SBR工艺在生活污水处理中的应用研究

更新时间:2023-11-19 19:43:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

SBR工艺在生活污水处理中的应用研究

摘 要

我国水资源十分短缺,人均水资源只有世界平均水平的1/4,水已成为未来制约国民经济发展和人民生活水平提高的重要因素。一方反面城镇缺水十分严重,一方面大量处理后城镇污水直接排放,既浪费了资源,又增加水体环境负荷。

目前,推广使用污水处理的主要障碍之一是经济效益问题,因此要降低污水处理设施造价,降低能耗。在进行城市污水处理厂设计时,应根据目前水质情况,并考虑中、远期发展,合理的确定设计水质和处理工艺流程。城市生活污水的处理方法有很多种。生物处理法以其运行管理费用及较好的处理效果,在污水(尤其是生活污水)处理领域中一直占主导地位。SBR工艺具有占地面积小、工艺流程简单、运行方式灵活、易于程控、对水质水量变化适应性强、去除有机物的同时具有良好的脱氮除磷等优点。随着电子和自动化技术的发展,该工艺已广泛应用于欧、美等许多国家的城市污水和各种工业废水的处理中。对于污水水质日益复杂的当今社会,SBR是一种较有发展前途的废水生物处理工艺。

关键词:生活污水,SBR,去除有机物,脱氮除磷

1 / 40

SBR process in sewage treatment

Abstract

China's shortage of water resources, water resources per capita is only the world average of 1/4, the water has become an important factor in restricting the development of the national economy and improving living standards in the future. The party opposite of urban water shortage is very serious, on the one hand, a large number of treated urban sewage directly discharged only a waste of resources, but also increase the environmental load of the water body.

At present, the main obstacle to promote the use of sewage treatment is one of the economic benefits, so to reduce the cost of sewage treatment facilities, reducing energy consumption. Municipal sewage treatment plant design should be based on the current water quality conditions, and to consider in long-term development, to determine the design water quality and treatment process. Municipal sewage treatment There are many ways. The biological treatment method for its operation and management costs and better treatment effect in the sewage (especially in the field of domestic sewage) treatment has been dominant. The SBR process has a small footprint, the process is simple, flexible operation mode, easy to program-controlled, water quality and quantity changes adaptability, removal of organic matter and nitrogen and phosphorus removal, etc.. With the development of electronics and automation technology, the technology has been widely used in Europe, America and other cities in many countries sewage and industrial wastewater treatment. For the effluent quality is increasingly complex in today's society, the SBR is a more promising biological wastewater treatment process.

2 / 40

Key words: Sewage, SBR, Removal of organic matter, Nitrogen and phosphorus

removal

3 / 40

目 录

中文摘要????????????????????????????1 外文摘要????????????????????????????2 第一章 绪 论?????????????????????????.6

1.1 国际水资源现状 ????????????????????6 1.2 国内水资源现状 ????????????????????6 1.3 生活污水SBR处理研究现状 ??????????????.7 1.4 SBR与其它工艺的比较分析???????????????7

第二章 生活污水SBR处理技术????????????????8

2.1 SBR基本概念??????????????????????.9 2.2 SBR基本操作??????????????????????.10 2.3 SBR工艺优点??????????????????????.10 2.4 SBR工艺特点??????????????????????12 2.5 SBR基本性能及运行模式????????????????13 2.6 SBR工艺设计要点???????????????????.14

第三章 SBR工艺处理生活污水实例?????????????15

3.1海门市污水处理中心研究背景及研究内容???????15 3.2 海门市生活污水SBR处理反应机理及模型设计????15 3.3 阳江市第一净水厂研究背景及研究内容???????.18 3.4阳江市生活污水SBR处理反应机理及模型设计????18

4 / 40

3.5两污水处理厂的对比分析????????????????20

第四章 后续处理工艺研究??????????????????21 结 论?????????????????????????????.23 参考文献????????????????????????????24 致 谢……………?????????????????????????25 外文文献(译文)?????????????????26 外文文献(原文)……………………………………………………………32

