Esterification of a Fatty Acid by Reactive Distillation
更新时间:2023-05-22 01:37:01 阅读量: 实用文档 文档下载
反应精馏
3612Ind.Eng.Chem.Res.2003,42,3612-3619
SEPARATIONS
EsterificationofaFattyAcidbyReactiveDistillation
SvenSteinigewegandJu1rgenGmehling*
CarlvonOssietzkyUniversityofOldenburg,IndustrialChemistry,P.O.Box2503,D-26111Oldenburg,Germany
Areactivedistillationprocessfortheproductionofdecanoicacidmethylestersbyesterificationofthefattyaciddecanoicacidwithmethanolispresented.Thereactionhasbeencatalyzedheterogeneouslybyastrongacidicion-exchangeresin(Amberlyst15).ApragmatickineticmodelbasedonaLangmuir-Hinshelwood-Hougen-Watsonapproachhasbeenderivedandthekineticconstantsofthisandapseudohomogeneousmodelhavebeenfitted.Twodifferentcatalyticpackings,Katapak-SandKatapak-SP,havebeenusedforreactivedistillationexperiments.TheseparationefficiencyofKatapak-SPwasdeterminedexperimentallyandreactivedistillationexperimentsinpilot-plantcolumnshavebeenperformed.Operationconditionshavebeenvaried(refluxratioandreactantratio)experimentally.Anequilibriumstagemodeliscapableofdescribingtheexperimentsquantitativelywhentheadsorptionbasedakineticmodelisapplied.Simulationhasbeenusedsubsequentlytodeterminetheinfluenceofimportantoperatinganddesignfactors(reactantratio,refluxratio,pressure,distillate-to-feedratio,sizeofthereactivesection,androleofaprereactor)andtocomparethepackingssystematically.Finally,aprocessisproposedthatispromisingforscale-upandoptimizationwithregardtoeconomicissues.
Introduction
Thecombinationofreactionanddistillationwithinoneunitoperationiscalledreactivedistillation.Espe-ciallyforequilibriumlimitedandconsecutivereactions,reactivedistillationisapromisingprocessalternative.Thedirectremovaloftheproductsorintermediatesresultsinhigherconversionsandselectivitiesincom-parisonwiththeclassical,sequentialapproach.Themostimportantequilibriumlimitedreactionsthataresuitableforreactivedistillationareesterifications,esterhydrolysisreactions,transesterifications,andetherifi-cations.Inrecentyearsresearchfocusedontheinves-tigationofthemethylacetatesynthesisandhydrolysisbyreactivedistillation.Themethylacetatesystemservesasamodelsystemforreactivedistillationprocesses.1,2Besidesmethylacetatesynthesis,alsotheesterificationofotheralcohols(e.g.,n-butanol3)withaceticacidhasbeeninvestigated.Incontrasttothesesystems,informationabouttheesterificationoflong-chaincarboxylicacidssuchasfattyacidsbyreactivedistillationcanhardlybefoundintheliterature.
Esterificationoffattyacidsisacommonpracticeinthechemicalindustry.Fattyacidestersareimportantintermediates,surfactants,lubricants,ortensides.Nev-ertheless,informationaboutheterogeneouslycatalyzedesterificationoffattyacidsbyreactivedistillationcannotbefoundintheopenliterature.Onlyinformationabouthomogeneouslycatalyzedreactivedistillationisavail-able.Investigationsabouttheesterificationofmyristic
*Towhomcorrespondenceshouldbeaddressed.Tel.:+49-441-7983831.Fax:+49-441-7983330.E-mail:gmehling@tech.chem.uni-oldenburg.de.http://www.uni-oldenburg.de/tchemie/.
acidwith2-propanolinatraycolumnhavebeenperformedbyBocketal.4Theseauthorspresentaprocessincludingarecoverycolumnfor2-propanol.Sensitivityanalysesanddynamicexperimentsarepresented.Jerominetal.5describetheesterificationofdifferentfattyacidswithmethanolinatraycolumnandcomparethecontinuousreactivedistillationprocesswithabatchprocess.Schleperetal.6describetheesterificationofafattyacidwith2-propanolinatraycolumn.Theypresentdataconcerningnotonlythereactionkineticsbutalsotheirpilot-plantexperiments.Tothebestofourknowledge,noinformationabouttheheterogeneouslycatalyzedreactivedistillationfortheproductionoffattyacidestersisavailableintheopenliterature.Theesterificationofdecanoicacidwithmethanolformingdecanoicacidmethylesterandwaterwaschosenasamodelsystem.
