频移键控时利用载波的频率来传递数字信息的。在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。若二进制基带信号的“1”符号对应于载波频率f1,“0”符号对应于载波频率f2,则二进制移频键控信号的表达式为:

????e2FSK(t)???ang(t?nTs)?cos(?1t??n)???ang(t?nTs)?cos(?2t??n) (2-5)

?n??n?式(2-5)中g(t)为单个矩形脉冲,Ts为脉冲持续时间,?n和?n分别是第n个信号码元(1或0)的初始相位,通常可令其为零。

2FSK信号的产生方法主要有两种。一种可以采用模拟调频电路来实现;另一种可以采用键控法来实现。解调方法是采用非相干解调(包络检波)和相干解调。其解调原理是将2FSK信号分解为上下两路2ASK信号分别进行解调,然后进行判决。这里的抽样判决是直接比较两路信号的抽样值的大小,可以不专门设置门限。

对于相位不连续的2FSK信号的功率谱密度可以近似表示成两个不同载频的2ASK信号功率谱密度的叠加,因此2FSK频谱可以近似表示成中心频率分别为f1和f2的两个2ASK频谱的组合。2FSK信号的功率谱的表示式:

7

石家庄铁道大学四方学院毕业设计

P2FSK(f)?1?Ps1(f?f1)?Ps1(f?f1)??1?Ps2(f?f2)?Ps2(f?f2)? (2-6) 442.2.3 二进制相移键控(2PSK)

相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和?分别表示二进制“1”和“0”。因此2PSK信号的时域表达式为:

e2PSK(t)?Acos(?ct??n) (2-7)

式(2-7)中,?n表示第n个符号的绝对相位:

(2-8) ?n??1”时??,发送“因此,式(2-8)可以改写为:

?0,发送“0”时?Acos?ct,概率为P (2-9) e2PSK(t)??1-P??Acos?ct,概率为由于表示信号的两种码元的波形相同,极性相反,故2PSK信号一般可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波的相乘,即:

e2PSK(t)?s(t)cos?ct (2-10)

式(2-10)中

s(t)??ang(t?nTs) (2-11)

这里,g(t)是脉宽为Ts的单个矩形脉冲而?n的统计特性为

n?1,概率为P (2-12) an??1?P??1,概率为即发送二进制符号“0”时(an取+1),e2发送二进制符号“1”时(anKSP(t)取0相位;取-1)。这种以载波的不同相位直接去表示相位相应二进制数字信号的调制方式称为二进制绝对相移方式。

2PSK信号的产生有两种方法:模拟调制法和键控法,与2ASK信号的产生方法相比较,只是对s(t)的要求不同,在2ASK中s(t)是单极性的,而在2PSK中s(t)是双极性的基带信号。2PSK信号的解调通常采用相干解调法[3]。

比较2ASK信号的表达式和2PSK的信号表达式可知两者的表示形式完全一样,区别仅在于基带信号s(t)不同,前者为单极性,后者为双极性。因此,我们可以直接引用2ASK信号的功率普遍密度的公式来表述2PSK信号的功率谱,即

8

石家庄铁道大学四方学院毕业设计

P2PSK?1?Ps(f?fc)?Ps(f?fc)? (2-13) 42.2.4 二进制差分相移键控(2DPSK)

2DPSK是利用前后相邻码元的载波相对变化传递数字信息,所以又称相对相移键控。假设??为当前码元与前一码元的载波相位差,可定义一种数字信息与??之间的关系为:

0”?0,表示数字信息“ ????1”??,表示数字信息“于是可以将一组二进制数字信息与其对应的2DPSK信号的载波相位关系示例如下: 二进制数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位: (0) ?????????????????????????????????????????????? 或: (?)??????????????????????????????????????????????? 相应的?DPSK信号的波形如下: ???

(a)绝对码(b)相对码10参考100011011(c)2DPSK 图2-1 2DPSK信号波形图

t2DPSK信号的产生方法可以采用:首先对二进制数字基带信号进行差分编码,将绝对码表示二进制信息变换为用相对码表示二进制信息,然后再进行绝对调相,从而产生二进制差分相位键控信号。2DPSK信号的解调方法之一是相干解调(极性比较法)加码反变换法。其解调原理是:对2DPSK信号进行相干解调,恢复出相对码,再经反变换器变换为绝对码,从而恢复出发送的二进制数字信息。在解调过程中,由于载波相位模糊性的影响,使得解调出的相对码也可能是“1”和“0”倒置,但经差分译码(码反变换)得到的绝对码不会发生任何倒置的现象,从而解决了载波相位模糊性带来的问题。2DPSK信号的另一种解调方法是差分相干解调方式(相位比较法)。用这种方法解调时不需要专门的相干载波,只需要由收到的2DPSK信号延时一个码元间隔Ts,然后与2DPSK信号本身相乘。相乘器起着相位比较的作用,相乘结果反映了前后码元的相位差,经低通滤波后再抽样判决,即可直接恢复出原始数字信息,故解调器不需要码反变换。

9

石家庄铁道大学四方学院毕业设计

2DPSK可以与2PSK具有相同形式的表达式,所不同的是2PSK中的基带信号s(t)对应的是绝对码序列,而2DPSK中的基带信号s(t)对应的是码变换后的相对码序列。因此,2DPSK信号的2PSK信号的功率谱密度是完全一样的[4]。

2.3 多进制数字频带传输系统

2.3.1 多进制振幅键控(MASK)

