广东省茂名市2013届高三第一次高考模拟数学理试题
更新时间:2024-01-09 12:11:01 阅读量: 教育文库 文档下载
- 茂名市广播电视台2013推荐度:
- 相关推荐
绝密★启用前 试卷类型:A
茂名市2013年第一次高考模拟考试数学试卷(理科)
本试卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟。
第一部分 选择题(共40分)
一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项
是符合题目要求的)
1. 设集合A?{x|?1≤x≤2?,B?{x|?1≤x≤1?,则( )
2. 计算:i(1?i)2?( )
A.2i
B.-2i C.
2 D. -2
12)?( )
3. 已知f(x)是奇函数,当x?0时,f(x)?log2x,则f(?A. 2 B. 1 C. ?1 D. ?2
????4. 已知向量a?(x?1,2),b?(2,1),则a?b的充要条件是( )
A.x?0
B.x?5
C.x??1
D.x??1212
5. 若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为
可以是( )
,则该几何体的俯视图
6. 已知函数y?sinx?cosx,则下列结论正确的是( ) A. 此函数的图象关于直线x??C. 此函数在区间(???4,4
?4对称 B. 此函数的最大值为1
)上是增函数 D. 此函数的最小正周期为?
7. 某程序框图如图所示,该程序运行后, 输出的x值为31,则a等于( )ks5u A. 0 B. 1 C. 2 D. 3
?x?y?3?8. 已知x、y满足约束条件?x?y??1,
?y?1?若0?ax?by?2,则
b?2a?1的取值范围为( )
A. [0,1] B. [1,10] C. [1,3] D. [2,3]
第二部分 非选择题(共100分)
二、填空题(本大题共7小题,分为必做题和选做题两部分,每小题5分,满分30分)。 (一)必做题:第9至13题为必做题,每道试题考生都必须作答。 9. 已知等比数列{an}的公比q为正数,且a3?a9?2a52,则q= . 10. 计算
.
0)11. 已知双曲线x2?ky2?1的一个焦点是(5,,则其渐近线方程为 .
12. 若(2x?1x)n
的展开式中所有二项式系数之和为64,则展开式的常数项为 .
13. 已知21?1?2,22?1?3?3?4,23?1?3?5?4?5?6,24?1?3?5?7?5?6?7?8,… 依此类推,第n个等式为 .
(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的只算前一题得分。 14. (坐标系与参数方程选做题)已知曲线C的参数方程为??x?2?cos??y?sin? (θ为参数),则曲线C上
的点到直线3x-4y+4=0的距离的最大值为 15.(几何证明选讲选做题)如图,⊙O的直径AB=6cm,P是AB
延长线上的一点,过P点作⊙O的切线,切点为C,连接AC, 若∠CPA=30°,PC=_____________
三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤。 16.(本小题满分12分)
如图,角A为钝角,且sinA?两边上不同于点A的动点.
(1)若AP=5,PQ =35,求AQ的长; (2)设?APQ??,?AQP??,且cos??17.(本小题满分12分)
某连锁超市有A、B两家分店,对该超市某种商品一个月30天的销售量进行统计:A分店的销售量为200件和300件的天数各有15天;B分店的统计结果如下表:
销售量(单位:件) 天 数 200 10 300 15 400 5 1213,求sin(2???)的值.
35,点P、Q分别是在角A的
(1)根据上面统计结果,求出B分店销售量为200件、300件、400件的频率;
(2)已知每件该商品的销售利润为1元,?表示超市A、B两分店某天销售该商品的利润之
和,若以频率作为概率,且A、B两分店的销售量相互独立,求?的分布列和数学期望.
18.(本小题满分14分)
如图,PDCE为矩形,ABCD为梯形,平面PDCE^平面ABCD, ?BAD??ADC?90?,AB?AD?12CD?a,PD?2a.
(1)若M为PA中点,求证:AC∥平面MDE; (2)求平面PAD与PBC所成锐二面角的大小.
19.(本小题满分14分)
已知数列{an},{bn}中,a1?b1?1,且当n?2时,an?nan?1?0,bn?2bn?1?2n?1. 记n的阶乘n(n?1)(n?2)?3?2?1?n!