decanoicacid(DecH)+methanol(MeOH)h
methyldecanoate(MeDec)+water(H2O)(1)Heterogeneouslycatalyzedreactivedistillationoffersadvantagesoverthehomogeneouslycatalyzedprocessalternative(e.g.,sulfuricacid).Sizeandlocationofthereactivesectioncanbechosenregardlessofthermo-dynamicconstraintsandatthesametimecorrosionproblemswillbeminimized.Furthermore,thesepara-tionofthehomogeneouscatalystfromtheproduct(ester)thatisobtainedasbottomproductcanbeavoided.Theimmobilizationoftheheterogeneouscata-lystinsidethecolumncan,forexample,beachievedbystructuredpackingssuchasKatapak-SorKatapak-SP(bothSulzerChemtech).Katapak-Sismadeofcor-rugatedwiremeshsheets.Katapak-SPcombineswiregauzelayers(catalyticlayers)withlayersofMellapak
10.1021/ie020925iCCC:$25.00©2003AmericanChemicalSociety
PublishedonWeb06/20/2003
反应精馏
Table1.AntoineConstantsAccordingtologPsi)Ai-[Bi/(Ci+T)]WherePs
iIsinkPaandTinK
component
AiBiCimethanol7.205871582.27-33.424water
7.196211730.63-39.724decanoicacidmethylester6.140321590.66-115.835decanoicacid
6.11877
1593.22
-156.557
(separationlayers).ForthemeasurementspresentedheretheKatapak-SP11typewasapplied.7Thispackingconsistsofalternatecatalyticandseparationlayers.Asaheterogeneouscatalyst,thestronglyacidicion-exchangeresinAmberlyst15(Rohm&Haas)wasusedinthisinvestigation.Amberlyst15hasalsobeenappliedsuccessfullyforthemethylacetatesynthesisandhy-drolysis1andforthen-butylacetatesynthesis.3
Thispaperdescribesthedevelopmentofaprocessfortheproductionofdecanoicacidmethylesterbyhetero-geneouslycatalyzedreactivedistillation.Theprocedureappliedhereoffersacomprehensivemethodforthedevelopmentofreactivedistillationprocesses,whichisalsovalidforequilibriumreactionswithaconsiderablylowerreactionrate.Processdevelopmentstartswithathermodynamicanalysisoftheconsideredsystem.Inasecondstepthereactionkineticsofthereactionhastobeinvestigatedunderconditionsexpectedinthereactivedistillationcolumn.Incomparisonwiththemethylacetateandn-butylacetatesynthesis,biningtheresultsofthethermodynamicandthekineticanalysisleadstothedevelopmentofasimulationenvironmentbasedonanequilibriumstagemodel.Subsequently,thesimulationresultshavetobeverifiedbyconductingexperimentsinapilot-plantcolumn.However,becauseofthelargenumberofparameters,itisnotpossibletoinvestigateallprocessalternativesexperimentally.Therefore,simulationstudiesareusedtoidentifytheroleofimportantoperatinganddesignfactors.Ifanappropriateprocesshasbeenidentified,furtheropti-mizationoftheprocesswithregardtoeconomicconsid-erationsandascale-upcanbecarriedout.ThermodynamicAspects
Inthequaternarysystemnoazeotropesoccur.Whiledecanoicacidmethylesteristhehighboilingproduct,whichcanbeexpectedinthebottomstream,leavingthereactivedistillationcolumn,wateristhelowboilingproductthatleavesthecolumnwiththedistillatestream.Atatmosphericpressurehightemperatures(about500K)wouldbeattainedinthereboilerwhennomethanolispresentinthebottomstream.Thesetemperaturesusuallyresultinsignificantlylowerprod-uctqualityofthedecanoicacidmethylester.5Therefore,acertainamountofmethanol(about4mol%)shouldbetoleratedinthereboiler.