5 / 40

第1章

1.1国际水资源现状

绪 论

水是人类维系生命的基本物质,是工农业生产和城市发展不可缺少的重要资源。人类习惯于把水看作是取之不尽用之不竭的最廉价的自然资源,但随着人口的膨胀和经济的发展,水对人类的生命健康形成了威胁。切实防治水污染,保护水资源已成了当今人类的迫切任务。

地球上水的总量约14乘10的8次方之多,应该说是十分丰富的。但地球上的水以各种不同的形式分布于不同的地方。地球上约97.3%的水是海水,宽广的海洋覆盖了地球表面70%以上,但目前人类较易利用的淡水资源仅占全球淡水资源的0.3%,占全球总储水量的十万分之七,因此地球上的淡水资源并不丰富。

1.2 国内水资源现状

中国是一个干旱缺水严重的国家。淡水资源总量为28000亿立方米,占全球水资源的6%,仅次于巴西、俄罗斯和加拿大,居世界第四位,但人均只有2300立方米,仅为世界平均水平的1/4、美国的1/5,在世界上名列121位,是全球13个人均水资源最贫乏的国家之一。水利部预测,2030年中国人口将达到16亿,届时人均水资源量仅有1750立方米。在充分考虑节水情况下,预计用水总量为7000亿至8000亿立方米,要求供水能力比现在增长1300亿至2300亿立方米,全球实际可利用水资源量接近合理利用水量上限,水资源开发难度极大。

我国在20世纪30年代才开始污水处理的事业,比外国晚了很长一段时间。虽然事业起步晚,但改革开放后的20年来还是取得了较快的发展。可是随着城市化速度的加快,我国城市的数量与规模也快速地增加与扩张,与之相配套的城市污水处理基础设施出现了严重不足的情况。 据有关数据统计:我国目前的年排污量大约为350亿立方米,但城市的污水处理率仅为15.8%,而西方发达国家如美国早在1980年就已达到了70%。全国有大约超过80%的城市直接排放未经任何处理的污水到附近的水体,这使得水污染加剧。尤其在全国2 000多座县城与19 000多个镇中,其污水的排放量约占全国总量的一半以上,但这些中小城镇的污水处理能力远远低于全国平均水平,突出表现在污水处理的基础设施严

6 / 40

重贫乏。

在我国目前的城市污水处理厂中,有80%以上的都是采用活性污泥法,不到20%采用稳定塘法、土地处理法及一级处理等。多数的城市污水处理厂都采用运行稳定、操作简便、处理费用低廉的生化处理工艺,包括普通活性污泥法、延时法等新型活性污泥工艺、接触氧化法、氧化沟法、AB法、SBR法、A-O和A2-O等变形工艺, 这些改进的工艺技法在我国被广泛运用。只有少数城市污水处理厂因其实际情况而选用物理或物化的方法处理废水。

1.3 生活污水SBR处理研究现状

序批式活性法是早在1914年英国学者Ardern和Lockett发明活性污泥法时,首先采用的水处理工艺。也是近年来开发的活性污泥法新工艺,序批式活性污泥法比连续流活性污泥法出现得更早,但由当时运行管理条件限制而被连续流系统所取代。随着自动控制水平的提高,SBR又引起人们的重视,并对它进行了更加深入的研究与改进。

澳大利亚的污水处理以SBR工艺所著称。近十几年来,建成SBR工艺污水处理厂600余座,其中的中型和大型处理厂的应用也日益增多,并且开始兴建日处理量21万吨大型SBR工艺污水处理厂。由于SBR处理工艺流程简单,处理效果好的独特优点,逐渐引起世界污水界的关注。

随着对SBR法的研究与应用的深入,出现了很多SBR法的改良和变形工艺,主要有间歇式循环是曝气活性污泥法、循环式活性污泥法、间歇排水延时曝气工艺、需氧池-间歇式曝气池工艺、改良型序批式活性污泥工艺、交替式生物处理工艺等。我国也于20世纪80年代中期开始对SBR进行研究,迄今应用已比较广泛。自1985年我国第一座SBR处理设施在上海市吴淞肉联厂投产运行以来,SBR工艺在国内已广泛用于屠宰,含酚,啤酒,化工,鱼品加工,制药等工业废水和生活污水的处理。从应用情况看,SBR是一种高效、经济、可靠、管理简单、适合中小水量污水处理工艺,我国小城镇污水处理规模一般较小,因此SBR法及其变形工艺正符合我国国情,在我国有着广阔的应用前景。