多进制振幅调制(MASK)又称为多电平调制,它是二进制数字幅度调制方式的推广。MASK信号的带宽和2ASK信号的带宽相同,故单位频带的信息传输速率高,即频带利用率高。M进制幅度调制信号的载波振幅有M种取值,在一个码元期间Tb内,发送其中的一种幅度的载波信号。MASK已调信号的表示式为:

Smask(t)?s(t)cos?ct (2-14)

这里,s(t)为M进制数字基带信号:

s(t)??n????ang(t?nTb) (2-15)

式(2-14)中,g(t)是高度为1,宽度为Tb的门函数;an有M种取值。

2.3.2 多进制频移键控(MFSK)

它是用M个不同的载波频率代表M种数字信息。MFSK系统的组成方框图如图2-2所示。发送端采用键控选频的方式,接收端采用非相干解调方式。

图2-2 多进制数字频率调制的组成框图

10

石家庄铁道大学四方学院毕业设计

串/并变换器和逻辑电路1将一组组输入的二进制码(每k个码元为一组)对应地转换成有M(M?2k)种状态的一个多进制码。这M个状态分别对应M个不同的载波频率(f1,f2,...fM)。当某组k位二进制码到来时,逻辑电路1的输出一方面接通某个门电路,让相应的载频发送出去,另一方面同时关闭其余所有的门电路。于是当一组组二进制码元输入时,经相加器组合输出的便是一个M进制调频波形。M进制的解调部分由M个带通滤波器、包络检波器及一个抽样判决器、逻辑电路2组成。各带通滤波器的中心频率分别对应发送端各个载频。因而,当某一已调载频信号到来时,在任一码元持续时间内,只有与发送端频率相应的一个带通滤波器能收到信号,其它带通滤波器只有噪声通过。抽样判决器的任务是比较所有包络检波器输出的电压,并选出最大者作为输出,这个输出是一位与发端载频相应的M进制数。逻辑电路2把这个M进制数译成k位二进制并行码,并进一步做并/串变换恢复二进制信息输出,从而完成数字信号的传输[5]。

2.3.3 多进制相移键控(MPSK)

它是利用载波的多种不同相位状态来表征数字信息的调制方式。与二进制数字相位调制相同,多进制数字相位调制也有绝对相位调制(MPSK)和相对相位调制(MDPSK)两种。设载波为cos?ct,则M进制数字相位调制信号可表示为

SMPSK(t)??g(t?nTb)cos(?ct??n)

?cos?ct?cos?ng(t?nTb)?sin?ct?sin?ng(t?nTb) (2-16)

n?n为第n个码元对应的相位,共有M种不同取值。由于一般都是在0?2?范围内等

间隔划分相位的(这样造成的平均差错概率将最小),因此相邻相移的差值为

??1,概率为P1???,概率为P2 ?n??2?....,....??,概率为PM?M2???? (2-17)

Mnn令an?cos?n,bn?sin?n,式(2-17)变为

????SMPSK(t)???ang(t?nTb)?cos?ct???bng(t?nTb)?sin?ct

?n??n??I(t)cos?ct?Q(t)sin?ct (2-18) 这里

??I(t)???ang(t?nTb)?

?n?11

石家庄铁道大学四方学院毕业设计

??Q(t)???bng(t?nTb)?

?n?常把式(2-18)中第一项称为同相分量,第二项称为正交分量。由此可见,MPSK信号可以看成是两个正交载波进行多电平双边带调制所得两路MASK信号的叠加。这样,就为MPSK信号的产生提供了依据,实际中,常用正交调制的方法产生MPSK信号[6]。

12

石家庄铁道大学四方学院毕业设计

第3章 二进制数字频带传输系统设计

3.1 2ASK系统设计

3.1.1 2ASK系统框图设计

图3-1 2ASK系统框图

在2ASK调制解调系统中,调制时,将基带信号与载波相乘形成2ASK信号,解调时,让已调信号通过带通滤波器,然后通过相乘器与相干载波相乘,最后通过低通滤波器,经抽样判决,恢复出原基带信号[7]。

3.1.2 2ASK系统仿真及波形分析

图3-2 2ASK系统仿真波形

13

石家庄铁道大学四方学院毕业设计

载波采用高频正弦波,基带信号经调制以后,2ASK信号波形随基带信号变化,当调制信号为“1”时有载波信号,当调制信号为“0”时无载波,也就是说2ASK是用已调波幅度的变化来传递数字信息的。当2ASK信号经过信道时会产生加性噪声,通过带通滤波器后滤除部分噪声,在相乘器中与相干载波相乘进行整流,在经过低通滤波器滤除高频分量,抽样判决后还原成原基带信号。

图3-3 2ASK功率谱密度

从图3-2和图3-3的仿真波形可以看出:第一,2ASK信号的功率谱由连续谱和离散谱两部分组成;连续谱取决于单个基带信号码元经线性调制后的双边带谱,而离散谱由载波分量确定。第二,2ASK信号的带宽是基带信号带宽的2倍,若只计谱的主瓣(第一个谱零点位置)即2ASK信号的传输带宽是码元速率的两倍。