TheAntoineequationisusedforthecalculationofthesaturationvaporpressuresofthepuresubstances.TheAntoineconstantsusedinthiswork(Table1)weretakenfromtheDortmundDataBank(DDB),whichwaskindlyplacedatourdisposalbyDDBSTGmbHGer-many.8Theactivitycoefficientsγofphaseandchemicaliareusednotonlyforthecalculationequilibriabutalsoforthekineticexpression.Exceptforthesystemmetha-nol-waternoexperimentalVLEdataareavailableintheDortmundDataBank.8Therefore,modifiedUNI-
Ind.Eng.Chem.Res.,Vol.42,No.15,20033613
FAC(Dortmund)wasusedwiththeparameterspub-lishedbyGmehlingetal.9ExperimentalSection
Chemicals.DecanoicacidsuppliedbyCognisDeut-schlandwithaminimumpurityof99%wasusedwithoutfurtherpurification.Methanolusedfortheexperimentsconcerningthereactionkineticswereofanalyticalgrade(99.8%Scharlau).DecanoicacidmethylesterwassynthesizedinourlaboratoryandverifiedbyNMRspectroscopy.GCanalysisshowedanesterpurityof>99.8%.Waterwasbidistilled.Theorganicchemicalsweredriedoveramolecularsievepriortouse.Forthereactivedistillationexperimentsmethanolwasofreac-tiongrade(99.5%)andwasusedwithoutfurtherpurification.Thepurityofallorganicchemicalswasverifiedbygaschromatography.
Analytics.Allsamplesofthekineticandreactivedistillationexperimentswereanalyzedbygaschroma-tography(HP6890withTCD;Heasacarriergasat2.5cm3min-1hold1for3.05min,rateof10cm3min-2to6.3cm3min-;HP-Innowax30m×0.032mm;split5:1;temperatureprogram:333Kholdfor3min,heatrateof80Kmin-1to403Kholdfor0.2min,heatrateof80Kmin-1to513K).ReactionKinetics
Experiments.Theexperimentswereconductedinathermostatedbatchglassreactorwithavolumeof500cm3.Thetemperatureoftheheatingjacketwaskeptconstantwithin(0.1K.ThestirrerwasplatetypeandmadeofTeflon.Thespeedwasvariedbetween100and800rpm.Toimprovemixing,abafflewasinstalled.Furthermore,arefluxcondenserwasappliedtoavoidalossofvolatilecomponents.PriortouseAmberlyst15waswashedwithwaterseveraltimesuntilthesupernatantliquidwascolorless.Subsequently,Am-berlyst15wasdriedundervacuum(P<1mbar)at353Kuntilthemassremainedconstant(usuallyafter2days).Theion-exchangecapacityofAmberlyst15hasbeendeterminedearlier.11Beforethekineticexperimentwasstarted,bothreactantswerebroughttoreactiontemperatureinseparatevessels.Sincethecatalystwasnotheatedtothereactiontemperature,addingthecatalystwouldleadtoatemperaturedecrease.Toensureisothermalconditions,thecatalystwasaddedabout2minbeforetheexperiment.Temperaturemea-surementindicatedthatthistimeissufficienttoheatthecatalyst.Whenthedesiredtemperaturewasreached,thereactorwasfilledwithbothreactantsandthetimemeasurementwasstarted.Samplesofabout1cm3weretakenusingasyringeandweighed(accuracyofthebalance(0.001g).Afterward,about1cm3ofacetonewasaddedtothesamplestoensureahomogeneousmixture.Duringeverymeasurementseries15-20samplesweretaken.Thesampleswerecooledrapidlyto280Ktoavoidfurtherreactionandthenanalyzedbygaschromatography.Measurementswereperformedinatemperaturerangebetween309and338K.Besidesthetemperaturetheamountofcatalyst,initialreactantratio,andinitialamountofwaterwasvaried.Innoneoftherunssideproductshavebeendetected.
Todeterminetheinfluenceoftheexternalmasstransferonthereactionrate,thestirrerspeedwasvariedbetween100and600rpminadditionalruns.Noinfluenceofthestirrerspeedonthereactionratewas
反应精馏
3614Ind.Eng.Chem.Res.,Vol.42,No.15,
2003
detectedabove200rpm.Therefore,allfurtherexperi-mentswereconductedatastirrerspeedof400rpm.Po¨pkenetal.11provedtheabsenceofinternalmasstransferforthemethylacetatesynthesis.AlsoXuandChuang12statedthatinternaldiffusionisinsignificantfortheesterificationofaceticacidwithmethanolcatalyzedbyAmberlyst15.DuetothefactthatAm-berlyst15iscomposedofverysmallgel-typemicro-sphererswithlargemacropores,13internaldiffusioncanalsobeexcludedfortheesterificationofdecanoicacidwithmethanol.Itcanbeexpectedthatsorptioneffectsaremoreimportantthaninternalmasstransfer.