(1)求数列{an}的通项公式;(2)求证:数列{(3)若cn?anan?2nbn2n}为等差数列;
?bn?2,求{cn}的前n项和. ks5u
20.(本小题满分14分)
已知椭圆C1:
xa22?yb22?1 (a?b?0)的离心率为
33,连接椭圆的四个顶点得到的四
边形的面积为26.
(1)求椭圆C1的方程;ks5u
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂
直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设O为坐标原点,取C2上不同于O的点S,以OS为直径作圆与C2相交另外一点R,求
该圆面积的最小值时点S的坐标.
21.(本小题满分14分)
3(1)若a?1,求g(x)的单调减区间;
已知函数g(x)?1ax?2x?2x,函数f(x)是函数g(x)的导函数.
32(2)若对任意x1,x2?R且x1?x2,都有f(x1?x22)?f(x1)?f(x2)2,求实数a的取值范
围;
(3)在第(2)问求出的实数a的范围内,若存在一个与a有关的负数M,使得对任意
x?[M,0]时|f(x)|?4恒成立,求M的最小值及相应的a值.
茂名市2013年第一次高考模拟考试数学试卷(理科)
参考答案及评分标准
一、选择题(每小题5分,共40分)
题号 答案 1 A 2 D 3 B 4 A 5 C 6 C 7 D 8 B 二、填空题(每小题5分,共30分) 9.
22; 10. e; 11. y??2x; 12. ?160;
13. 2n?1?3?5???(2n?1)?(n?1)?(n?2)?(n?3)???(n?n); 14. 3; 15. 33. 三、解答题(共80分)
16. 解:(1)??A是钝角,sinA?35,?cosA??45 ……ks5u………………1分
在?APQ中,由余弦定理得:PQ2?AP2?AQ2?2AP?AQcosA
所以AQ2?8AQ?20?0 ……………ks5u………4分
解得AQ?2 或?10(舍去负值),所以AQ?2 …………………………6分 (2)由cos??121313在三角形APQ中,????A??
,得sin??5 …………………………7分
又sin(???)?sin(??A)?sinA?cos(???)??cosA?435, …………………………8分 …………………………9分
5?sin(2???)?sin[??(???)]?sin?cos(???)?cos?sin(???)………11分 ?513?45?1213?35?5665
………………………12分
11217. 解:(1)B分店销售量为200件、300件、400件的频率分别为,
3和
16 ………3分
(2)A分店销售量为200件、300件的频率均为
12, ……………4分
?的可能值为400,500,600,700,且 ……………5分
P(?=400)=?2113??1216?, P(?=500)=
12?1312??1612?131?12?512,
P(?=600)=?2116, P(?=700)=
12?12, ………9分
?的分布列为
? 400 16500 512600 13700 112P ……………10分
E?=400?16+500?512+600?13+700?112=
16003(元) …………………12分
18.(1)证明:连结PC,交DE与N,连结MN,
?PAC中,M,N分别为两腰PA,PC的中点 ∴MN//AC………………2分
因为MN?面MDE,又AC?面MDE,所以AC//平面MDE ………………4分 (2)解法一:设平面PAD与PBC所成锐二面角的大小为?,以D为空间坐标系的原点,分
别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,则
????????2a),B(a,a,0),C(0,2a,0) PB?(a,a,?2a),BC?(?a,a,0) ………6分
???? 设平面PAD的单位法向量为n1,则可设n1?(0,1,0) ……………………………7分
P(0,0,
???设面PBC的法向量n2?(x,y,1),应有 ?????????n2?PB?(x,y,1)?(a,a,?2a)?0 ??????????n2?BC?(x,y,1)?(?a,a,0)?0
??ax?ay?2a?0 即:?