1.4 SBR与其它工艺的比较分析

1.4.1 氧化沟工艺

7 / 40

优点:1,处理流程简单,构筑物少,基建费用省;2,处理效果好,有稳定的除P脱N功能;3,对高浓度的工业废水有很大的稀释作用;4,有较强的抗冲击负荷;5, 污泥生成量少,污泥不需要消化处理,不需要污泥回流系统;6, 技术先进成熟,管理维护简单;7,无须设初沉池,二沉池。

缺点:1,周期运行,对自动化控制能力要求高;2,污泥稳定性没有厌氧消化稳定;3,容积及设备利用率低;4,脱氮效果进一步提高需要在氧化沟前设厌氧池。

1.4.2 AO工艺

优点:1,污泥沉降性能好;2,污泥厌氧消化后达到稳定,;3,污泥回流量大,能耗高。

缺点:1,用于小型水厂费用偏高;2,沼气利用经济效益差;3,污泥回流量大,能耗高。

1.4.3 A2/O工艺

优点:1,具有较好的除P脱N功能;2,具有改善污泥沉降性能的作用的能力,减少的污泥排放量;3,具有提高对难降解生物有机物去除效果,运行效果稳定;4,管理维护简单,运行费用低;5,沼气可用回收利用;

缺点:1,处理构筑物较多;2,污泥回流量大,能耗高。3用于小型水厂费用偏高;4,沼气利用经济效益差。

1.4.4 SBR工艺

优点:1,流程十分简单,合建式,占地省,处理成本低;2,处理效果好,有稳定的除P脱N功能;4,不需要污泥回流系统和回流液,不设二沉池;4,除P脱N的厌氧,缺氧和好氧不是由空间划分的,而是由时间控制的。

缺点:1,间歇运行,对自动化控制能力要求高;2,污泥稳定性没有厌氧消化稳定;3,容积及设备利用率低;4,变水位运行,电耗增大;5,除P脱N效果一般。

第二章 生活污水SBR处理技术

8 / 40

2.1 SBR基本概念

2.1.1 SBR基本原理

SBR是序批式间歇活性污泥法(Sequencing Batch Reactor)的简称,又名间歇曝气,活性污泥法是利用微生物去除污染物中的有机物。在去除过程中,首先需要微生物将有机物转化成二氧化碳和水以及微生物菌体,完后将微生物保存下来,在适当时间通过排除剩余污泥,从系统中除去新增的微生物。

2.1.2 SBR工艺流程

SBR的工艺流程为,先建一个池子,将曝气池和二沉池的功能集中在该池子上,兼行水质水量调节、微生物降解有机物和固液分离等功能。SBR是按周期运行的,每个周期的循环过程包括进水、反应(曝气)、沉淀、排放和待机等5道工序,具体工艺流程见2-1。

进水 粗格栅 进水泵房 细 沉淀池 SBR池/灌水器 消毒池 储水

泥饼外运 污泥脱水 浓缩池

图2-1 SBR工艺流程图

2.1.3 SBR主体构筑物

主体构筑物是SBR反应池。随着SBR及改良型工艺在各类污水处理厂的大量使用,其投资小、占地省、运行效果稳定等优点得到充分体现。目前所采用的SBR改良工艺的核心就是改良型SBR池,它集调节池、好氧池、厌氧池、沉淀池于一体。整个SBR工艺的核心工艺设备也都集中在改良型SBR池内,最主要的就是有曝气系统(池底布气管、曝气头)、出水系统(滗水器)等。序批式反应池(SBR)属于“注水-反应-排水”类型的反应器,在流态上属于完全混合,但有机物污染物却是随着反应时间的推移而被降解的。其图2-2为处理生活污水SBR三池系统。