KineticModeling.Bothapseudohomogeneousmodelandanadsorption-basedmodelhavebeeninvestigatedrecently.11Thepseudohomogeneouskineticmodelislesscomplexandhasasmallernumberofparameters.Esterificationsareknowntobereversiblereactionsofsecondorder.Therefore,thepseudohomogeneousmodelcanbewrittenas11
r)
11dni
m)kcatνidt
1aDecHaMeOH-k-1aMeDecaH2O
(2)
wherebyactivitiesinsteadofconcentrationsormolefractionsareused.Thisleadstoamoreconsistentandaccuratedescription.11Themajordrawbackofthepseudohomogeneousmodelistheneglectofsorptioneffects,forexample,thedifferentaffinitiesofthecomponentstowardtheion-exchangeresin,whichresultindifferencesbetweentheconcentrationsofthecom-ponentsinthepolymericresinandbulkliquid.Espe-ciallyforthesysteminvestigated,ignoringsorptioneffectsisacriticalsimplification.Duetoitssmallmolecularsizeandhighpolarity,waterispreferablysorbedbythestronglypolarion-exchangeresin.Withrisingwatercontentinthebulkliquid,thereactionratedecelerates.TheseassumptionsareingoodagreementwiththeresultsofShimizuandHirai14obtainedfortheesterificationofoctanoicacidwithmethanol.Themostsimplemethodtoaccountforthesorptionofwateristouseasimplifiedadsorption-basedmodelbasedonaLangmuir-Hinshelwood-Hougen-Watson(LHHW)ap-proach.
TheLHHWequationforareversibleesterificationusinganion-exchangeresinasacatalystcanbewrittenas15
r)
1dni
(
νdt
)micat×k//
1KDecHaDecHKMeOHaMeOH-k-1KMeDecaMeDecKH2OaH2O
1+(KDecHaDecH+KMeOHaMeOH+K2
MeDecaMeDec+KH2OaH2O))
(3)
WaterispreferablysorbedandthereforesorptioneffectscanbesummarizedwithasingularsorptionconstantKforSorb.RehfingerandHoffmann16derivedanequationthesynthesisofmethyltert-butyletherusingthissimplification.Theirapproachcanalsobeappliedforanesterificationreaction.Thisleadstothefollowingequation:
r)
1dni
ν)mk1aDecHaMeOH-k-1aMeDecidtcat(
(KSorbaHK2O)2
SorbaH2O)
(4)
Thephysicalbasisofsuchapragmaticapproachshould
Figure1.Resultsoftwokineticexperimentswithdifferentinitial
amountsofwater.(T)333K,x0
H)0.019:(O)exp.,(;)fitted(eq4);x0)0.179:(b)exp.,(;)2fittedOH(eq4)).2O
notbeoveremphasized.Arigorousmodelingofthe
solventuptakebyanion-exchangeresinwouldinvolvemodelingofthepolymer-phaseactivities,forexample,withtheFlory-Hugginsmodel.Fordenselycross-linkedresinwithhighlypolargroupsonalmosteverymonomer(Amberlyst15hasadegreeoffunctionalizationofabout85%)theseeffectsarepoorlyunderstood.Therefore,itshouldbeconsideredasapragmaticmodelthatiscapableofdescribingthemostimportanteffects,forexample,thetemperaturedependencyandthedepen-dencyofthereactionrateasafunctionofwatercontent,withonlyonemoreadjustableparametercomparedtothepseudohomogeneousmodel.
ThetemperaturedependencyoftherateconstantisexpressedbyArrhenius’law:
ki)k0-EA,i
iexp
(
RT
(5)
Itwasfoundthatthetemperaturedependencyofthe
sorptionconstantKSorbcanbeneglectedforthetem-peraturerangecoveredincontrasttothetemperaturedependencyoftherateconstants.