???ax?ay?0?2x?????22?2解得:?,所以n2?(,,1) …………………………………………12分
222?y???2
2?????n?n212 ∴cos????1??? ……………………………………………………13分 ??21?2n1?n2 所以平面PAD与PBC所成锐二面角为60°………………………………………14分 解法二:延长CB、DA相交于G,连接PG,过点D作DH⊥PG ,垂足为H,连结HC ……………………6分 ∵矩形PDCE中PD⊥DC,而AD⊥DC,PD∩AD=D ∴CD⊥平面PAD ∴CD⊥PG,又CD∩DH=D ∴PG⊥平面CDH,从而PG⊥HC ………………8分 ∴∠DHC为平面PAD与平面PBC所成的锐二面角的平面角 ………………………………………………10分 在Rt?△PDG中,DG?2AD?2a,PD=在Rt△CDH中,tan?DHC?CDDH?2a233a?2a 可以计算DH?233a …12分
3 ……………………………13分
所以平面PAD与PBC所成锐二面角为60°………………………………………14分
19. 解:(1)?an?nan?1?0, n?2,a1?1
?an?nan?1?n(n?1)an?2?n(n?1)(n?2)an?3????
?n(n?1)(n?2)?3?2?a1?n! …………………………………………2分
又a1?1?1!,?an?n! ………………………………………………………3分 (2)由bn?2bn?1?2n?1两边同时除以2n得
∴数列{bn2nbn2n?bn?12n?1?12即
bn2n?bn?12n?1??12 …4分
bn2}是以n12为首项,公差为?12)?1?n212的等差数列 …………………………5分
n?12?(n?1)(?,故bn?2(1?1n?1an?1n?2n2) ……………………………6分
nn?1(3)因为
anan?2a1a3??1(n?1)(n?2)a2a4?13?,bn?2??n?2 ………………8分
记An=
An?(12?13a3a5?14?????14an?2?15
1n?11n?2121n?2)?()?()?????(?)?? ………10分
n记{bn?2}的前n项和为Bn
012n?1则Bn??1?2?2?2?3?2?????n?2 ① 12n?1n∴2Bn??1?2?2?2?????(n?1)?2?n?2 ②
由②-①得:Bn?2?2?2?????2012n?1?n?2?n1?2n1?212?n?2?(1?n)?2?1
nn……………………………………………………………………………………13分 ∴Sn?c1?c2?c3?????cn=An?Bn?(1?n)?2?n?1n?2……………14分
b …………1分
20. 解:(1)解:由e?由题意可知
3312,得a?3c,再由c?a?b,解得a?2222262?2a?2b?26,即a?b?6 …………………………………2分
?6a?b?解方程组?2得a???ab?63,b?2 ………………………………………3分
所以椭圆C1的方程是
x23?y22?1 ………………………………………………3分
(2)因为MP?MF2,所以动点M到定直线l1:x??1的距离等于它到定点F2(1,0)的距离,所以动点M的轨迹C2是以l1为准线,F2为焦点的抛物线,…6分
所以点M的轨迹C2的方程为y2?4x …………………………………………7分
???????(3)因为以OS为直径的圆与C2相交于点R,所以∠ORS = 90°,即OR?SR?0
……………………………………………………………………………………8分
???????设S (x1,y1),R(x2,y2),SR=(x2-x1,y2-y1),OR=(x2,y2)
222???????y2(y2?y1)所以OR?SR?x2(x2?x1)?y2(y2?y1)??y2(y2?y1)?0
16?16?因为y1?y2,y2?0,化简得y1???y2?? ……………………………10分
y2??所以y1?y2?222当且仅当y2?256y2y222?32?2y2?2256y22?32?64,
2562即y2=16,y2=±4时等号成立. ………………………12分
圆的直径|OS|=2x1?y1?222y1416?y1?214y1?16y1?min4214(y1?8)?64
22因为y1≥64,所以当y1=64即y1=±8时,OS?85, ……………13分
所以所求圆的面积的最小时,点S的坐标为(16,±8)……………………14分
21. 解:(1)当a?1时,g(x)?由g'(x)?0解得?2?13x?2x?2x,g'(x)?x?4x?2 …………………1分
3226?x??2?6 ……………………2分
6,?2?6);………………3分
?当a?1时函数g(x)的单调减区间为(?2?(2)易知f(x)?g'(x)?ax2?4x?2
依题意知 f(?a(??x1?x22)?f(x1)?fx(222
)2x1?x22)?4(22x1?x22)?2?ax1?4x1?2?ax2?4x2?22
a4(x1?x2)?0 …………………………………………………………5分
因为x1?x2,所以a?0,即实数a的取值范围是(0,??) ;………………6分 (3)解法一:易知f(x)?ax?4x?2?a(x?22a)?2?2a24a,a?0.