9 / 40

1- 格栅;2-沉砂池;3-初沉池;4-污泥管道 2-2处理生活污水SBR三池系统

2.2 SBR基本操作

SBR整个操作通过自动控制装置完成。在反应周期内,各阶段的控制时间和总水力停留时间根据实验确定。在反应阶段,曝气时间决定生化反应的性质。当采用完全曝气时,反应器内发生的是需氧过程;但在限量曝气条件下,可使反应器内产生缺氧或厌氧环境。一个SBR反应器的运行周期包括五个操作过程,即进水期、反应期、沉淀期、排水排泥期和闲置期。从污水流入到闲置结束构成一个周期,所有处理过程都是在同一个设有曝气或搅拌装置的反应器内依次进行,混合液始终留在池中,从而不需另外设置沉淀池。周期循环时间及每个周期内各阶段均可根据不同的处理对象和处理要求进行调节。图2-2为SBR工艺一个运行周期内的操作过程。

进水期 反应期 沉淀期 排水排泥期 闲置期 图2-3 SBR工艺一个运行周期内的操作过程

2.3 SBR工艺优点

10 / 40

期缩短一半,是具有国际水平的先进技术,此技术的应用使得该工程总体提高到国际先进水平。 2、工艺流程

海门市污水处理中心工艺流程图见图3-2-1

鼓风机

泵 原水 格栅调节池 沉砂池 SBR 排水

污泥浓缩池 脱水 图3-1-1海门市污水处理中心工艺流程

3、工艺说明

污水首先自流入粗格栅间,去除大的漂浮物,然后流入集水池,经潜污泵提升入细格栅,去除细小漂浮物,再自流入沉砂池去除泥沙,经沉砂后污水自流入不同的SBR池进行生化处理,在再经滗水器排入水体。剩余污泥送入污泥贮池,经脱水后外运。

外运

3.2.2 处理效果

海门污水处理中心工程建成后即开始满负荷运行,污染物去除情况见表3-1。

表3-1 海门污水处理中心工程实际进出口水质及污染物去除率

项目 实际水质/(mg/L) 去除率/% 进口 出口 COD 289 25.8 91 BOD 146 6.2 96 SS 140 8 94 NH3-N 3.2 TP - - - 3.2.4 主要构筑物

海门市污水处理中心工程主要构筑物见表3-3.

表3-3 海门市污水处理中心工程主要构筑物

构筑物名称 集水池 沉砂池

规格/m3 2400 320 数量 1 1 构筑物名称 综合管理房 脱水机房 规格/m3 94 85 数量 1 1 16 / 40

SBR池 鼓风机房 4800 7 2 1 污泥浓缩池 160 1 3.2.5 主要设备

海门市污水处理中心工程主要设备及其规格见表3-4

表3-4海门市污水处理中心工程主要设备

序号 1 2 3 名称 机械粗格栅 机械细格栅 污水提升水泵及自耦 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 超声波流量计 利浦罐体 离心鼓风机 曝气头 液下搅拌机 滗水器 污泥螺杆泵 板框压滤机 闸门、启闭机 单梁起重机 电动葫芦 SBR操作平台 电动蝶阀 电动蝶阀 闸门 在线PH计 计量加药设备 合计 - H=6m特制镀锌钢板 1 2 规格 B=1500mm,N=1.5kW B=1200mm,N=1.5kW Q=300m3/h,H=13m,N=22 kW 数量 1 1 3 Q=60m3/min,N=90kW,H=0.6kg/cm2 2 不锈钢条状曝气头 N=4 kW Q=800m3/h,N=1.5 kW G25-2, N=2.2 kW Ⅶ60/800-U, N=1.5 kW B=800mm×800mm,N=1.5kW 2.0t,N=0.5kW 2.0t,N=0.5kW DN400 DN150 B=600mm×600mm N=0.5kW N=124.20kW 600 4 4 2 1 2 1 1 1 4 2 4 1 17 / 40

3.2.6 运行状况及讨论

海门污水处理中心在建设过程中最突出的特点是投资节省和建设周期短。由于采用SBR处理技术,缩短污水处理流程,从而节约大量建设资金。

投入运行以来,该污水处理厂在水质水量波动较大的情况下保持稳定达标,体现了SBR工艺对水质水量变化的良好适应性。在设备方面,采用结构简单,易于维护的多级离心鼓风机,不锈钢条式微孔曝气器,适应小城镇污水处理厂的实际情况,取得了满意的运行效果。