DataAnalysis.Fiveadjustableparameters(k00
E,E1,kgiven-1,inA,1TableA,-1,K2.ToSorb)havetobefitted.Theresultsareevaluatetheinfluenceofwateronthereactionrateinadditionalkineticexperiments,waterwasaddedtobothreactantsbeforethemeasurementwasstarted.Thisallowsonetodeterminetheinfluenceofwateronthereactionratequantitatively.ForfittingthesorptionconstantKbeenperformedunderSorbninekineticexperimentshavethesameconditions(i.e.,initialamountofacidandalcohol,temperature,andamountofcatalyst)fordifferentamountsofwaterinitiallypresent.Figure1showstheweightfractionofdecanoicacidasafunctionoftimefortwoofthesekineticexperiments.Furthermore,thecalculatedcon-centrationsusingtheconstantsgiveninTable2areshown.Itcanbeseenthattheadsorption-basedmodelisabletodescribethereactionratefordifferentwaterconcentrations.FromFigure2itcanbeseenthatthetemperaturedependencyofthereactionratescanbedescribedusingArrhenius’law.
Toevaluatetheinfluenceofthekineticmodelonthesimulationresultsofthereactivedistillationprocess,additionalparametersforthepseudohomogeneouski-neticmodelhavebeenfitted.Thekineticexperimentsforthedeterminationofthesekineticparametershavebeenconductedwithoutanywaterinitiallypresentandwithvacuum-drycatalyst.Thefouradjustableparam-etersofthepseudohomogeneousmodel(k0,k0
ETable3.Pleasenotethat1the-1,ErateA,1,constantsA,-1,)aregiveningivenrelatetotheamountofdrycatalyst.
反应精馏
Figure2.Arrheniusdiagramoftherateconstantsfortheesterificationreactionk1(b)andthehydrolysisreactionk-1(O)oftheheterogeneouslycatalyzedreaction.Thelinesrepresenttheresultsoftheoverallfit(eq4).
Table2.KineticParametersfortheModifiedLHHWModel(eq4)(Ksorb)2.766)
reactionik0g
-1i(mols-1)EA,i(kJmol-1)
esterification13.1819×10672.23
hydrolysis
-1
3.5505×105
71.90
Table3.KineticParametersforthePseudohomogeneousKineticModel(eq2)
reactionik0g
-1i(mols-1)EA,i(kJmol-1)
esterification19.1164×10568.71
hydrolysis
-1
1.4998×104
64.66
ReactiveDistillationExperiments
Setup.Theexperimentsinapilot-plantscaleareperformedinaglasscolumnwithaninnerdiameterof50mmsuppliedbyQVF(QVFEngineering).Inthereboilertheliquidwasheatedelectricallybyrod-shapedquartzheaters(VogelsbergerQuarzglastechnik).Thereboilerdutywascontrolledwithatransformeranddeterminedwithadigitalmultimeter(VoltcraftM-3860M)within(1%.ThereactivesectionofthecolumnconsistedeitherofKatapak-SorKatapak-SPelementsfilledwithAmberlyst15,whereasthenonre-activesectionconsistedofSulzer-BXpackings.Eachcolumnsectionhadaheightof1.2mandaneffectivepackingheightof1m.TheheatlossofthecolumnhasbeendeterminedearlierandthecorrelationproposedbySteinigewegandGmehling3wasusedforthesimula-tion.Thecolumnwasequippedwithatotalcondenserandarefluxsplitter.Theliquidlevelinthereboilerwaskeptconstanttocontrolthebottomflowrate.Membranepumps(Gamma4-RS,ProMinent)wereusedasfeedpumps.Sincethemeltingpointofdecanoicacidis304K,theacidwasstoredinathermostatedglassvesselwithaholdupof6dm3workingat323K.Furthermore,avesselequippedwithheatingbandslocatedonthebalancewasapplied.Allfeedstreamsweremeasuredbydeterminingthemassflowusingbalanceswithanaccuracyof(1%.ThecolumnwascontrolledbyaprocesscontrolsystembasedonOptoboards(Opto-ware),whichareconnectedtoaPC(WinNT-worksta-tion).ThetemperaturesweremeasuredusingPt-100thermometerswithanaccuracyof(0.1K.Thermom-eterswereinstalledatthelowerendofeachcolumnsection(exceptatthefeedpositions),inthereboiler,inthevaporstreamenteringthecondenser,andintheliquidrefluxfromthecondenser.Thetopandthebottompressureaswellasthepressuredropwererecordedbypressuretransducers(Bosch,accuracy(0.1%).Atthelowerendofeachcolumnsection,inthereboilerandfromthedistillatestream,liquidsamplesweredrawnbymeansofasyringeandimmediatelycooledto277K
Ind.Eng.Chem.Res.,Vol.42,No.15,2003
3615
Figure3.Setupofthereactivedistillationexperiments(28theoreticalstagesforKatapak-Sand20theoreticalstagesforKatapak-SP).