3.2 2FSK系统设计

3.2.1 2FSK系统框图设计

振荡器1f1选通开关基带信号反相器e2FSK(t)相加器振荡器2f2选通开关图3-4 2FSK调制框图

14

石家庄铁道大学四方学院毕业设计

带通滤波器?1相乘器 低通滤波器定时脉冲e2FSK(t)cos?1tcos?2t带通滤波器输出抽样判决器?2相乘器低通滤波器图3-5 2FSK相干解调框图

2FSK系统分为调制系统和解调系统。图3-4为2FSK的键控调制,即在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同独立频率源进行选通,使其在每一个码元Ts期间输出f1或f2两个载波之一,例如,当基带信号为“1”时选通载波频率为f1,根据2FSK的时域表达式“1”的反码为“0”,所以基带信号经过一个反相器继而选通载波频率f2,两路信号在相加器内叠加。图3-5为2FSK相干解调原理框图,其解调原理是由于2FSK可以看作是两个频率不同的2ASK信号的叠加,故其相干解调可以分解为上下两路2ASK信号分别进行解调,每一支路的解调与2ASK相类似,然后进行判决[8]。

3.2.2 2FSK系统仿真及波形分析

图3-6 基带信号与两种载波的产生

图3-6中第一个波形是基带信号的产生,第二个波形为基带信号反码的产生,即代表1和0的调制信号。第三波形和第四波形为两种不同频率载波信号的产生。

15

石家庄铁道大学四方学院毕业设计

第5章 结论与展望

本文主要研究了二进制数字频带传输系统及多进制数字频带传输系统,对2ASK、2FSK、2PSK、2DPSK信号进行了波形及功率谱的仿真和它们的调制解调系统的仿真,以及以四进制为例仿真了多进制时间波形和功率谱密度,通过对上述内容的分析可以清楚地看出数字频带调制的特点,比较它们的特性以便选取。根据各个调制系统的带宽来分析它们的抗噪声性能具体来说,在2ASK系统中利用模拟调制的方法实现了2ASK信号的产生以及利用了相干解调进行了解调,分析了它的功率谱密度;对2FSK所作的工作是利用matlab仿真了它的调制和解调及功率谱密度并对它的频谱进行了分析;2PSK和2DPSK进行了同样的工作,从以上这些内容对比来看二进制数字调制中,从数据传播速率来说PSK>FSK>ASK。ASK抗噪声性能最差,抗衰落能力不强,因而一般适应在恒参信道中使用,FSK抗噪声能力较强,实现起来容易,PSK在有线信道上能实现高速传播,但要求接收机上有稳定的参考相位来分辨所使用各种相位,抗噪声性能最好,抗衰减能力也强,实现起来较为复杂。而多进制与二进制系统相比提高了频带利用率但是实现上的复杂性加大,在相同信息速率下,多进制信号码元持续时间比二进制的要宽,加宽码元宽度会增加信号码元能量也能减小因信道特性引起的码间干扰的影响等。

这些原理推广到多进制提高了频带利用率。数字通信发展如新月异,大规模集成电路的出现和发展取代了复杂的电路,同时高效的数字压缩技术以及光纤等大容量传输介质的使用正逐渐使带宽问题得到解决,加上数字通信系统中传输技术的不断完善和成熟,使整个系统的传输有效性和可靠性大大加强,同时新的基带、频带传输技术在不断地开发和研究中,必将推动数字通信在各应用领域的快速发展。

26

石家庄铁道大学四方学院毕业设计

参考文献

[1] 樊昌信.通信原理[M].国防工业出版社.2005:25-26

[2] 邓华等.MATLAB通信仿真及应用实例详解[M].人民邮电出版社.2003:275-324 [3] John GProakis等.现代通信系统[M].电子工业出版社.2005:224-270

[4] A.Morgado,V.J.Rivas,R.del Río,R.Castro-Lopez,F.V.Fernandez,J.M.de la Rosa.Behavioral modeling,simulation and synthesis of multi-standard wireless receivers in MATLAB/SIMULINK. Integration, the VLSI Journal, Volume 41, Issue 2, February 2008: 269-280

[5] 邵玉斌.MATLAB/SIMULINK通信系统建模与仿真实例分析[M].清华大学出社.2008:298-317 [6] 施阳.MATLAB语言精要及动态仿真工具SIMULINK[M].西北工业大学出版社.1999:45-278 [7] Xie Wei, Hu Guijun, Deng Qing. Application of Turbo codes in optical OFDM multimode fiber communication system [J]. Optics Communications, Volume 281, Issue 5, 1 March 2008:1118-1122.

[8] 谢晓燕等.基于MATLAB的通信系统仿真应用研究[J].通信技术.2007年12期:82-84 [9] 廖科等.OFDM技术及其MATLAB模拟[J].无线通信技术.2004年3期:10-12

[10] 李晓丽等.基于Simulink的16QAM调制系统的仿真实现[J].仪器仪表用户.2008年5期:84-85 [11] 张平等.MATLAB基础与应用[J].北京航空航天大学出版社.2007:345-365 [12] 马凌.数字通信系统传输技术研究[J].中国科技论文在线.2007年12期:66-12

27

石家庄铁道大学四方学院毕业设计

致 谢

在本次课题的研究与论文的完成是在指导老师王兰勋老师的帮助下顺利完成的,历时两个月的学习与探讨及研究过程中发现了许多问题,在参阅了大量文献之后,使我对该课题有了更深入的理解,王老师的耐心辅导和讲解使我受益匪浅,更感受到她严谨的学术作风和对工作的精益求精,对我的严格要求使我受益良多。大学四年的学习生活即将结束,王老师对我的帮助将是我一生的财富,在完成论文的过程中,不仅在研究中有了提高,更从老师那里学习到了如何研究的方法,这对我将是刻骨铭心的,对我今后的工作有着深远的影响。当然还要感谢系里领导老师的关怀与帮助,她们的鼓励将是我一生的鞭策动力。

28

石家庄铁道大学四方学院毕业设计

附 录

附录A 外文资料

1. INTRODUCTION

In this book, we present the basic principles that underlie the analysis and design of digital communication systems.The subject of digital communications involves the transmission of information in digital form from a source that generates the information to one or more destinations. Of particular importance in the analysis and design of communication systems are the characteristics of the physical channels through which the information is transmitted. The characteristics of the channel generally affect the design of the basic building blocks of the communication system. Below, we describe the elements of a communication system and their functions.

