运筹学课后答案大全
更新时间:2024-07-01 15:02:01 阅读量: 综合文库 文档下载
第2章 线性规划的图解法
1.解: x2 5 `
A 1 B O 1 C 6 x1 (1) 可行域为OABC
(2) 等值线为图中虚线部分
(3) 由图可知,最优解为B点, 最优解:x1=2.解: x2 1
0.6
0.1 0 0.1 0.6 1 x1
(1) 由图解法可得有唯一解 (2) (3) (4) (5)
无可行解 无界解 无可行解 无穷多解
x1?0.2x2?0.6127,x2?157。最优目标函数值:
697
,函数值为3.6。
369
x1?20383(6) 有唯一解
x2?,函数值为
923。
3.解:
(1). 标准形式:
maxf?3x1?2x2?0s1?0s2?0s3 9x1?2x2?s1?30
3x1?2x2?s2?132x1?2x2?s3?9x1,x2,s1,s2,s3?0
(2). 标准形式:
minf?4x1?6x2?0s1?0s2
3x1?x2?s1?6x1?2x2?s2?107x1?6x2?4x1,x2,s1,s2?0
(3). 标准形式:
minf?x1?2x2?2x2?0s1?0s2 ?3x1?5x2?5x2?s1?70'''''''
2x1?5x2?5x2?503x?2x?2x?s2?30x1,x2,x2,s1,s2?0'''''1'2''2''''
4.解:
标准形式:
maxz?10x1?5x2?0s1?0s2
3x1?4x2?s1?9 5x1?2x2?s2?8
x1,x2,s1,s2?0 松弛变量(0,0) 最优解为 x1=1,x2=3/2.
370
5.解:
标准形式:
minf?11x1?8x2?0s1?0s2?0s3 10x1?2x2?s1?20
3x1?3x2?s2?184x1?9x2?s3?36x1,x2,s1,s2,s3?0
剩余变量(0.0.13) 最优解为 x1=1,x2=5.
6.解:
(1) 最优解为 x1=3,x2=7. (2) 1?c1?3 (3) 2?c2?6 (4)
x1?6x2?4
(5) 最优解为 x1=8,x2=0. (6) 不变化。因为当斜率?1??
7.解:
模型:
maxz?500x1?400x2
2x1?3003x2?5402x1?2x1?4401.2x1?1.5x2?300x1,x2?0c1c2??13,最优解不变,变化后斜率为1,所以最优解不变.
(1) x1?150,x2?70,即目标函数最优值是103000 (2) 2,4有剩余,分别是330,15,均为松弛变量. (3) 50,0,200,0。
(4) 在?0,500?变化,最优解不变。在400到正无穷变化,最优解不变. (5) 因为?c1c2??450430??1,所以原来的最优产品组合不变.
371
8.解:
(1) 模型:minf?8xa?3xb
50xa?100xb?1200000
5xa?4xb?60000100xb?300000xa,xb?0
基金a,b分别为4000,10000,回报率为60000。 (2) 模型变为:maxz?5xa?4xb
50xa?100xb?1200000 100xb?300000xa,xb?0
推导出:x1?18000 x2?3000,故基金a投资90万,基金b投资30万。
372
第3章 线性规划问题的计算机求解
1.解:
(1) x1?150,x2?70。目标函数最优值103000。
(2) 1,3车间的加工工时已使用完;2,4车间的加工工时没用完;没用完的加工工时数为
2车间330小时,4车间15小时. (3) 50,0,200,0
含义:1车间每增加1工时,总利润增加50元;3车间每增加1工时,总利润增加200元;2车间与4车间每增加一个工时,总利润不增加。 (4) 3车间,因为增加的利润最大。
(5) 在400到正无穷的范围内变化,最优产品的组合不变。 (6) 不变 因为在?0,500?的范围内。
(7) 所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条件1的右边值
在?200,440?变化,对偶价格仍为50(同理解释其它约束条件)。 (8) 总利润增加了100×50=5000,最优产品组合不变。 (9) 不能,因为对偶价格发生变化。
(10) 不发生变化,因为允许增加的百分比与允许减少的百分比之和(11) 不发生变化,因为允许增加的百分比与允许减少的百分比之和
最大利润为103000+50×50-60×200=93500元。
2.解:
(1) 4000,10000,62000
(2) 约束条件1:总投资额增加1个单位,风险系数则降低0.057; 约束条件2:年回报额增加1个单位,风险系数升高2.167;
约束条件3:基金B的投资额增加1个单位,风险系数不变。
(3) 约束条件1的松弛变量是0,表示投资额正好为1200000;约束条件2的剩余变量是0,
表示投资回报率正好是60000;约束条件3的松弛变量为700000,表示投资B基金的投资额为370000。 (4) 当c2不变时,c1在3.75到正无穷的范围内变化,最优解不变; 当c1不变时,c2在负无穷到6.4的范围内变化,最优解不变。 (5) 约束条件1的右边值在?780000,1500000。 ?变化,对偶价格仍为0.057(其它同理)
44.25?23.6?100%,理由见百2510050140??5010060140?100% ?100%,其
(6) 不能,因为允许减少的百分比与允许增加的百分比之和
分之一百法则。
373
s.t X1-10000=Z1 X2+Z1-10000=Z2 X3+Z2-10000=Z3 X4+Z3-10000=Z4 X5+Z4-30000=Z5 X6+Z5-30000=Z6 X7+Z6-30000=Z7 X8+Z7-30000=Z8 X9+Z8-30000=Z9 X10+Z9-100000=Z10 X11+Z10-100000=Z11X12+Z11-100000=Z12Y1-50000=W1 Y2+W1-50000=W2 Y3+W2-15000=W3 Y4+W3-15000=W4 Y5+W4-15000=W5 Y6+W5-15000=W6 Y7+W6-15000=W7 Y8+W7-15000=W8
Y9+W8-15000=W9 Y10+W9-50000=W10 379
Y11+W10-50000=W11 Y12+W11-50000=W12 S1i?15000 1?i?12 Xi+Yi?120000 1?i?12 0.2Zi+0.4Wi?S1i?S2i 31?i?12