由于该污水处理厂建成较早,在消毒,除臭方面考虑较少,需要今后逐渐补充,改进。

3.3 阳江市第一净水厂研究背景及研究内容

阳江市第一净水厂工程规模为20000m3/d。建于阳江市四眼塘,工程占地面积11300m2,1999年动工,2001年2月验收运行。阳江市属亚热带季风气候,年平均气温22.3摄氏度,极端最高气温37摄氏度,极端最低气温1摄氏度。污水主要来源于城南片区和城北片区合流制管道系统排放的生活污水、雨水和部分工业废水。集水面积15km2,服务人口12万人。处理后的污水直接排入漠阳江,污水的排放标准执行《污水综合排放标准》(GB 8978-1996)一级排放标准。

3.4阳江市生活污水SBR处理反应机理及模型设计

3.4.1工艺流程

1、工艺选择

在生化处理过程中,BOD的去除率基本上集中在起始期,在起始曝气的0.5h内,去除率达80%左右。随后BOD去除率减慢。SBR反应池按照该特性进行设计,其运行程序为进水→反应→静沉→排水,以保证BOD的高效去除及污泥的高效沉降。对水量、水质变化适应性强,其出水效果稳定。具有污泥易启东、易管理、没有污泥膨胀等特点。反应池内生物相复杂,使有机物降解更完全。生物脱氮除磷效果较好。噪声低、混合效果好,氧传质速率高。 2、工艺流程

阳江市第一净水厂工艺流程图见图3-4-1

18 / 40

砂机分离器 沉砂

二级格栅 涡流式沉砂池 SBR池 接触室 出水达标排放

剩余污泥

集水井和提升泵房 浓缩池 带式压滤机 泥饼外运

城市污水 一级格栅

图3-4-1阳江市第一水厂工程工艺流程

3、工艺说明

城市污水经粗格栅自流至集水井,隔去大块杂质,由潜污泵提升至配水槽,经细格栅隔去细小有机物和部分砂砾后,进入涡流式沉砂池,沉砂池出水自流至SBR反应池进行生化反应,SBR反应池的出水流入接触池,在接触池中加氯消毒,经消毒后的出水达到排放标准,排入漠阳江。

沉砂经砂水分离器后格栅截留的隔渣由专用车辆运至城市垃圾场;剩余污泥经浓缩后送至带式压滤机进行脱水,泥饼外运作堆肥。 3.4.2 阳江市第一净水厂工程污水处理效果见表3-5.

表3-5 阳江市第一净水厂工程实际进出口水质及污染物去除率

项目 实际水质/(m/L) 排放标准 进口 出口 COD 150 30 80 BOD 140 11.2 92 SS 225 13.5 94 NH3-N 34.4 5.5 TP 3.0 0.9 70 3.4.3 主要构筑物

阳江市第一净水厂工程主要构筑物见表3-6。

表3-6 阳江市第一净水厂工程主要构筑物

构筑物名称 集水井、提升泵房 沉砂池 SBR池 2.5 40×24 2 2 脱水机房 污泥浓缩池 16.8×12 8.0 1 2 19 / 40

规格/m 15.2×12 数量 1 构筑物名称 消毒间 规格/m 15.6×7 数量 1 接触消毒池 15.6×10 1 综合办公楼 800m2 1 3.4.4 主要设备

阳江市第一净水厂工程主要设备及其规格见表3-7。

表3-7阳江市第一净水厂工程主要设备

设备名称 粗格栅 提升泵 规格型号 数量 材质 不锈钢 宽度1.2m,栅隙10mm 1 流量400 m3/h,扬程13m,功率30kW 3 砂水分离机 细格栅 射流曝气泵 15L/s 2 Q235 不锈钢 宽度1.0m,栅隙3mm 1 流量400m3/h,扬程13m,功率30kW 24 射流曝气器 增稠机 带式压滤机 WA-3 8.0m B=1.0m 96 2 2 3.4.5 运行状况及讨论