1-1 ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM

Figure 1-1-1 illustrates the functional diagram and the basic elements of a digital communication system. The source output may be either an analog signal, such as audio or video signal, or a digital signal, such as the output of a teletype machine, that is discrete in time and has a finite number of output characters. In a digital communication system, the messages produced by the source are converted into a sequence of binary digits. Ideally, we should like to represent the source output (message) by as few binary digits as possible. In other words, we seek an efficient representation of the source output that results in little or no redundancy. The process of efficiently converting the output of either an analog or digital source into a sequence of binary digits is called source encoding or data compression.

The sequence of binary digits from the source encoder, which we call the information sequence, is passed lo the channel encoder. The purpose of the channel encoder is to introduce, in a controlled manner, some redundancy in the binary information sequence that can be used at the receiver to overcome the effects of noise and interference encountered in the transmission of the signal through the channel. Thus, the added

29

石家庄铁道大学四方学院毕业设计

redundancy serves to increase the reliability of the received data and improves the fidelity of the received signal.In effect, redundancy in the information sequence aids the receiver in decoding the desired information sequence. For example, a (trivial) form of encoding of the binary information sequence is simply to repeat each binary digit m times,where m is some positive integer. More sophisticated (nontrivial) encoding involves talcing k information bits at a time and mapping each k-bit sequence into a unique n-bit sequence, called a code word. The amount of redundancy introduced by encoding the data in this manner is measured by the ratio n/k.The reciprocal of this ratio, namely k/n, is called the rate of the code or,simply, the code rate.

The binary sequence at the output of the channel encoder is passed to the digital modulator, which serves as the interface to the communications channel.Since nearly all of the communication channels encountered in practice are capable of transmitting electrical signals (waveforms), the primary purpose of the digital modulator is to map the binary information sequence into signal waveforms. To elaborate on this point, let us suppose that the coded information sequence is to be transmitted one bit at a time at some uniform rate R bits/s. The digital modulator may simply map the binary digit 0 into a waveform s0(t) and the binary digit 1 into a waveform j,(i). In this manner,each bit from the channel encoder is lransmitted separately. We call this binary modulation. Alternatively, the modulator may transmit b coded information

bits at a time by using M = 2s distinct waveforms j.(r), i = 0,1M - 1, one waveform for each of the 2\new 6-bit sequence enters the modulator every b/R seconds. Hence, when the channel bit

30

石家庄铁道大学四方学院毕业设计

rate R is fixed, the amount of time available to transmit one of the M waveforms corresponding to a 6-bit sequence is b times the time period in a system that uses binary modulation.

The communication channel is the physical medium that is used to send the signal from the transmitter to the receiver. In wireless transmission, the channel may be the atmosphere (free space). On the other hand, telephone channels usually employ a variety of physical media, including wire lines,optical fiber cables, and wireless (microwave radio). Whatever the physical medium used for transmission of the information, the essential feature is that the transmitted signal is corrupted in a random manner by a variety of possible mechanisms, such as additive thermal noise generated by electronic devices,man-made

noise,

e.g.,

automobile

ignition

noise,and

atmospheric

noise,e.g..electrical lightning discharges during thunderstorms.

At the receiving end of a digital communications system, the digital demodulator processes the channel-corrupted transmitted waveform and reduces the waveforms to a sequence of numbers that represent estimates of the transmitted data symbols (binary or M-ary). This sequence of numbers is passed to the channel decoder, which attempts to reconstruct the original information sequence from knowledge of the code used by the channel encoder and the redundancy contained in the received data.

A measure of how well the demodulator and decoder perform is the frequency with which errors occur in the decoded sequence. More precisely,the average probability of a bit-error at the output of the decoder is a measure of the performance of the demodulator-decoder combination. In general, the probability of error is a function of the codc characteristics, the types of waveforms used to transmit the information over the channci, the transmitter power, the characteristics of the channel, i.e., the amount of noise, the nature of the interference, etc., and the method of demodulation and decoding. These items and their effect on performance will be discussed in detail in subsequent chapters.

As a final step, when an analog output is desired, the source decoder accepts the output sequence from the channel decoder and, from knovtledge of the source encoding method used, attempts to reconstruct the original signal from the source. Due to channel decoding errors and possible distortion introduced by the source encoder and, perhaps, the source decoder, the signal at the output of the source decoder is an approximation to the original source output.The difference or some function of the difference between the original signal and the reconstructed signal is a measure of the distortion introduced by the

31

石家庄铁道大学四方学院毕业设计

digital communication system.