Xi?0,Yi?0,Zi?0,Wi?0,S1i?0,S2i?0 用管理运筹学软件我们可以求得此问题的解为: 最优值为4910500
X1?10000,X2=10000,X3=10000,X4=10000, X5=30000, X6=30000, X7=30000, X8=45000, X9=105000, X10=70000, X11=70000, X12=70000; Y1=50000, Y2=50000, Y3=15000, Y4=15000, Y5=15000
Y6=15000, Y7=15000, Y8=15000, Y9=15000, Y10=50000, Y11=50000, Y12=50000; Z8=15000, Z9=90000, Z10=60000, Z11=30000;
S18=3000,S19=15000,S110?12000,S111?6000;S29?3000; 其余变量都等于0
8.解:设第i 个车间生产第j种型号产品的数量为xij,可以建立下面的数学模型:
max?25(x11?x21?x31?x41?x51)?20(x12?x32?x42?x52)?17(x13?x23?x43?x53)
+11(x14?x24?x44)
s.t x11?x21?x31?x41?x51?1400 x12?x32?x42?x52?300 x12?x32?x42?x52?800 x13?x23?x43?x53?8000 x14?x24?x44?700
380
5x11?7x12?6x13?5x14?18000 6x21?3x23?3x24?15000 4x31?3x32?14000
3x41?2x42?4x43?2x44?12000 2x51?4x52?5x53?10000 xij?0,i?1,2,3,4,5 j=1,2,3,4
用管理运筹学软件我们可以求得此问题的解为:
**********************最优解如下*************************
目标函数最优值为 : 279400
变量 最优解 相差值 ------- -------- -------- x11 0 11 x21 0 26.4 x31 1400 0 x41 0 16.5 x51 0 5.28 x12 0 15.4 x32 800 0 x42 0 11 x52 0 10.56 x13 1000 0 x23 5000 0 x43 0 8.8 x53 2000 0 x14 2400 0 x24 0 2.2 x44 6000 0
约束 松弛/剩余变量 对偶价格 ------- ------------- -------- 1 0 25 2 500 0 3 0 20 4 0 3.8 5 7700 0 6 0 2.2 7 0 4.4 8 6000 0
381
9 0 5.5 10 0 2.64 目标函数系数范围 :
变量 下限 当前值 上限 ------- -------- -------- -------- x11 无下限 25 36 x21 无下限 25 51.4 x31 19.72 25 无上限 x41 无下限 25 41.5 x51 无下限 25 30.28 x12 无下限 20 35.4 x32 9.44 20 无上限 x42 无下限 20 31 x52 无下限 20 30.56 x13 13.2 17 19.2 x23 14.8 17 无上限 x43 无下限 17 25.8 x53 3.8 17 无上限 x14 9.167 11 14.167 x24 无下限 11 13.2 x44 6.6 11 无上限 常数项数范围 :
约束 下限 当前值 上限 ------- -------- -------- -------- 1 0 1400 2900 2 无下限 300 800 3 300 800 2800 4 7000 8000 10000 5 无下限 700 8400 6 6000 18000 无上限 7 9000 15000 18000 8 8000 14000 无上限 9 0 12000 无上限 10 0 10000 15000 即
x11?0,x12?0,x13?1000,x14?2400,x21?0,x23?5000,x24?0,x31?1400,x32?800,x41?0,x42?0,x43?0,x44?6000,x51?0, x52?0,x53?2000最优值为279400
(2)对5个车间的可用生产时间做灵敏度分析可以照以上管理运筹学软件的计算结果自行进行。
9.解:设第一个月正常生产x1,加班生产x2,库存x3;第二个月正常生产x4,加班生产x5,
382
库存x6;第三个月正常生产x7,加班生产x8,库存x9;第四个月正常生产x10,加班
生产x11,可以建立下面的数学模型:
Min f=200(x1+ x4+ x7+ x10)+300(x2+ x5+ x8+ x11)+60(x3+ x6+ x9) s.t x1?4000 x4?4000 x7?4000 x10?4000
x3?1000
x6?1000 x9?1000 x2?1000 x5?1000 x8?1000 x11?1000 x1?x2?x3?4500 x3?x4?x5?x6?3000 x6?x7?x8?x9?5500 x9?x10?x11?4500
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11?0 用管理运筹学软件我们可以求得此问题的解为: 最优值为f=3710000元
x1=4000吨,x2 =500吨,x3=0吨,x4=4000吨, x5=0吨
x6=1000吨, x7=4000吨, x8=500吨, x9=0吨, x10=4000吨,x11=500吨。
383
第5章 单纯形法
1.解:表中a、c、e、f是可行解,a、b、f是基本解,a、f是基本可行解。
2.解:
(1) 该线性规划的标准型为: max 5x1+9x2+0s1+0s2+0s3 s.t. 0.5x1+x2+s1=8 x1+x2-s2=10
0.25x1+0.5x2-s3=6 x1,x2,s1,s2,s3 ≥0
(2) 有两个变量的值取零,因为有三个基变量、两个非基变量,非基变量取零。 (3) (4,6,0,0,-2)T (4) (0,10,-2,0,-1)T