SBR法对水量、水质变化大的污水,适应性强,运行稳定。另外SBR反应池具有易启东、易管理、没有污泥膨胀等特点。生物除磷效果较好;SBR池中污泥指数(SVI)低,污泥的沉降性能及脱水性能好。曝气量可根据水质水量等调节,可节省能耗。射流曝气技术混合效果及曝气效率较高,噪声小。

3.5 两污水处理厂的对比分析

3.5.1 进出水质

海门市污水处理中心规模为10000m3/d;江市第一净水厂工程规模为20000m3/d,污水的排放标准执行(GB8978-1996)一级排放标准。两处理厂进出口水质不同,具体见表3-1和3-5.

3.5.2 工艺设计

海门市污水处理中心污泥采用直接脱水、恶臭处理,污水回用和消毒暂时未建,污水处理后直接排入长江。

20 / 40

addition of 15% NaOH. The second dose regulation unit is made up of a Dosapro Milton Roy GM 25S pump with a PVDF body, suitable for working with strongly acid media. This pump is also equipped with a Stegmann ER 20 electric actuator governed by a PID Eurotherm 2216e controller, which adjusts the necessary dose flow on the basis of the values supplied by the Foxboro 871A pHmeter of the homogenization unit, thus closing the control loop. The aim of this dose regulation unit consists in maintaining the pH of the homogenization reactor constant at a value of 6.0–6.5 by means of the regulated addition of 10% H2SO4, since this value was found to be the optimum for the biodegradation of SCN in a previous study at laboratory scale.

The reagents consumed in the process were: a small amount of anti-foaming agent, NALCO 71D; 130 g Na2HPO4/m3 as phosphorus source for biodegradation; 15% NaOH (12–16 L/m3) to remove NH4+–N in the stripping tank, and 10% H2SO4, (11–15 L/m3) to neutralize the influent to the SBR in the homogenisation tank.

3 Results and discussion

The NH4–N concentration of the coke wastewater ranged between 401 and 750 mg/L. Usual concentrations at the steel works are lower as a great part of ammonia is recovered by stripping, but due to some operational problems in the industrial stripping columns during this research, a stripping step prior to the biological treatment in the SBR was performed in order to reduce possible toxic effects for the microorganisms that may decrease the removal efficiencies of the pollutants.

+

3.1 Ammonia removal by stripping

The stripping process consists of fizzing air through the wastewater to remove ammonia, which would pass from the liquid to the gaseous phase in an alkaline medium. As the stripping tank was smaller in volume than the SBR, the HRTs employed were lower than those of the biological reactor,

36 / 40

being 66, 40, 34 and 17 h. The liquid in the tank was always saturated with oxygen due to strong aeration. As no heating element was used, the operating temperature in the tank was slightly higher than that of the environment, since the wastewater entered at temperatures of around 35 ℃, and ranged between 11.4 and 18.6 ℃.The NH4+–N loading rate decreased with increasing HRT and varied between 2.5 kg NH4+–N /m3 day for an HRT of 66 h and 9.8 kg NH4+–N/m3 day for 17 h, variations being observed for each HRT due to the varying ammonium concentrations of the wastewater. The pH of the wastewater was kept at high alkaline values by adding NaOH, and ranged between 10 and 12.5 in the first part of the study. The use of the automatic dosage system from Day 130 on allowed both a saving in NaOH consumption and better control of the pH, which was kept constant at around 11.7 during the rest of the operational period.

3.2 Biological treatment of coke wastewater in an SBR

Once the removal of a major part of the NH4+–N in the coke wastewater was achieved, the wastewater had to be neutralised before entering into the biological reactor owing to the high pH values employed in the stripping process. Consequently, a homogenization tank was placed between the stripping tank and the SBR in order to add the necessary reagents. H2SO4 was used to neutralise the wastewater, since this reagent was available in the company facilities as a by-product.As no heating element was used, the reactor temperature was approximately the same as that of the environment, possibly being slightly higher due to microbial activity, and ranged between 14.7℃ for an HRT of 115 h and 21.7℃ for HRTs of 225 and 137 h. The oxygen dissolved in the mixed liquor was kept around 4.5 mg/L by the oxygen sensor and the automatic regulation valve.The pH inside the reactor was fixed at 6.5, optimum value for the biodegradation of thiocyanate, pollutant that needs longer time to biodegrade than phenols or other organic compounds in coke wastewater.The food/microorganisms