1-2 COMMUNICATION CHANNELS AND THEIR CHARACTERISTICS

As indicated in the preceding discussion, the communication channel provides the connection between the transmitter and the receiver. The physical channel may be a pair of wires that carry the electrical signal, or an optical fiber thai carries the information on a modulated light beam, or an underwater ocean channel in which the information is transmitted acoustically, or free space over which the information-bearing signal is radiated by use of an antenna. Other media that can be characterized as communication channels are data storage media, such as magnetic tape, magnetic disks, and optical disks.

One common problem in signal transmission through any channel is additive noise. In general, additive noise is generated internally by components such as resistors and solid-state devices used to implement the communication system.This is sometimes called thermal noise. Other sources of noise and interference may arise externally to the system, such as interference from other users of the channel. When such noise and interference occupy the same frequency band as the desired signal, its effect can be minimized by proper design of the transmitted signal and its demodulator at the receiver. Other types of signal degradations (hat may be encountered in transmission over the channel are signal attenuation, amplitude and phase distortion, and multipath distortion.

The effects of noise may be minimized by increasing the power in the transmitted signal. However, equipment and other practical constraints limit the power level in the transmitted signal. Another basic limitation is the available channel bandwidth. A bandwidth constraint is usually due to the physical limitations of the medium and the electronic components used to implement the transmitter and the receiver. These two limitations result in constraining the amount of data that can be transmitted reliably over any communications channel as we shall observe in later chapters. Below, we describe some of the important characteristics of several communication channels.

Wireline Channels The telephone network makes extensive use of wire lines for voice signal transmission, as well as data and video transmission.Twisted-pair wire lines and coaxial cable are basically guided electromagnetic channels that provide relatively modest bandwidths. Telephone wire generally used to connect a customer to a central office has a bandwidth of several hundred kilohertz (kHz). On the other hand, coaxial cable has a usable bandwidth of several megahertz (MHz). Figure 1-2-1 illustrates the frequency range of guided electromagnetic channels, which include waveguides and optical fibers.

32

石家庄铁道大学四方学院毕业设计

Signals transmitted through such channels are distored in both amplitude and phase and further corrupted by additive noise. Twisted-pair wireline channels arc also prone to crosstalk interference from physically adjacent channels. Becausc wireline channels carry a large percentage of our daily communications around the country and the world, much research has been performed on the characterization of their transmission properties and on methods for mitigating the amplitude and phase distortion encountered in signal transmission. In Chapter 9, we describe methods for designing optimum transmitted signals and their demodulation: in Chapters 10 and 11, we consider the design of channel equalizers that compensate for amplitude and phase distortion on these channels.

Fiber Optic Channels Optical fibers offer the communications system designer a channel bandwidth that is several orders of magnitude larger than coaxial cable channels. During the past decade, optical fiber cables have been developed that have a relatively low signal attenuation, and highly reliable photonic devices have been developed for signal generation and signal detection. These technological advances have resulted in a rapid deployment of optical fiber channels, both in domestic telecommunication systems as well as for trans-Atlantic and trans-Pacific communications. With the large bandwidth available on fiber optic channels, it is possible for telephone companies to offer subscribers a wide array of telecommunication services, including voice, data,facsimile, and video.

The transmitter or modulator in a fiber optic communication system is a light source, cither a light-emitting diode (LED) or a laser. Information is transmitted by varying (modulating) the intensity of the light source with the message signal. The light propagates through the fiber as a light wave and is amplified periodically (in the case of digital transmission, it is detected and regenerated by repeaters) along the transmission path to compensate for signal attenuation. At the receiver, the light intensity is detected by a photodiode,whose output is an electrical signal that varies in direct proportion to the power of the light impinging on the photodiode. Sources of noise in fiber optic channels are photodiodes and electronic amplifiers.

It is envisioned that optical fiber channels will replace nearly all wireline channels in the telephone network by the turn of the century.

Wireless electromagnetic channel in wireless communication systems,electromagnetic energy is coupled to the propagation medium by an antenna which serves as the radiator. The physical size and the configuration of the antenna depend primarily on the frequency of operation. To obtain efficient radiation of electromagnetic energy, the antenna must be

33

石家庄铁道大学四方学院毕业设计

longer than of the wavelength. Consequently, a radio station transmitting in the AM frequency band, say at fr - 1 MHz (corresponding to a wavelength of A = cffr = 300m).requires an antenna of at least 30m. Other important characteristics and attributes of antennas for wireless transmission are described in Chapter 5.

Figure 1-2-2 illustrates the various frequency bands of the electromagneticspectrum. The mode of propagation of electromagnetic waves in the atmo- sphere and in free space may be subdivided into three categories, namely,ground-wave propagation, sky-wave propagation, and line-of-sight (LOS) propagation. In the VLF and audio frequency bands, where the wavelengths exceed 10 km, the earth and the ionosphere act as a waveguide for electromagnetic wave propagation. In these frequency ranges, communication signals practically propagate around the globe. For this reason, these frequency bands are primarily used to provide navigational aids from shore to ships around the world. The channel bandwidths available in these frequency bands are relatively small (usually 1-10% of the center frequency), and hence the information that is transmitted through these channels is of relatively slow speed and generally confined to digital transmission. A dominant type of noise at these frequencies is generated from thunderstorm activity around the globe,especially in tropical regions. Interference results from the many users of these frequency bands.