(5) 不是。因为基本可行解要求基变量的值全部非负。 (6) 略 3.解:(1) 迭代次数 基变量 CB x1 x2 x3 s1 s2 s3 b 6 s1 s2 30 1 2 [1] 0 30 25 0 1 -1 0 25 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 40 50 20 0 0 0 0 zj 3 0 2 0 6 0 s3 cj?zj
(2) 线性规划模型为: max 6x1+30x2+25x3 s.t. 3x1+x2+s1=40 2x2+x3+s2=50
2x1+x 2-x3+s3=20
x1,x2,x3,s1,s2,s3 ≥ 0
(3) 初始解的基为(s1,s2,s3)T,初始解为(0,0,0,40,50,20)T,对应的目标函数
值为0。
(4) 第一次迭代时,入基变量时x2,出基变量为s3。
4.解:最优解为(2.25,0)T,最优值为9。
384
4x1?2x2?9x1?3x2?7
单纯形法: x1 x2 迭代次数 基变量 CB s1 s2 b 4 s1 s2 1 3 2 0 1 2.5 0.5 2 -1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 -0.25 0.25 1 -1 4.75 2.25 7 9 0 0 zj 1 [4] 0 4 0 cj?zj s1 x1 0 4 zj 0 1 4 0 1 cj?zj
5.解:
(1) 最优解为(2,5,4)T,最优值为84。 (2) 最优解为(0,0,4)T,最优值为-4。
6.解:有无界解
385
7.解:
(1) 无可行解
(2) 最优解为(4,4)T,最优值为28。 (3) 有无界解
(4) 最优解为(4,0,0)T,最优值为8。
386
第6章 单纯形法的灵敏度分析与对偶
1.解:
(1) c1≤24 (2) c2≥6 (3) cs2≤8
2.解:
(1) c1≥-0.5 (2) -2≤c3≤0 (3) cs2≤0.5
3.解:
(1) b1≥250 (2) 0≤b2≤50 (3) 0≤b3≤150
4.解:
(1) b1≥-4 (2) 0≤b2≤10 (3) b3≥4
5.解:
(1) 利润变动范围c1≤3,故当c1=2时最优解不变 (2) 根据材料的对偶价格为1判断,此做法不利 (3) 0≤b2≤45
(4) 最优解不变,故不需要修改生产计划
(5) 此时生产计划不需要修改,因为新的产品计算的检验数为-3小于零,对原生产计划没有影响。
6.解:
均为唯一最优解,根据从计算机输出的结果看出,如果松弛或剩余变量为零且对应的对偶价格也为零,或者存在取值为零的决策变量并且其相差值也为零时,可知此线性规划有无穷多组解。
7.解:
(1) min f= 10y1+20y2.
s.t. y1+y2≥2 y1+5y2≥1 y1+y2≥1
y1,y2≥0
(2) max z= 100y1+200y2. s.t. 1/2y1+4y2≤4
387
2y1+6y2≤4 2y1+3y2≤2 y1,y2≥0
8. 解:
(1) min f= -10y1+50y2+20y3.
s.t. -2y1+3y2+y3≥1 -3y1+y2 ≥2 -y1+y2+y3 =5
y1,y2≥0,y3没有非负限制。
(2) max z= 6y1-3y2+2y3.
s.t. y1-y2-y3≤1 2y1+y2+y3 =3 -3y1+2y2-y3≤-2 y1,y2≥0,y3没有非负限制
9.解:
maxz??x1?2x2?3x3??4??x1?x2?x3?x4??x1?x2?2x3?x5?8 ??x2?x3?x6??2??x?0,j?1,?,6?j用对偶单纯形法解 迭代次数 基变量 CB x1 x2 x3 s1 s2 s3 b -1 s1 s2 -2 1 1 -1 0 -2 -1 2 -3 -1 2 1 0 -3 1 1 0 1 0 0 0 0 -1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 4 4 -4 8 -2 0 0 0 zj [-1] 1 0 0 -1 0 s3 cj?zj x1 -1 0 1 0 1 s2 388
s3 zj cj?zj x1 s2 0 0 -1 0 [-1] 1 -3 0 0 1 -2 0 1 -1 -2 0 3 -1 2 -5 0 1 -1 -1 1 0 1 -1 0 0 0 0 1 0 0 0 1 0 -2 0 -1 2 -1 3 cj?zj -1 0 -2 zj 1 0 0 -1 0 6 0 2 2 x2 -3
最优解:x1=6,x2=2,x3=0,目标函数最优值为10。
389
第7章 运输问题
1.
(1)此问题为产销平衡问题 1分厂 2分厂 3分厂 销量 最优解如下
******************************************** 起 至 销点
发点 1 2 3 4 -------- ----- ----- ----- ----- 1 0 250 0 50 2 400 0 0 0 3 0 0 350 150 此运输问题的成本或收益为: 19800 此问题的另外的解如下: 起 至 销点
发点 1 2 3 4 -------- ----- ----- ----- ----- 1 0 250 50 0 2 400 0 0 0 3 0 0 300 200 此运输问题的成本或收益为: 19800
(2)如果2分厂产量提高到600,则为产销不平衡问题
最优解如下
******************************************** 起 至 销点
发点 1 2 3 4 -------- ----- ----- ----- ----- 1 0 250 0 0 2 400 0 0 200 3 0 0 350 0
此运输问题的成本或收益为:19050 注释:总供应量多出总需求量 200 第1产地的剩余 50 第3 个产地剩余 150
(3)销地甲的需求提高后,也变为产销不平衡问题
甲 21 10 23 400 乙 17 15 21 250 丙 23 30 20 350 丁 25 19 22 200 产量 300 400 500 1200 390
最优解如下
******************************************** 起 至 销点
发点 1 2 3 4 -------- ----- ----- ----- ----- 1 50 250 0 0 2 400 0 0 0 3 0 0 350 150 此运输问题的成本或收益为: 19600 注释:总需求量多出总供应量 150
第1 个销地未被满足,缺少 100 第4 个销地未被满足,缺少 50 2.