Figure4.Profileofliquid-phasecompositionforS-2(Katapak-S).Experimentaldata:MeOH,4;DecH,0;H2O,×;MeDec,O.Simulationresults:MeOH,blackcontinuousline;DecH,---;Hgreycontinuousline.
2O,- -;MeDec,toavoidfurtherreactionandanalyzedbygaschroma-tography.Belowthereactivesectiontheliquidloadofthecolumnwasmeasuredbyrecordingthetimeneededtocollectaspecifiedamount(40cm3)ofliquidinagraduatedvesselinsidethecolumn.
ExperimentalResults.Experimentshavebeenperformedusingthecolumnsetup,whichisshowninFigure3.ThereactivesectionshowninFigure3consistedofKatapak-SorKatapak-SP.Atypicalcom-positionprofileforthesetupusingthepackingsKata-pak-SisgiveninFigure4.Figure5showsatypicalcompositionprofileforthesetupusingKatapak-SP.ExperimentaldetailsforKatapak-SsetuparegiveninTable4andforKatapak-SPsetupinTable5.Figure6showstheinfluenceoftherefluxratioontheconversion.TheinfluenceofthemolarfeedratioontheconversionispresentedinFigure7.Theprimaryaimoftheexperimentswastheverificationofthesimulationresultsandtoinvestigateexperimentallywhetherahigherseparationefficiency(Katapak-S)orahigheramountofcatalystperstage(Katapak-SP)ismorebeneficialfortheprocessbutnotprimarilytoobtainhighconversions.Therefore,experimentswereper-formedwithlowerreboilerdutiesthanneededforhighconversionstoensurethecompliancewiththesite’ssafetyrequirements.
反应精馏
3616Ind.Eng.Chem.Res.,Vol.42,No.15,
2003
Figure5.Profileofliquid-phasecompositionforSP-1(Katapak-SP).Experimentaldata:MeOH,4;DecH,0;H2O,×;MeDec,O.Simulationresults:MeOH,blackcontinuousline;DecH,---;H- -;MeDec,greycontinuousline.
2O,Table4.ExperimentalDatafortheSetupUsingKatapak-S
runnumber
S-1
S-2S-3S-4S-5P1(mbar)10121000999995995 P(mbar)0.680.820.560.490.47F˙DecH(mol/h)1717171118F˙MeOH(mol/h)2929293427B˙(mol/h)2727262124D˙(mol/h)
1919202421refluxratio(mol/mol)20.510.50.5xD(DecH)0.0000.0000.0000.0000.000xD(MeOH)0.9450.8030.8270.8220.765xD(MeDec)0.0000.0000.0000.0000.000xD(H2O)0.0550.1970.1230.1780.235xB(DecH)0.4670.4070.4400.2380.465xB(MeOH)0.2800.3150.3040.4090.237xB(MeDec)0.1720.2200.2000.3110.272xB(H2O)0.0810.0580.0560.0410.026X(%)26.5836.6532.6456.5436.76Q˙(W)940793810633716wL(mh-1)2.932.622.822.162.82 Feed,DecH(°C)56.1355.0056.4462.0656.69 Feed,MeOH(°C)64.5064.2564.2564.1364.25 1(°C)65.2067.3767.0468.2368.19 14(°C)71.8472.3873.0673.0275.13 28(°C)
85.42
87.35
87.00
78.02
93.03
SeparationEfficiencyofthePacking
TheseparationefficiencyofKatapak-Shasbeendeterminedearlier1andaNTSMvalue1(numberoftheoreticalstagespermeter)of4m-wasfoundformediumwatercontents.Athigherwatercontentstheseparationefficiencyofastructuredpackingisknowntodecreaseduetopoorerwettingcharacteristics.ForSulzer-BXpackingsaNTSMvalueof5m-1wasdetermined.1MeasurementsoftheseparationefficiencyofKatapak-SPpackingshavebeenperformedusingthetestsystemwater-aceticacid.ForthesemeasurementsacolumnconsistingofonesectionequippedwithKata-pak-SPworkingattotalrefluxandatmosphericpres-surehasbeenapplied.Theliquidloadwasmeasureddirectlybelowthecondenser.Thereboilerdutyandthusthevaporandliquidloadwasvariedinarangeexpectedforthereactivedistillationexperiments.Afterthecolumnwasallowedtoreachequilibrium(usuallyafter2h),liquidsamplesweredrawnaboveandbelowthe