Ground-wave propagation, as illustrated in Fig. 1-2-3, is the dominant mode of propagation for frequencies in the MF band (0.3-3 MHz). This is the frequency band used for AM broadcasting and maritime radio broadcasting. In AM broadcasting, the range with groundwave propagation of even the more powerful radio stations is limited to about 150 km. Atmospheric noise,man-made noise, and thermal noise from electronic components at the receiver are dominant disturbances for signal transmission in the MF band.

Sky-wave propagation, as illustrated in Fig. 1-2-4 results from transmitted signals being reflected (bent or refracted) from the ionosphere, which consists of several layers of charged particles ranging in altitude from 50 to 400 km above the surface of the earth. During the daytime hours, the heating of the lower atmosphere by the sun causes the formation of the lower layers at altitudes below 120 km. These lower layers, especially the D-layer, serve to absorb frequencies below 2 MHz, thus severely limiting sky-wave propagation of AM radio broadcast. However, during the night-time hours, the electron density in the lower layers of the ionosphere drops sharply and the frequency absorption that occurs during the daytime is significantly reduced. As a consequence, powerful AM

34

石家庄铁道大学四方学院毕业设计

radio broadcast stations can propagate over large distances via sky wave over the F-layer of the ionosphere, which ranges from 140 to 400 km above the surface of the earth.

A frequently occurring problem with electromagnetic wave propagation via sky wave in the HF frequency range is signal multipath. Signal multipath occurs when the transmitted signal arrives at the receiver via multiple propagation paths at different delays, tt generally results in intersymbol interference in a digital communication system. Moreover, the signal components arriving via different propagation paths may add destructively, resulting in a phenomenon called signal fading, which most people have experienced when listening to a distant radio station at night when sky wave is the dominant propagation mode. Additive noise at HF is a combination of atmospheric noise and thermal noise.

Sky-wave ionospheric propagation ceases to exist at frequencies above approximately 30 MHz, which is the end of the HF band. However, it is possible to have ionospheric scatter propagation at frequencies in the range 30-60 MHz, resulting from signal scattering from the lower ionosphere. It is also possible to communicate over distances of several hundred miles by use of tropospheric scattering at frequencies in the range 40-300 MHz. Troposcatter results from signal scattering due to particles in the atmosphere at altitudes of 10 miles or less. Generally, ionospheric scatter and tropospheric scatter involve large signal propagation losses and require a large amount of transmitter power and relatively large antennas.

Frequencies above 30 MHz propagate through the ionosphere with relatively little loss and make satellite and extraterrestrial communications possible. Hence, at frequencies in the VHF band and higher, the dominant mode of electromagnetic propagation is linc-of-sight (LOS) propagation. For terrestrial communication systems, this means that the transmitter and receiver antennas must be in direct LOS with relatively little or no obstruction. For this reason, television stations transmitting in the VHF and UHF frequency bands mount their antennas on high towers to achieve a broad coverage area.

In general, the coverage area for LOS propagation is limited by the curvature of the earth. If the transmitting antenna is mounted at a height h m above the surface of the earth, the distance to the radio horizon, assuming no physical obstructions such as mountains, is approximately d - VlSh km. For example, a TV antenna mounted on a tower of 300 m in height provides a coverage of approximately 67 km. As another example, microwave radio relay systems used extensively for telephone and video transmission at frequencies above I

35

石家庄铁道大学四方学院毕业设计

的b比特序列中的一个序列。我们称这种方式为M元调制(M〉2)。注意,每b/R秒就有一个新的b比特序列进入调制器。因此,当信道比特率R固定,与一个b比特序列相应的似个波形之一的传输时间量是二进制调制系统时间周期的b倍。

图1-1-1 数字通信系统的基本模型

通信信道是用来将发送机的信号发送给接收机的物理媒质。在无线传输中,信道可以是大气(自由空间)另一方面,电话信道通常使用各种各样的物理媒质,包括有线线路、光缆和无线(微波)等。无论用什么物理媒质来传输信息,其基本特点是发送信号随机地受到各种可能机理的恶化,例如由电子器件产生的加性热噪声、人为噪声(如汽车点火噪声)及大气噪声(如在雷赛雨时的闪电)。

在数字逋信系统的接收端,数字解调器对受到信道恶化的发送波形进行处理,并将该波形还原成一个数的序列,该序列表示发送数据符号的估计值〔二进制或M元〕。这个数的序列披送至信道译码器,它根据信进编码器所用的关于码的知识及接收数据所含的冗余度重构初始的信息序列。

解调器和译码器工作性能好坏的—个度量是译码序列中发生差错的频度。更准确地说,在译码器输出端的平均比特错误概率是解调器-译码器組合性能的一个度量。一般地,错误概率是下列各种因素的函数:码特征、用来在信道上传输信息的波形的类型、发送功率信道的特征(即噪声的大小、干扰的性质等)以及解调和译码的方法。在后续各章中将详细讨论这些因素及其对性能的影晌。

作为最后一步,当需要模拟输出时,信源译码器从信道译码器接收其输出序列并根据所采用的信源编码方法的有关知识重构由信源发出的原始信号。由于信道译码的差错以及信源编码器可能引入的失真,在信源译码器输出端的信号只是原始信源输出

41

石家庄铁道大学四方学院毕业设计

的—个近似。在原始信号与重构信号之间的信号差或信号差的函数是数字通信系统引入失真的一种度量。 1.2通信信道及其特征

正如前面指出的,通信信道在发送机与接收机之间提供了连接。物理信道也许是携带电信号的一对明线;或是在已调光波束上携带信息的光纤;或是水下海洋信道其中信息以声波形式传输;或是自由空间,携带信息的信号通过天线在空间辐射传输。可被表征为通信信道的其他媒质是数据存储媒质如磁带、磁盘和光盘。

