现代信号处理导论-小波处理论文及程序

更新时间:2023-09-29 09:40:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

现代信号处理导论课论文

基于Matlab的离散小波变换

散小波变换是对基本小波的尺度和平移进行离散化。在图像处理中,常采用二进小波作为小波变换函数,即使用2的整数次幂进行划分。在JPEG中,离散余弦变换将图像压缩为8×8 的小块,然后依次放入文件中,这种算法靠丢弃频率信息实现压缩,因而图像的压缩率越高,频率信息被丢弃的越多。在极端情况下,JPEG图像只保留了反映图像外貌的基本信息,精细的图像细节都损失了。小波变换是现代谱分析工具,他既能考察局部时域过程的频域特征,又能考察局部频域过程的时域特征,因此即使对于非平稳过程,处理起来也得心应手。他能将图像变换为一系列小波系数,这些系数可以被高效压缩和存储,此外,小波的粗略边缘可以更好地表现图像,因为它消除了DCT压缩普遍具有的方块效应。

一般计算机实现中使用二进制离散处理,将经过这种离散化的小波及其相应的小波变换成为离散小波变换(简称DWT)。实际上,离散小波变换是对连续小波变换的尺度、位移按照2的幂次进行离散化得到的,所以也称之为二进制小波变换。虽然经典的傅里叶变换可以反映出信号的整体内涵,但表现形式往往不够直观,并且噪声会使得信号频谱复杂化。在信号处理领域一直都是使用一族带通滤波器将信号分解为不同频率分量,即将信号f(x)送到带通滤波器Hi(x)中。

小波分解的意义就在于能够在不同尺度上对信号进行分解,而且对不同尺度的选择可以根据不同的目标来确定。对于许多信号,低频成分相当重要,它常常蕴含着信号的特征,而高频成分则给出信号的细节或差别。人的话音如果去掉高频成分,听起来与以前可能不同,但仍能知道所说的内容;如果去掉足够的低频成分,则听到的是一些没有意义的声音。在小波分析中经常用到近似与细节。近似表示信号的高尺度,即低频信息;细节表示信号的高尺度,即高频信息。因此,原始信号通过两个相互滤波器产生两个信号。通过不断的分解过程,将近似信号连续分解,就可以将信号分解成许多低分辨率成分。理论上分解可以无限制的进行下去,但事实上,分解可以进行到细节(高频)只包含单个样本为止。因此,在实际应用中,一般依据信号的特征或者合适的标准来选择适当的分解层数。

小波分解可以使人们在任意尺度观察信号,只需所采用的小波函数的尺度合适。小波分解将信号分解为近似分量和细节分量,它们在应用中分别有不同的特点。比如,对含有噪声的信号,噪声分量的主要能量集中在小波分解的细节分量中,对细节分量做进一步处理,比如阈值处理,可以过滤噪声。

一个Matlab基于离散小波变换的小例子程序: clc;

clearall closeall

load leleccum; % 载入信号数据% s = leleccum; Len = length(s);

[ca1, cd1] = dwt(s, 'db1'); % 采用db1小波分解&

a1 = upcoef('a', ca1, 'db1', 1, Len); % 从系数得到近似信号% d1 = upcoef('d', cd1, 'db1', 1, Len); % 从系数得到细节信号% s1 = a1+d1; % 重构信号% figure;

subplot(2, 2, 1); plot(s); title('初始电源信号');

subplot(2, 2, 2); plot(ca1); title('一层小波分解的低频信息'); subplot(2, 2, 3); plot(cd1); title('一层小波分解的高频信息');

subplot(2, 2, 4); plot(s1, 'r-'); title('一层小波分解的重构信号');

初始电源信号600500400300200100020004000600080060040020000100020003000一层小波分解的低频信息一层小波分解的高频信息40200-20-4001000200030006005004003002001000一层小波分解的重构信号200040006000

本文来源:https://www.bwwdw.com/article/k6id.html

Top