Table5.ExperimentalDatafortheSetupUsingKatapak-SP
runnumber
S-1
S-2S-3S-4S-5P1(mbar)10131019102010181017 P(mbar)1.632.052.441.661.61F˙DecH(mol/h)1515151118F˙MeOH(mol/h)2930293427B˙(mol/h)2323242224D˙(mol/h)
2122202321refluxratio(mol/mol)0.511.50.50.5xD(DecH)0.0000.0000.0000.0000.000xD(MeOH)0.7610.8150.8850.7610.721xD(MeDec)0.0000.0000.0000.0000.000xD(H2O)0.2390.1850.1150.2390.279xB(DecH)0.4080.4250.4940.2450.459xB(MeOH)0.2710.3040.2890.4610.249xB(MeDec)0.3140.2540.1600.2450.286xB(H2O)0.0080.0170.0570.0490.006X(%)42.9937.1923.1850.1338.57Q˙(W)
754860900693790wL(mh-1)2.932.722.933.013.19 Feed,DecH(°C)58.7559.0058.0661.8856.25 Feed,MeOH(°C)64.’5064.8864.8164.8164.81 1(°C)68.1267.1366.0067.8768.77 10(°C)74.1372.7574.1973.5074.75 20(°C)
90.38
88.49
86.00
77.86
98.25
Figure6.Conversionasafunctionofrefluxratio.Experimentaldata:Katapak-S,b;Katapak-SP,O.Simulationresults:blackcontinuousline,Katapak-SP,adsorptionbasedkinetics(eq4);greycontinuousline,Katapak-S,adsorption-basedkinetics(eq4);---,Katapak-SP,pseudohomogeneouskinetics(eq2);---,Katapak-S,pseudohomogeneouskinetics(eq2).
Figure7.Conversionasafunctionofreactantratio.Experimen-taldata:Katapak-S,b;Katapak-SP,O.Simulationresults:blackcontinuousline,Katapak-SP,adsorption-basedkinetics(eq4);greycontinuousline,Katapak-S,adsorption-basedkinetics(eq4);---,Katapak-SP,pseudohomogeneouskinetics(eq2);---,Katapak-S,pseudohomogeneouskinetics(eq2).
packing.TheNTSMvaluewasdeterminedusingmea-surementsfortheknownVLEofthesystemwater-aceticacid.1,8TheresultsareshowninFigure8.ThisfigurealsoincludestheNTSMvaluesobtainedforKatapak-S.1Itcanbeexpectedthatlowtomediumwatercontentsarepresentinthereactivesectionthroughoutthereactivedistillationexperimentsper-
反应精馏
Figure8.Separationefficiencyofthepackingsused.LiquidloadforKatapak-SP:1.5m3m-2h-1.ResultsforKatapak-Sweretakenfromliterature.1(Katapak-SP,O;Katapak-S,b).
formedinthisinvestigation.Therefore,theseparationefficiencyofKatapak-SPhasbeendeterminedatme-diumwatercontents.AdecreaseoftheseparationefficiencycanalsobeexpectedforKatapak-SPathigherwatercontents.Furthermore,itshouldbenotedthatreactivedistillationexperimentsareperformedatlowliquidandvaporloadstoachieveareasonableresidencetimeofthereactantsinthereactivesectionofthecolumn.F-Factors2ofabout0.8-1Pa0.5andliquidloadsofabout3m3m-h-1canbeexpected.TheseparationefficiencyisconstantundertheseconditionsandnodependencyfromtheF-Factorwasfound.Therefore,theNTSMvalueforKatapak-SPissetto2m-1forfurthercalculations.ThelowerseparationefficiencyofKatapak-SPisaresultofthelowerspecificsurfaceareaofthepacking.7Simulation
Allsimulationswerecarriedoutwiththesteady-statemodelRADFRAC(Aspen-Plus17Version11.1).ThemodelisbasedonarigorousequilibriumstagemodelforsolvingtheMESHequations.Besidespurecompo-nentpropertiesandmod.UNIFAC(Do)interactionparameters,dataaboutthecolumnheatlossandthereactionkineticsareincorporatedintotheprocesssimulator.Stagesarenumberedfromthetoptothebottom,withstage1ascondenserandstageNasreboiler.ThisresultsinatotalnumberoftheoreticalstagesofN)28forthecolumnequippedwithKata-pak-SandN)20forthecolumnequippedwithKatapak-SP,whileKatapak-Scontains150gofdryAmberlyst-15/mandKatapak-SPcontains210gofdrycatalyst/m.