首先,计算本题的利润模型 甲 乙 丙 丁 Ⅰ 0.3 0.3 0.05 -0.2 Ⅰ’ 0.3 0.3 0.05 -0.2 Ⅱ 0.4 0.1 0.05 0.3 Ⅱ’ 0.4 0.1 0.05 0.3 Ⅲ 0.3 -0.4 0.15 0.1 Ⅳ 0.4 0.2 0.05 -0.1 Ⅴ 0.1 -0.2 -0.05 -0.1 Ⅵ 0.9 0.6 0.55 0.1 由于目标函数是“max”,将目标函数变为“min”则以上利润模型变为以下模型: 甲 乙 丙 丁 Ⅰ -0.3 -0.3 -0.05 0.2 Ⅰ’ -0.3 -0.3 -0.05 0.2 Ⅱ -0.4 -0.1 -0.05 -0.3 Ⅱ’ -0.4 -0.1 -0.05 -0.3 Ⅲ -0.3 0.4 -0.15 -0.1 Ⅳ -0.4 -0.2 -0.05 0.1 Ⅴ -0.1 0.2 0.05 0.1 Ⅵ -0.9 -0.6 -0.55 -0.1
由于管理运筹学软件中要求所输入的数值必须为非负,则将上表中的所有数值均加上1,因此上表就变为了以下模型: 甲 乙 丙 丁 Ⅰ 0.7 0.7 0.95 1.2 Ⅰ’ 0.7 0.7 0.95 1.2 Ⅱ 0.6 0.9 0.95 0.7 Ⅱ’ 0.6 0.9 0.95 0.7 Ⅲ 0.7 1.4 0.85 0.9 Ⅳ 0.6 0.8 0.95 1.1 Ⅴ 0.9 1.2 1.05 1.1 Ⅵ 0.1 0.4 0.45 0.9
加入产销量变为运输模型如下: 甲 乙 丙 Ⅰ 0.7 0.7 0.95 Ⅰ’ 0.7 0.7 0.95 Ⅱ 0.6 0.9 0.95 Ⅱ’ 0.6 0.9 0.95 Ⅲ 0.7 1.4 0.85 Ⅳ 0.6 0.8 0.95 Ⅴ 0.9 1.2 1.05 Ⅵ 产量 0.1 300 0.4 500 0.45 400 391
丁 销量 150 1.2 150 1.2 150 0.7 100 0.7 350 0.9 200 1.1 250 1.1 150 0.9 100 由于以上模型销量大于产量所以加入一个虚拟产地戊,产量为200,模型如下表所示: 甲 乙 丙 丁 戊 销量 M 150 Ⅰ 0.7 0.7 0.95 1.2 0 150 Ⅰ’ 0.7 0.7 0.95 1.2 M 150 Ⅱ 0.6 0.9 0.95 0.7 0 100 Ⅱ’ 0.6 0.9 0.95 0.7 0 350 Ⅲ 0.7 1.4 0.85 0.9 0 200 Ⅳ 0.6 0.8 0.95 1.1 M 250 Ⅴ 0.9 1.2 1.05 1.1 0 150 Ⅵ 产量 0.1 300 0.4 500 0.45 400 0.9 100 200 1500
用管理运筹学软件计算得出结果如下:
由于计算过程中将表中的所有数值均加上1,因此应将这部分加上的值去掉,所以
,因此此利润问题的结果为935?1300?1??365。又因为最初将目标函数变为了“min”
365。
3.解:建立的运输模型如下: 0 1 1’ 2 2’ 3 3’
1 60 600 600+600×10% M M M M 2 120 600+60 600+600×10%+60 700 700+700×10% M M 392
3 180 600+60×2 600+600×10%+60×2 700+60 700+700×10%+60 650 650+650×10% 2 3 3 4 2 2 3 5 5 6 最优解如下
********************************************
起 至 销点
发点 1 2 3 -------- ----- ----- ----- 1 1 0 1 2 3 0 3 1 1 4 0 4 5 0 0 6 0 0 7 0 0 此运输问题的成本或收益为: 9665
注释:总供应量多出总需求量 3 第3个产地剩余 1 第5个产地剩余 2
此问题的另外的解如下:
起 至 销点
发点 1 2 -------- ----- ----- 1 2 0 2 3 0 3 0 2 4 0 3 5 0 0 6 0 0 7 0 0 此运输问题的成本或收益为: 9665
注释:总供应量多出总需求量 3 第3个产地剩余 1 第5个产地剩余 2
此问题的另外的解如下:
起 至 销点
发点 1 2 -------- ----- -----
0 0 0 0 2 3 3 ----- 0 0 0 1 0 2 3 3 -----
393
1 2 0 0 2 3 0 0 3 0 1 1 4 0 4 0 5 0 0 0 6 0 0 2 7 0 0 3 此运输问题的成本或收益为: 9665
注释:总供应量多出总需求量 3 第3个产地剩余 1 第5个产地剩余 2
4.解: 甲 乙 A B C D
最优解如下
******************************************** 起 至 销点
发点 1 2 3 4 5 6 -------- ----- ----- ----- ----- ----- ----- 1 1100 0 300 200 0 0 2 0 1100 0 0 600 0 3 0 0 1100 0 0 0 4 0 0 0 1100 0 0 5 0 0 0 0 1000 100 6 0 0 0 0 0 1100
此运输问题的成本或收益为130000。
甲 0 80 150 200 180 240 1100 乙 100 0 80 210 60 170 1100 A 150 80 0 70 110 90 1400 B 200 210 60 0 130 50 1300 C 180 60 110 140 0 85 1600 D 240 170 80 50 90 0 1200 1600 1700 1100 1100 1100 1100 5.解:
建立的运输模型如下 :
min f = 54x11+49x12+52x13+64x14+57x21+73x22+69x23+65x24 s.t. x11+x12+x13+x14≤1100, x21+x22+x23+x24≤1000, x11,x12,x13,x14, x21,x22,x23,x24≥0.