37 / 40

(F/M) ratio increased with decreasing HRT, ranging between 0.06 and 0.24 kg COD/kgVSS.day. The organic loading rate (OLR) varied between average values of 0.14 and 0.56 kg COD/m3 day, also increasing with decreasing HRT. Due to variations in the composition of the coke wastewater, it was very difficult to maintain a fixed value for the OLR, and so the chosen operating parameter was the HRT.The concentration of volatile suspended solids (VSS) ranged between 1.5 and 2.9 g/L, with an average value of 2.2 mg/L, representing 79% of TSS. The sludge volumetric index (SVI) presented values of between 47 and 80 cm3/g, the adding of a coagulant not being necessary.

3.3 COD removal

The COD of the wastewater ranged between 1100 and 1700

mgO2/L,decreasing slightly after stripping and homogenization, as can be observed from the SBR influent values. This could be due to oxidation by air of polyhydroxyphenols such as catechol during the stripping process, according to bibliography. A change in colour after the stripping process from pale yellow to dark brown was observed.The effluent COD was always lower than that of the influent, varying between 155 and 560 mg/L. Removal efficiencies ranged between 80% and 90%, except for the shortest HRT employed, decreasing to 62%.

3.4 Phenols removal

Along with the removal efficiencies for the different operating conditions. Phenols concentration in the wastewater varied between 185 and 253 mg/L, generally decreasing very slightly after the stripping process. The concentration after the biological treatment ranged between 1.7 and 5 mg/L, the removal efficiency being always higher than 97%. No relation between removal efficiencies and HRT employed was observed, since the HRTs were always high enough to achieve almost complete biodegradation of phenols.

38 / 40

3.5 Thiocyanate removal

In the influent to the SBR, the concentration of thiocyanate ranged between 210 and 487 mg/L and after the treatment concentrations decreased between 1 and 20 mg/L. Very good removal efficiencies were reached, around 95% or higher when operating at HRT ≥ 115 h. The efficiency decreased to 90% for HRT of 58 h.

3.6 Variation in ammonium concentration

As mentioned above, the coke wastewater underwent a stripping process prior to biological treatment in order to reduce the concentration of NH4+–N . Although the goal of the SBR experiments was not to remove NH4+–N, monitoring was carried out in order to observe possible variations in its concentration.As a result of this increase, the total NH4+–N removal efficiency was lower than that obtained by means of the stripping process, ranging between 42% and 85%, as can be observed in Table 3, which shows the average values of the concentrations of the different pollutants in the coke wastewater and the final effluent, as well as the removal efficiencies obtained under the different working conditions.Although HRTs of 80 h had been found as the minimum for the biodegradation of pollutants in coke wastewater in previous studies, the results obtained in the present research study show that an HRT of 58 h is long enough to obtain very high removal percentages of COD, phenols and SCN-. The concentration of ammonium in the effluent can be kept around 40–100 mg/L operating at HRT of 66 h in the stripping process. To obtain lower concentrations of ammonium in the effluent, a possible option would be to insert a nitrification/denitrification step in the treatment scheme. This step could be performed in the SBR, optimizing the operating times of the different stages.

4 Conclusions

39 / 40

The treatment of coke wastewater was studied using a pilot plant composed of a stripping unit, a homogenization tank and a biological reactor operated in sequencing batch mode.NH4+–N removal by stripping is influenced by the HRT employed, efficiencies of 90% being obtained for HRT of 66 h.After stripping and subsequent neutralization with H2SO4, the biodegradation of pollutants in an SBR led to removal efficiencies higher than 69%, 98% and 90% for COD, phenols and SCN-, respectively, even for the lower HRT (58 h). Increasing this time, higher removals were achieved, especially in COD.

40 / 40

本文来源:https://www.bwwdw.com/article/kdov.html

Top