山东建筑大学高数作业题答案第五章

更新时间:2023-11-02 09:20:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

班级 姓名 学号

第 五 章 定 积 分

1.证明定积分性质:证:k?kf(x)dx?k?ani?1bbaf(x)dx (k是常数).

nb?baf(x)?klim?f(?)?xi?lim?kf(?)?xi??kf(x)

??0??0i?1a2.估计下列积分值:(1)

??5?4(1?sin2x)dx

?2,x2??,

4解:令f(x)?1?sin2x,则f‘(x)?2sinxcosx?sin2x?0 得驻点:x1? 由f()?2,?2f(?)?1,5?4?3f()?,42?3f()?, 得 minf(x)?1,maxf(x)?2, 42由性质,得

????f(x)dx?2?

4(2)

?333xarctanxdx

解:令f(x)?xarctanx,f‘(x)?arctanx?x3,所以在f(x)?0[,3]上单调增加, 21?x3?minf(x)??63,maxf(x)?33?333, ?,?(3?)??3xarctanxdx??(3?)3333633 即

?32??3xarctanxdx?? 9333.比较下列积分值的大小:(1)

3?10x2dx与?x3dx

0231解:当0?x?1时,有x?x,且x?x不恒等于0,?(x?x)dx?0,即

02?123?x012dx??x2dx。

01??(2)

?60xdx与?6sinxdx

0解:当0?x?(3)

?6si时,有sinx?x,且x?n10x不恒等于0,??(x?sinx)dx?0,即

01?10xdx??sinxdx。

01?10xdx与?ln(1?x)dx

1x??0(0?x?1),所以f(x)在[0,1]上单调增加,1?x1?x解:令f(x)?x?ln(1?x),则f‘(x)?1??f(x)?x?ln(1?x)?f(0)?0,且x?lnx不恒等于0(0?x?1),所以

?10xdx??ln1(?x)dx

01 1

班级 姓名 学号

(4)

?110(1?x)dx与?0exdx

解:令f(x)?ex?(1?x),则f‘(x)?ex?1?0(0?x?1), 所以f(x)在[0,1]上单调增加,

?f(x)?ex?(1?x)?f(0)?0, 且ex?(1?x)不恒等于0(0?x?1),所以 ?110exdx??0(1?x)dx

4.求下列各导数:

(1)

dxsintdx?1tdt (2) d0dx?xe?t2dt 解:dxsintdx?1tdt=sinxx 解:

d0dx?xe?t2dt=?dxdx?0e?t2dt??e?x2 dx3dtdx3dt(x3)?(x2(3) dx?x21?t4 解:dx?)?3x22xx21?t4?1?x12?1?x8?1?x12?1?x8 (4)

ddx?cosxsinxcos(?t2)dt 解:dcosxdx?sinxcos(?t2)dt?cos[?(cosx)2]?(?sinx)?cos[?(sinx)2]?(cosx) ??cos[?(1?sin2x)]?sinx?cos[?(sinx)2]?cosx?cos(?sin2x)?sinx?cos(?sin2x)?cosx ?(sinx?cosx)cos(?sin2x)

?x?dy5.求由参数表示式???t0sinudu所给定的函数y对dydtdx?costsint?cott ??y??tx的导数。 解:ududx?0cosdt6.求由

?ytx0edt??0costdt?0所确定的隐函数y对x的导数。

解:方程两边对x求导,得:ey?dydx?cosx?0,所以 dydx??e?ycosx x7.求下列极限:(1)lim?0cost2dtcosx2x?0x?limx?01?1 (2ex2xet2(2)lim?xet20dt)2?x20etdt20dt2ex2x?0?x2t2?limx?0?lim?xex2?limx?0ex2?2x2ex2?lim2x?01?2x2?2

0tedtxe2x2x?0?8.设f(x)??1?sinx0?x??x?2 ,求?(x)??0x?0或x???0f(t)dt在???,???内的表达式。

解:当x?0时,?(x)??xxxx110f(t)dt??00dt?0; 当0?x??时,?(x)??0f(t)dt??02sintdt?2(1?cosx)当x??时,?(x)??x?x?0f(t)dt??0f(t)dt??1x?f(t)dt??02sintdt???0dt?1

2

班级 姓名 学号

???(x)??0x?0?12(1?cosx)0?x??

??1x??9.计算下列各定积分:

(1)?aa(3x20?x?1)dx=???x3?12x2?x????a3?1a2?a 02

9(2)

?9x(1?x)dx??91(x24?x)dx??4?23x2?12?1?32x??456

?4(3)

?1dx3a?04?x2?arcsinx120??6;

(4)?3adx0a2?x2?1aarctanxa0?3a

(5)?03x4?3x2?1?1x2?1dx??0?13x2dx??01?1x2?1dx?1???2dx?24;(6)??e?11?x?ln1?x?(e?1)??1 ??(7)

?422?0tan?d???40(sec??1)d???tan????4?1??04

(8)

?2?sinx dx???sinxdx??2?0?sinxdx??cosx?0?cosx2?0??4

x?1x?1(9)

?2?0f(x)dx, 其中 f(x)???1??2x2x?1 解:

?20f(x)dx??1(x?1)dx??21012x2dx???x2?2?x??1?0??1?3?28?6x??1?3 (10)

?3f(x)dx,其中f(x)???x0?x?10?e?x

1?x?3. 3解:

?3dx??10f(x)0xdx??3e?xdx???21x2??1?e?x?3?2?e?3?e?13?