394
A B
1 54 57 500 2 49 73 300 3 52 69 550 4 64 61 650 1100 1000 最优解如下
********************************************
起 至 销点
发点 1 2 3 4 -------- ----- ----- ----- ----- 1 250 300 550 0 2 250 0 0 650 此运输问题的成本或收益为: 110700
注释:总供应量多出总需求量 100 第2个产地剩余 100
6. 解:
(1) 最小元素法的初始解如下: 甲 乙 1 丙 销量 (2) 最优解如下
********************************************
起 至 销点
发点 1 2 3 -------- ----- ----- ----- 1 0 0 15 2 20 5 0 此运输问题的成本或收益为: 145
注释:总需求量多出总供应量 10
2 8 10 10 20 10 0 0 3 10 0 10 3 7 5 0 20 5 0 5 0 15 4 产量 15 0 9 25 15 5 0 10 0 395
第2个销地未被满足,缺少 5 第3个销地未被满足,缺少 5
(3) 该运输问题只有一个最优解,因为其检验数均不为零 (4)
最优解如下
********************************************
起 至 销点
发点 1 2 3 -------- ----- ----- ----- 1 0 0 15 2 25 0 0 此运输问题的成本或收益为: 135
注释:总需求量多出总供应量 20 第1个销地未被满足,缺少 5 第2个销地未被满足,缺少 10 第3个销地未被满足,缺少 5
396
第8章 整 数 规 划
1.求解下列整数规划问题 a. max z=5x1+8x2
s.t. x1+x2?6, 5x1+9x2?45, x1, x2?0,且为整数
***目标函数最优解为:x1?0,x2?5,z?40。 b. max z=3x1+2x2 s.t. 2x1+3x2?14, 2x1+x2?9,
x1, x2?0,且x1为整数
***目标函数最优解为:x1?3,x2?2.6667,z?14.3334。 c. max z=7x1+9x2+3x3
s.t. –x1+3x2+x3?7, 7x1+x2+3x3?38, x1, x2, x3?0,且x1为整数,x3为0–1变量。
****目标函数最优解为:x1?5,x2?3,x3?0,z?62。
2.解:设xi为装到船上的第i种货物的件数,i=1, 2, 3, 4, 5。则该船装载的货物取得最大价值目标函数的数学模型可写为:
max z=5x1+10x2+15x3+18x4+25x5 s.t. 20x1+5x2+10x3+12x4+25x5?400000, x1+2x2+3x3+4x4+5x5?50000, x1+4x4?10000 0.1x1+0.2x2+0.4x3+0.1x4+0.2x5?750, xi?0,且为整数,i=1, 2, 3, 4, 5。
******目标函数最优解为:x1?0,x2?0,x3?0,x4?2500,x5?2500,z?107500.
3.解:设xi为第i项工程,i=1, 2, 3, 4, 5,且xi为0–1变量,并规定,
?1,当第i项工程被选定时,
xi??
?0,当第i项工程没被选定时。根据给定条件,使三年后总收入最大的目标函数的数学模型为: max z=20x1+40x2+20x3+15x4+30x5
s.t. 5x1+4x2+3x3+7x4+8x5?25, x1+7x2+9x3+4x4+6x5?25, 8x1+10x2+2x3+x4+10x5?25, xi为0–1变量,i=1, 2, 3, 4, 5。
******目标函数最优解为:x1?1,x2?1,x3?1,x4?1,x5?0,z?95
397
4.解:这是一个混合整数规划问题
设x1、x2、x3分别为利用A、B、C设备生产的产品的件数,生产准备费只有在利用该设备时才投入,为了说明固定费用的性质,设
?1,
yi??
?0,
故其目标函数为:
min z=100y1+300y2+200y3+7x1+2x2+5x3
为了避免没有投入生产准备费就使用该设备生产,必须加以下的约束条件,M为充分大的数。
x1?y1M, x2?y2M, x3?y3M, 设M=1000000
a.该目标函数的数学模型为:
min z=100y1+300y2+200y3+7x1+2x2+5x3 s.t. x1+x2+x3=2000, 0.5x1+1.8x2+1.0x3?2000, x1?800, x2?1200, x3?1400, x1?y1M, x2?y2M, x3?y3M, x1, x2, x3?0,且为整数,y1, y2, y3为0–1变量。
**x3 =1399, y1=1, y2=1, y3=1, z*=10647 目标函数最优解为:x1=370, x*2=231,
b.该目标函数的数学模型为:
min z=100y1+300y2+200y3+7x1+2x2+5x3 s.t. x1+x2+x3=2000, 0.5x1+1.8x2+1.0x3?2500, x1?800,