显然f(0)??2,由(2)知抛物线的对称轴x??①当?2?2?0 ………………7分
4a??4即0?a?2时,M?(?2a,0)且f(M)??4
令ax?4x?2??4解得x??2?4?2aa ……………………8分
此时M取较大的根,即M??0?a?2, ?M??2?4?2aa??24?2a?2 …………………9分
?24?2a?2??1 ………………………10分
2a②当?2?4a??4即a?2时,M??且f?M??4
令ax2?4x?2?4解得x??2?4?6aa ……………………11分
?64?6a?2此时M取较小的根,即M??a?2, ?M??2?4?6aa? ………………12分
?64?6a?2??3当且仅当a?2时取等号 …………13分
由于?3??1,所以当a?2时,M取得最小值?3 ……………………14分 解法二:对任意x?[M,0]时,“|f(x)|?4恒成立”等价于“f(x)max?4且
f(x)min??4”
由(2)可知实数a的取值范围是(0,??)
故f(x)?ax2?4x?2的图象是开口向上,对称轴x??①当?2a?M?0时,f(x)在区间[M,0]上单调递增,
2a?0的抛物线……7分
∴f(x)max?f(0)??2?4, 要使M最小,只需要
f(x)min?f(M)?aM2?4M?2??4………8分
若??16?8a?0即a?2时,无解
若??16?8a?0即0?a?2时,………………9分 解得M??2?4?2aa??2a(舍去) 或M??2?4?2aa??1
故M??1(当且仅当a?2时取等号)…………10分 ②当M??在(?f(?2a2a2a时,f(x)在区间[M,?2a]上单调递减,
,0]递增,f(0)??2?4, )??2?4a??4则a?2,…………………11分
2要使M最小,则f(M)?aM?4M?2?4即
aM2?4M?6?0 ……………………………………………………………12分
?2?4?6aa4?6aa?解得M?或M???2a(舍去)
??3(当且仅当a?2时取等号)……13分
?2??64?6a?2综上所述,当a?2时,M的最小值为?3. …………………………………14分
wwwxsxmo
正在阅读:
广东省茂名市2013届高三第一次高考模拟数学理试题01-09
五年级下册第五单元集体备课 - 图文09-15
订货合同(10篇)03-25
信息技术在教育教学中的应用10-09
咨询服务合同【实用6篇】03-26
英语作文 自我提高 创新的重要性03-29
2008-2009学年第二学期体育舞蹈初级班教案204-17
动力电池用5V纳米LiCoPO4正极材料的合成与电化学性能 - 图文01-15
校庆口号09-09
证明格式范文02-17
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 茂名市
- 高考模拟
- 学理
- 广东省
- 高三
- 试题
- 第一次
- 2013
- 新疆乌鲁木齐市第十三中学2010-2011年八年级下册人教版数学期末试题
- 2013-2014学年第二学期八年级物理期末试卷
- 新集乡农村民风建设年活动实施方案
- 新人教版八年级物理上册教案
- 集体中学2014年中考数学模拟试题
- 安徽工业大学马克思主义理论一级学科硕士研究生培养方案
- 关于假设检验中检验统计量的选择及拒绝域的确定问题
- 变电运行安全管理与事故防范措施探析
- 唐雎不辱使命复习提纲(问题+加点字+句子翻译)
- 众创空间创新实验室校企合作方案 - 图文
- 工程项目合同管理规定
- 公务员面试备考:如何调节出好的心态
- 唐边塞诗中的思乡情怀
- 300经典句涵盖中考所有高频词语、短语、句型、考点
- 学生会办公室下半年工作计划
- 广东省住院医师规范化培训学员报名及信息报送平台
- 幼儿园教师评课稿(共8篇)
- 小古文群文阅读教学设计
- 卫生管理职称考试试题及答案
- 浅议如何培养学生正确的数学阅读习惯