在信号通过任何信道传输中的一个共同的问题是加性噪声。一般地,加性噪声是由通信系统内部组成元器件所引起的,例如电阻和固态器件。有时将这种噪声称为热噪声。其他噪声和干扰源也许是系统外面引起的,例如来自信道上其他用户的干扰。当这样的噪声和干扰与期望信号占有同频带时,可通过对发送信号和接收机中解调器的适当设计来使它们的影响最小。信号在信道上传输时可能会遇到的其他类型损伤有信号衰减、幅度和相位失真、多径失真等。

可以通过增加发送信号功率的方法使噪声的影响最小。然而,设备和其他实际因素限制了发送信号的功率电平,另一个基本的限制是可用的信道带宽。带宽的限制通常是由于媒质以及发送机和接牧机中组成器件和部件的物理限制产生的。这两种限制因素限制了在任何通信信道上能可靠传输的数据量,我们将在以后各章中讨论这种情况。下面描述几种通信信道的重要特征。 1.有线信道

电话网络扩大了有线线路的应用,如话音信号传输以及数据和视频传输。双绞线和同轴电缆是基本的导向电磁信道,它能提供比较适度的带宽。通常用来连接用户和中心机房的电话线的带宽为几百千赫(khz)另一方面同轴电缆的可用宽带是几兆赫(Mhz)。信号在这样的信道上传输时,其幅度和相位都会发生失真,还受到加性噪声的恶化。双绞线信道还易受到来自物理邻近信道的串音干扰。因为在全国和全世界有线信道上通信在日常通信中占有相当大的比例,因此,人们对传输特性的表征以及对信号传输时的幅度和相位失真的减缓方法作了大量研究。在第9章中,我们将阐述最佳传输信号及其解调的设什方法。在笫10章和第11章中,我们将研究信道均衡器的设计,它是用来补偿信道的幅度和相位失真的。 2.光纤信道

光纤提供的信道带宽比同轴电缆信道大几个数量级。在过去的20年屮,已经研发出具有较低倌号衰减的光缆,以及用于信号和信号检测的可靠性光子器件。这些技术上的进展导致了光纤信道应用的快速发展,不仅应用在国内通信系统中,也应用于跨大西洋和跨太平洋的通信中。由于光纤信道具有大的可用带宽,因此有可能使电话

42

石家庄铁道大学四方学院毕业设计

公司为用户提供宽系列电店业务,包括话音、数据、传真和视频等。

在光纤通信系统中,发送机或调制器是一个光源.或者是发光二极管(LED)或者是激光。通过消息信号改变(调制)光源的强度来发送信息。光像光波一样通过光纤传播,并沿着传输路径被周期性地放大以补偿信号衰减(在数宇传输中,光由中继器检测和再生)。在接收机中,光的强度由光电二极管检测,它的输出电信号的变化直接与照射到光电二极管上的光的功率成正比。光纤信道中的噪声源是光电二极管和电子放大器。 3.无线电磁信道

在无线通信系统中,电磁能是通过作为辐射器的天线耦合到传播媒质的。天线的物理尺寸和配置主要决定于运行的频率。为了获得有效的电磁能量的辐射,天线必须比波长的1/10更长。因此,在调幅(AM)频段发射的无线电台,譬如说在f=1MHz时(相当于波长= C/f=300m)要求天线至少为30m。无线传输天线的其他重要特征和属性将在第5章阐述。

在大气和自由空间中,电磁波传播的模式可以划分为3种类型,即地波传播、天波传播和视线传播。在甚低频(VLF)和音频段,其波长超过10km,地球和电离层对电磁波传播的作用如同波导。在这些频段,通信信号实际上环绕地球传播,由于这个原因,这些频段主要用来在世界范围内提供从海洋到船舶的导航帮助。在此频段中可用的带宽较小(通常是中心频率的1% ~10%)因此通过这些信道传输的信息速率较低,且一般限于数字传输。在这些频率上,最主要的一种噪声是由地球上的雷暴活动产生的,特别是在热带地区。干扰来自这些频段上的用户。

在高频(HF)频段范围内,电磁波经由天波传播时经常发生的问题是信号多径。信号多径发生在发送信号经由多条传播路径以不同的延迟到达接收机的时侯,一般会引起数字通信系统中的符号间干扰。而且经由不同传播路径到达的各信号分量会相互削弱,导致信号衰落的现象.许多人在夜晚收听远地无线电台广播时会对此有体验。在夜晚,天波是主要的传播模式。HF频段的加性噪声是大气噪声和热噪声的组合。

在大约30MHZ之上的频率,即频段的边缘,就不存在天波电离层传播。然而,在30~60MHZ频段有可能进行电离层散射传播,这是由较低电离层的信号散射引起的。也可利用在40~300MHZ频率范围内的对流层散射在几百英里的距离通信。对流层散射是由在10mile或更低高度大气层中的粒子引起的信号散射造成的,一般地,电离层散射和对流层散射具有大的信号传播损耗,要求发射机功率大和天线比较长。

在30MHZ以上频率通过电离层传播具有较小的损耗,这使得卫里和超陆地通信成为可能。因此,在甚高频(VHF)频段和更高的频率,电磁传播的最主要模式是LOS传播。对于陆地通信系统这意味着发送机和接收机的天线必须是直达LOS,没有什么