x2?1200, x3?1400, x1?y1M, x2?y2M, x3?y3M,
x1, x2, x3?0,且为整数,y1, y2, y3为0–1变量。
***x3 =1375, y1=0, y2=1, y3=1, z =8625 目标函数最优解为:x1=0, x*2=625, c.该目标函数的数学模型为: min z=100y1+300y2+200y3+7x1+2x2+5x3 s.t.
x1+x2+x3=2000, 0.5x1+1.8x2+1.0x3?2800,
398
x1?800, x2?1200, x3?1400, x1?y1M, x2?y2M, x3?y3M,
x1, x2, x3?0,且为整数,y1, y2, y3为0–1变量。
**x3=1000, y1=0, y2=1, y3=1, z*=7500 目标函数最优解为:x1=0, x*2=1000, d.该目标函数的数学模型为: min z=100y1+300y2+200y3+7x1+2x2+5x3 s.t.
x1+x2+x3=2000, x1?800, x2?1200, x3?1400, x1?y1M, x2?y2M, x3?y3M,
x1, x2, x3?0,且为整数,y1, y2, y3为0–1变量。
目标函数最优解为:x1*=0, x2*=1200, x3*=800, y1=0, y2=1, y3=1, z*=6900
5.解:设xij为从Di地运往Ri地的运输量,i=1, 2, 3, 4,j=1, 2, 3分别代表从北京、上海、广州、武汉运往华北、华中、华南的货物件数,并规定,
?1,当i地被选设库房,
yi??
?0,当i地没被选设库房。
该目标函数的数学模型为:
minz=45000y1+50000y2+70000y3+40000y4+200x11+400x12+500x13+300x21+250x22+400x23+ 600x31+350x32+300x33+350x41+150x42+350x43
s.t.
x11+x21+x31+x41=500, x12+x22+x32+x42=800, x13+x23+x33+x43=700, x11+x12+x13?1000y1, x21+x22+x23?1000y2,
x31+x32+x33?1000y3, x41+x42+x43?1000y4, y2?y4,
y1+y2+y3+y4?2, y3+y4?1,
xij?0,且为整数,yi为0-1变量,i=1,2,3,4。 目标函数最优解为
x11=500, x12=0, x13=500, x21=0, x22=0, x23=0, x31=0, x32=0, x33=0,x41=0, x42=800, x43=200, y1=1, y2=0, y3=0, y4=1, z=625000*************
399
也就是说在北京和武汉建库房,北京向华北和华南各发货500件,武汉向华中发货800件,向华南发货200件就能满足要求,即这就是最优解。
6.解:引入0-1变量xij,并令xij=
1,当指派第i人去完成第j项工作时, 0,当不指派第i人去完成第j项工作时。
a. 为使总消耗时间最少的目标函数的数学模型为:
minz=20x11+19x12+20x13+28x14+18x21+24x22+27x23+20x24+26x31+16x32+15x33+18x34+17x41
+ 20x42+24x43+19x44
s.t.
x11+x12+x13+x14=1, x21+x22+x23+x24=1, x31+x32+x33+x34=1, x41+x42+x43+x44=1, x11+x21+x31+x41=1,
x12+x22+x32+x42=1, x13+x23+x33+x43=1, x14+x24+x34+x44=1,
xij为0-1变量,i=1,2,3,4, j=1,2,3,4 目标函数最优解为:
x11=0, x12=1, x13=0, x14=0, x21=1, x22=0, x23=0, x24=0, x31=0, x32=0, x33=1, x34=0,x41=0, x42=0, x43=0, x44=1, z=71
*****************
或
x=0, x=1, x=0, x=0, x=0, xx41=1, x42=0, x43=0, x44=0, z=71
*****
*12*13*14*21*22*11=0, x*23=0, x*24=1, x=0, x*31*32=0, x=1, x*33*34=0,即安排甲做B项工作,乙做A项工作,丙做C项工作,丁做D项工作,或者是安排甲做B项工作,乙做D项工作,丙做C项工作,丁做A项工作,最少时间为71分钟。也可用管理运筹学2.5软件的整数规划中的指派问题子程序直接求得。
b. 为使总收益最大的目标函数的数学模型为: 将a中的目标函数改为求最大值即可。 目标函数最优解为:
x11=0, x12=0, x13=0, x14=1, x21=0, x22=1, x23=0, x24=0, x31=1, x32=0, x33=0, x34=0,x41=0, x42=0, x43=1, x44=0, z=102
*****************
即安排甲做D项工作,乙做C项工作,丙做A项工作,丁做B项工作,最大收益为102。
c. 由于工作多人少,我们假设有一个工人戊,他做各项工作所需的时间均为0,该问题就变为安排5个人去做5项不同的工作的问题了,其目标函数的数学模型为:
minz=20x11+19x12+20x13+28x14+17x15+18x21+24x22+27x23+20x24+20x25+26x31+16x32+15x33
+ 18x34+15x35+17x41+20x42+24x43+19x44+16x45
s.t.