??01310.计算下列定积分: (1)

???sin(x????33)dx??cos(x?3)??cos?3?cos2?3?0 3??(2)?2sin?cos30?d????231?410cos?dcos???4cos?20?4

?????(3)??2cos2udu???21?cos2udu?1??u?2???2cos2udu???1????1sin2u?2?????36622?66?2?326?68 3

班级 姓名 学号

(4)

?a0x2a4222a?xdx令x?asint?asintcostdt?08422???20a4sin2td2t令2t?u82??01?cos2udu 2?a4a4??1?? ?u0?sin2u0???16?216?(5)

?1?1215?u1?1?1u13x?du??(5?u2)du??5u?u3?? dx令5?4x?u??38?3?164u2815?4x3(6)

?13412udu122?1?2ln2 令1?x?u??1?2?(1?)du?2(u?lnu?1)00u?11?x?12u?1dx01(7)

??10te?t22dt???e01?t22td(?)??e22?t221?1?e0?12

(8)

0?20dxd(x?1)?0 ??arctan(x?1)??2x2?2x?2??2(x?1)2?12????(9)

?2??2cosx?cosxdx?2?320cosxsinxdx?2?220cosxsinxdx?2?2cosxdcosx

0?4??(cosx)33220?4 311.设f(x)在[?b,b]上连续,证明:证:令x??t,则左边?1?b?bf(x)dx??f(?x)dx.

?bbb?b?bb??bbf(?t)(?dt)??f(?t)dt??f(?x)dx?右边

dxdxx12.证明:???11?x2. x1?x211证:令x?,则左边???1tx1dt1t(1?2)t2??1x111xdt??1x2?1dx=右边 t2?1113.设f(x)是以l为周期的函数,证明证一:

?a?laf(x)dx的值与a无关。

a?ll?aa?laf(x)dx??f(x)dx??alaa0la?llf(x)dx,而?l0f(x)dxx?t?la?la?a0f(t?l)dt??f(t)dt??f(x)dx

00aa??a?lf(x)dx??f(x)dx??f(x)dx??f(x)dx,所以?f(x)dx的值与a无关。

a?la证二:令F(a)??a?laf(x)dx,则F?(a)?f(a?l)?f(a)?0,所以F(a)??f(x)dx是与a无关的常数。

14.若f(t)是连续函数且为奇函数,证明

?x0f(t)dt是偶函数。

4

班级 姓名 学号

证:令F(x)?所以

?x0f(t)dt,则F(?x)???x0f(t)dtt??u?f(?u)(?du)??f(u)du?F(x)

00xx?x0f(t)dt是偶函数。

a015.证明:证:??x{f[?(x)]?f[?(a?x)]}dx?a?f[?(a?x)]dx.

0a?a0axf[?(x)]dxa?x?t?(a?t)f[?(a?t)](?dt)

aaaaa00000??(a?t)f[?(a?t)]dt?a?f[?(a?t)]dt??tf[?(a?t)]dt?a?f[?(a?x)]dx??xf[?(a?x)]dx

0??xf[?(x)]dx??xf[?(a?x)]dx?a?f[?(a?x)]dx,

000aaa即16.

?a0x{f[?(x)]?f[?(a?x)]}dx?a?f[?(a?x)]dx

0?x1?x0a?10xedx???xde1??(xe)??edx??e00?x11?x?1?e?x10?1?2 e2?2?017.

??tsin?tdt?????02?2??1?tdcos?t???tcos?t0????cos?tdt?

0???2???18.

2??2?1?2sin?t0???2??2

44??414lnxdx?2?lnxd1xx?2(xlnx)?2?114xdx?8ln2?4x?8ln2?4

1x?19.

20e2x????121?2x2x2x22cosxdx??cosxde??(ecosx)??esinxdx?

00202??????1?12111???1??sinxde2x????e2xsinx2??2e2xcosxdx02?202440??,

??2e2xcosxdx?01?(e?2) 5?20.

??0(xsinx)dx??021?cos2x1?13xdx??x22??32?0?1?2??xdsin2x? 20???31?121???xdcos2x ??(xsin2x)??2xsin2xdx?06406420?3??1??3?1?3??????(xcos2x)0??cos2xdx???sin2x0??

??0??6464464e1e?321.

?1elnx dx???1lnx dx??lnx dx?(xlnx)1??dx?(xlnx)1??1dx?2?e1ee111ee2 e5

班级 姓名 学号

22.判别下列各广义积分的收敛性,如果收敛,计算广义积分的值: (1)???dx1x4 解:

???dx1?3??1x4??3?x?1??1xlim???x?31113?3?3; 即广义积分收敛于3. (2)

???dx1x 解:????dx1x?2x??1?2(xlim???x?1)???;????dx1x发散. (3)

????ax0edx (a?0)

解:

????ax1??0edx??ae?ax??1a(xlim110???e?ax?1)?a;即广义积分收敛于a. (4)?2dx0(1?x)2

解:

??2dx??1dx2dx1??dx2dx0(1?x)20(1?x)2??1(1?x)2??lim?0??0(1?x)2??lim?0??1??(1?x)211??2??lim?0?1?x??lim1?1?x?lim(1?1)?lim?(?1?1)???;所以广义积分发散. 0?01????0????0?2注意:本题按以下解法是错误的:?2dx10(1?x)2?1?x??1?1??2

0(5)

???dx1xx?1

解:

???dxdx1xx?1??2??1xx?1??dx2xx?1

?2dx21xx?1??limdx?0??1??x1?xx?1?t12tdt?lim?0??t(t2?1)?2?lim1???0?(arctant)??2 ???dx2xx?1?x?1?t2???dtt2?1?2(arctant)??1????dx12,所以?1xx?1??

6

本文来源:https://www.bwwdw.com/article/kdt2.html

Top