43

石家庄铁道大学四方学院毕业设计

障碍。由于这个原因VHF和特高频(UHF)频段发射的电视台的天线安装在髙塔上,以达到更宽的覆盖区域。

一般地LOS传播所能覆盖的区域受到地球曲度的限制。如果发射天线安装在地表面之上H米的高度,并假定没有物理障碍(如山)那么到无线地平线的距离近似为d=15H KM,例如电视天线安装在300m高的塔上.它的覆盖范围大约67km另一个例子,工作在1GHZ以上频率,用来延伸电话和视频传输的微波中继系统将天线安装在离塔上或高的建筑物顶部。

对工作在VHF和UHF频率范围的通信系统限制性能的最主要噪声是接收机前端所产生的热噪声和天线接收到的宇宙噪声。在10GHZ以上的超髙频(SHF)频段,大气层环境在信号传播中担负主要角色。例如,在10GHZ频率,衰减范围从小雨时的0.003 dB/KM左右到大雨时的0.3dB/KM;在100GHZ,衰减范围从小雨时的0.1dB左右到大雨时的6dB左右。因此,在此频率范围,大雨引起了很大的传播损耗,这会导致业务中断(通信系统完全中断)。

在极高频(EHF)频段以上的频率是电磁频谱的红外区和可见光区,它们可用来提供自由空间的LOS光通信。到目前为止,这些频段已经用于实验通信系统,例如,卫星到卫星的通信链路。 4.水声信道

在过去的几十年中.海洋探险活动不断增多。与这种增多相关的是对传输数据的需求。数据是由位于水下的传感器传送到海洋表面的,从那里可能将数据经由卫星转发给数据采集中心。

除极低频率外,电磁波在水下不能长距离传播。在低频率的信号传输的延伸受到限制,因为它需要大的且功率强的发送机。电磁波在水下的衰减可以用表面深度来表示,它是信号衰减l/e的距离。对于海水,表面深度 250/f,其中f以HZ为单位。例如,在10 khz上,表面深度是2.5m。声信号能在几十甚至几百千米距离上传播。

水声信道可以表征为多径信道,这是由于海洋表面和底部对信号反射的缘故。因为波的运动,信号多径分量的传播延迟是时变的,这就导致了信号的衰落。此外,还存在与频率相关的衰减,它与信号频率的平方近似成正比。声音速度通常大约为1 500m/s,实际值将在正常值上下变化,这取决于信号传播的深度。

海洋背景噪声是由虾、鱼和各种哺乳动物引起的。在靠近港口处,除了海洋背景噪声外也有人为噪声。尽管有这些不利的环境,还是可能设计并实现有效的且高可靠性的水声通信系统,以长距离地传输数字信号。 5.存储信道

信息存储和恢复系统构成了日常数据处理工作的非常重要的部分。磁带(包括数

44

石家庄铁道大学四方学院毕业设计

字的声带和录像带)、用来存储大量计箅机数据的磁盘、用作计箅机数据存储器的光盘以及只读光盘都是数据存储系统的例子,它们可以表征为通信信道。在磁带或磁盘或光盘上存储数据的过程,等效于在电话或在无线信道上发送数据。回读过程以及在存储系统中恢复所存储的数据的信号处理等效于在电话和无线通信系统中恢复发送信号。

由电子元器件产生的加性噪声和来自邻近轨道的干扰一般会呈现在存储系统的回读信号中,这正如电话或无线通信系统中的情况。

所能存储的数据量一般受到磁盘或磁带尺寸及密度(每平方英寸存储的比特数)的限制,该密度是由写/读电系统和读写头确定的。例如在磁盘存储系统中,封装密度可达每平方英寸比特(1 in=2.54cm)。磁盘或磁带上的数据的读写速度也受到组成信息存储系统的机械和电子子系统的限制。

信道编码和调制是良好设计的数字磁或存储系统的最重要的组成部分。在回读过程中,信号被解调。由信道编码器引入的附加冗余度用于纠正回读信号中的差错。 1.3通信信道的数学模型

在通过物理信道传输信息的通信系统设计中,我们发现,建立一个能反映传输媒质最重要特征的数学模型是很方便的。信道的数学模型可以用于发送机中的信道编码器和调制器,以及接收机中的解调器和信道译码器的设计。下面,我们将简要的描述信道的模型,它们常用来表征实际的物理信道。 1.加性噪声信道

通信信道最简单的数学模型是加性噪声信道,如图1-3-1所示。在这个模型中,发送信号s(t)被加性随机噪声过程n(t)恶化。在物理上,加性噪声过程由通信系统接收机中的电子元部件和放大器引起,或者由传输中的干扰引起(正如在无线电信号传输中那样)。

如果噪声主要是由接收机中的元部件和放大器引起,那么,它可以表征为热噪声。这种模型的噪声统计地表征为高斯噪声过程。因此,该信道的数学模型通常称为加性高斯噪声信道。因为这个信道模型适用于很广的物理通信信道,并且因为它在数学上易于处理,所以是在通信系统分析和设计中所用的最主要的信道模型。信道的衰减很容易加入到该模型。信号通过信道传输而受到衰减时,接收信号是

r(t)??s(t)?n(t)

式中,?是衰减因子。

45

本文来源:https://www.bwwdw.com/article/ke6t.html

Top