x11+x12+x13+x14+x15=1, x21+x22+x23+x24+x25=1, x31+x32+x33+x34+x35=1, x41+x42+x43+x44+x45=1, x51+x52+x53+x54+x55=1,
400
x11+x21+x31+x41+x51=1, x12+x22+x32+x42+x52=1, x13+x23+x33+x43+x53=1,
x14+x24+x34+x44+x54=1, x15+x25+x35+x45+x55=1,
xij为0-1变量,i=1,2,3,4,5, j=1,2,3,4,5。 目标函数最优解为:
x=0, x=1, x=0, x=0, x=0, x=1, x********11*12*13*14*15*21*22=0, x**23=0, x**24=0, x*25=0, x=0, x*31*32
=0, x33=1, x34=0, x35=0, x41=0, x42=0, x43=0, x44=0, x45=1, z=68
即安排甲做B项工作,乙做A项工作,丙做C项工作,丁做E项工作,最少时间为68 分钟。
d. 该问题为人多任务少的问题,其目标函数的数学模型为:
minz=20x11+19x12+20x13+28x14+18x21+24x22+27x23+20x24+26x31+16x32+15x33+18x34+17x41
+ 20x42+24x43+19x44+16x51+17x52+20x53+21x54
s.t.
x11+x12+x13+x14?1, x21+x22+x23+x24?1, x31+x32+x33+x34?1, x41+x42+x43+x44?1,
x51+x52+x53+x54?1, x11+x21+x31+x41+x51=1,
x12+x22+x32+x42+x52=1, x13+x23+x33+x43+x53=1, x14+x24+x34+x44+x54=1,
xij为0-1变量,i=1,2,3,4, j=1,2,3,4,5。 目标函数最优解为:
x11=0, x12=0, x13=0, x14=0, x21=0, x22=0, x23=0, x24=1, x31=0, x32=0, x33=1, x34=0, x41=1, x42=0, x43=0, x44=0, x51=0, x52=1, x53=0, x54=0, z=69
*********************或
x11=0, x12=0, x13=0, x14=0, x21=1, x22=0, x23=0, x24=0, x31=0, x32=0, x33=1, x34=0, x41=0, x42=0, x43=0, x44=1, x51=0, x52=1, x53=0, x54=0, z=69
*********************或
x11=0, x12=1, x13=0, x14=0, x21=0, x22=0, x23=0, x24=0, x31=0, x32=0, x33=1, x34=0, x41=0, x42=0, x43=0, x44=1, x51=1, x52=0, x53=0, x54=0, z=69
*********************即安排乙做D项工作,丙做C项工作,丁做A项工作,戊做B项工作;或安排乙做A项工作,丙做C项工作,丁做D项工作,戊做B项工作;或安排甲做B项工作,丙做C项工作,丁做D项工作,戊做A项工作,最少时间为69分钟。
7.解:设飞机停留一小时的损失为a元,则停留两小时损失为4a元,停留3小时损失为9a元,依次类推,对A、B、C三个城市建立的指派问题的效率矩阵分别如下表所示:
401
城市A 起起飞 到 飞 到达达 106 107 108 109 110
解得最优解为: 起 到 达 106 107 108 109 110
城市B 起 起飞到 飞 到达 达101 102 103 113 114 101 256a 225a 100a 64a 256a 102 529a 484a 289a 225a 529a 103 9a 4a 441a 361a 9a 104 625a 576a 361a 289a 625a 105 36a 25a 576a 484a 36a 飞 101 0 0 0 0 1 102 1 0 0 0 0 103 0 0 0 1 0 104 0 1 0 0 0 105 0 0 1 0 0 101 4a 361a 225a 484a 196a 102 9a 400a 256a 529a 225a 103 64a 625a 441a 16a 400a 104 169a 36a 4a 81a 625a 105 225a 64a 16a 121a 9a 解得最优解为: 起 起飞到 到达 飞 达 106 107 108 109 110 或为:
101 0 1 0 0 0 102 0 0 1 0 0 103 1 0 0 0 0 104 0 0 0 1 0 105 0 0 0 0 1 402
起起飞到 飞 到达 达 106 107 108 109 110
101 0 1 0 0 0 102 0 0 1 0 0 103 0 0 0 0 1 104 0 0 0 1 0 105 1 0 0 0 0 城市C 到 达 104 105 111 112 解得最优解为: 起 到 飞 达 104 105 111 112 或为: 到 达 104 105 111 112
403
起 飞 109 49a 25a 169a 64a 110 225a 169a 441a 256a 113 225a 169a 441a 256a 114 49a 25a 169a 64a 109 0 0 1 0 110 1 0 0 0 113 0 1 0 0 114 0 0 0 1 起 飞 109 0 0 1 0 110 0 1 0 0 113 1 0 0 0 114 0 0 0 1
或为: 起 到 达 104 105 111 112 或为: 到 达 104 105 111 112
起 飞 109 0 0 0 1 110 0 1 0 0 113 1 0 0 0 114 0 0 1 0 飞 109 0 0 0 1 110 1 0 0 0 113 0 1 0 0 114 0 0 1 0 404
第9章 目标规划
1.解:
某工厂试对产品 A、B 进行生产。市场需求并不是很稳定,因此对每种产品分别预测了在销售良好和销售较差时的预期利润。这两种产品都经过甲、乙两台设备加工。已知产品A 和B分别在甲和乙设备上的单位加工时间,甲、乙设备的可用加工时间以及预期利润如下表所示,要求首先是保证在销售较差时,预期利润不少于5 千元,其次是要求销售良好时,预期利润尽量达到1 万元。试建立多目标规划模型并求解。 设备 单位加工时间 产品 A B 4 3 2 5 8 6 5 5 可用时间 45 30 100 50 甲 乙 销售良好时的预期利润(百元/件) 销售较差时的预期利润(百元/件) 解:设工厂生产A产品x1件,生产B产品x2件。按照生产要求,建立如下目标规划模型:
minP1(d1)?P2(d2)?4x1?3x2?45??2x1?5x2?30 ???5x?5x?d?d?50?1211???8x1?6x2?d2?d2?100??x,x,d?,d??0,i?1,2i?12i??由管理运筹学软件求解得:x1?11.25,x2?0,d1?0,d2?10,d1?6.25,d2?0 由图解法或进一步计算可知,本题在求解结果未要求整数解的情况下,满意解有无穷多个,为线段?(135/14,15/7)?(1??)(45/4,0),??[0,1]上的任一点。
2.解:
设食品厂商在电视上发布广告x1次,在报纸上发布广告x2次,在广播中发布广告x3次。目标规划模型为:
???? 405
minP1(d1)?P2(d2)?P3(d3)?P4(d4)?x1?10?x?20?2?x3?15???20x?10x?5x?d?d?400 ?12311????0.7x1?0.3x2?0.3x3?d2?d2?0???0.2x?0.2x?0.8x?d??d??012333????2.5x1?0.5x2?0.3x3?d4?d4?20?????x1,x2,x3,di,di?0,i?1,2,3,4????用管理运筹学软件先求下述问题:
mind1??x1?10?x?20?2?x3?15???20x?10x?5x?d?d?400 ?12311????0.7x1?0.3x2?0.3x3?d2?d2?0???0.2x?0.2x?0.8x?d??d??012333????2.5x1?0.5x2?0.3x3?d4?d4?20?????x1,x2,x3,di,di?0,i?1,2,3,4得:d1?0,将其作为约束条件求解下述问题:
mind2???x?101??x2?20?x?15?3?20x1?10x2?5x3?d1??d1??400 ???0.7x?0.3x?0.3x?d?d?0?12322????0.2x1?0.2x2?0.8x3?d3?d3?0??2.5x?0.5x?0.3x?d??d??2012344???d1?0????x1,x2,x3,di,di?0,i?1,2,3,4得最优值d2?0,将其作为约束条件计算下述问题:
? 406
mind3??x1?10?x?20?2?x3?15????20x1?10x2?5x3?d1?d1?400???0.7x?0.3x?0.3x?d?d?0 12322?????0.2x1?0.2x2?0.8x3?d3?d3?0??2.5x?0.5x?0.3x?d??d??2012344???d1?0???d2?0????x1,x2,x3,di,di?0,i?1,2,3,4得最优值d3?0,将其作为约束条件计算下述问题:
mind4???x?101??x2?20?x?15?3?20x1?10x2?5x3?d1??d1??400????0.7x1?0.3x2?0.3x3?d2?d2?0 ?????0.2x1?0.2x2?0.8x3?d3?d3?0???2.5x1?0.5x2?0.3x3?d4?d4?20??d??01???d2?0???d3?0????x1,x2,x3,di,di?0,i?1,2,3,4得:
x1?9.474,x2?20,x3?2.105,d1?0,d1?0,d2?0,d2?0d3?0,d3?4.211,d4?14.316,d4?0????????
所以食品厂商为了依次达到4个活动目标,需在电视上发布广告9.474次,报纸上发布广告20次,广播中发布广告2.105次。(使用管理运筹学软件2.5 可一次求解上述问题)
3.解:
(1)设该化工厂生产x1升粘合剂A和x2升粘合剂B。则根据工厂要求,建立以下目标规划模型:
407
minP1(d1?d2)?P2(d3?d4)?P3(d5)5?1??x?x?d?d?801211?312??1x?5x?d??d??10022?31122??x1?d3??d3??100????x2?d4?d4?120???x1?x2?d5?d5?300??x,x,x,d?,d??0,i?1,2,3,4,5i?123i?????
(2)
+ 300 d5 -+ d4 d4 -d5 200
+d3
A
+- 100 d1 d3
+d2 -- d1 d2 0 100 200 300
图1 图解法求解
图解法求解如图1:目标1,2可以达到,目标3达不到,所以有满意解为A点(150,120)。
4.解:
设该汽车装配厂为达到目标要求生产产品Ax1件,生产产品Bx2件。 (1)目标规划模型为:
minP1(d1?d2)?P2(d3)1?1??x?x?d?d?601211?66??1x?5x?d??d??180
22?3162????4x1?3x2?d3?d3?1300???x,x,x,d,d?0,i?1,2,3i?123i??? 408
正在阅读:
运筹学课后答案大全07-01
中国石油炼油公司新录用员工考试试题04-29
社会行政学03-09
针刺加TDP配合中频三步疗法治疗腰椎间盘突出症217例论文12-21
勘察设计招标文件(标准版)05-08
音乐兴趣小组活动方案06-23
生产运作与管理试卷最全版 考试专用06-07
写莲的作文500字06-23
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 运筹学
- 课后
- 答案
- 大全
- 第一类医疗器械生产备案 - 图文
- 工程风险管理方面的热点和实际问题研究论文
- 2016年麦考瑞大学酒店管理 - 图文
- 水产品深加工项目可行性研究报告 - 图文
- 2016宁夏公务员考试申论高分技巧:三步骤拿下贯彻执行题
- 22小毛虫(说课)
- 项目安全管理方案正式doc - 图文
- 2015年中医执业医师考试大纲诊断学基础
- 九宫内经
- 翻译中的增词和减词
- 美国统一商法典_中文
- 高岭土综合利用项目可行性研究报告(发改立项备案+2013年最新案
- 港口的经济贡献度测算
- 糯扎渡地下厂房系统工程概况
- 赛事管理系统
- 浙江省衢州市第二中学2018届高考适应性考试英语试题Word版含答案
- 复变函数第一章学习指导
- 美联英语短新闻 新奥尔良拆除第三座南部联邦雕像
- 八字格局讲义
- 第一部分专题六第3讲碰撞与动量守恒 近代物理初步资料