Results.ItcanbeseenfromFigures4-7thatexperimentaldataareinagoodagreementwithsimu-lationresults.Thesefiguresshowthatonlyanadsorp-tion-basedkineticmodelensuresgoodagreementbe-tweenexperimentalandsimulatedresults.Deviationsbetweenexperimentaldataandsimulationresults(adsorption-basedkineticmodel)arewithinexperimen-talerrorforbothpackingtypes.Asexpected,thecalculatedconversionforthepseudohomogeneousmodelismuchhigherthanthedataobtainedexperimentally.Itcanbeconcludedfromtheexperimentsthatthesimulationmodelisabletodescribebothpackingtypes(Katapak-SandKatapak-SP)quantitativelywhenap-plyinganadsorption-basedkineticmodel.Processsimu-lationcanbeusedforareliableevaluationofimportantdesignfactorsandtoproposeaprocesswhereascale-upispromising.
Ind.Eng.Chem.Res.,Vol.42,No.15,2003
3617
Figure9.Conversionasafunctionofthesizeofthereactivesection(P)3bar,r)0.01,D:F)0.62,fivenonreactivestagesaboveandbelowthereactivesection,F˙MeOH)2 F˙DecH)34mol h-1).(Katapak-S,;;Katapak-SP,---).
ProcessDevelopment
Forthepurposeofgeneralvalidityallfurthercalcula-tionswereconductedwithzerocolumnheatloss.Inafirststep,theroleoftheoperatingconditions(refluxratio,reactantratio,pressure,andD:Fratio)areexamined.Itwasinvestigatedwhetherseparationef-ficiency(Katapak-S)oramountofcatalystperpacking(Katapak-SP)ismorebeneficial.Furthermore,theroleofaprereactorandtheinfluenceofthenumberofreactiveandnonreactivestagesonthecolumnconver-sionwasevaluated.
ReactantRatio.AscanbeseenfromFigure7,anexcessofmethanolinthefeedstreamresultsinhigheracidconversions.Therefore,forallfurthercalculationsatotalfeedratioofdecanoicacid:methanolof1:2isapplied.
RefluxRatio.FromFigure6itcanbeseenthatlowrefluxratiosresultinhigherconversions.Sincewaterisanintermediateboiler,ahigherrefluxratioleadstoahigheramountofwaterinthereactivesection.Therefore,asmallrefluxratioof0.01isusedforfurthercalculations.
Pressure.Elevatingthecolumnpressureleadstohighertemperaturesandhencehigherreactionratesforkineticallycontrolledreactions.Otherwise,usingAmberlyst15itisnotpossibletooperateattempera-turesabove393Ksincethisisthemaximumoperatingtemperaturerecommendedbythemanufacturer.Simu-lationstudiesshowthattemperaturesbelow393Kcanberealizedwhenpressuresupto3bararerealized.D:FRatio.Thedistillate-to-feedratiohasamajorinfluenceonthecountercurrentflowofthereactantsinthereactivesectionofthecolumn.Anoptimalcountercurrentflowisachievedwhentheexcessmetha-nolandthewateriscompletelywithdrawninthedistillatestream.Foratotalmolarfeedrateofdecanoicacid:methanolof1:2thisresultsinanoptimalD:Fratioof0.66.Undertheseconditions,nomethanolispresentinthereboiler,resultingintemperaturesabove500Kinthereboiler.Toreducethetemperature,aD:Fratioof0.62isappliedduringthecalculations,ensuringasufficientamountofmethanolinthereboiler.
HeightoftheReactiveSection.Figure9showstheinfluenceofthelengthofthereactivesectionontheconversionforKatapak-SandKatapak-SP.Aboveandbelowthereactivesectionanonreactivesectionof1meachwasusedforcalculations.ItcanbeseenthatKatapak-Sismorefavorablefortheprocesssincehigherconversionscanbeobtainedwithasmallerreactivesection.Butdifferencesbetweenbothpackingsarerathersmall,indicatingthatbothseparationefficiency
反应精馏
3618Ind.Eng.Chem.Res.,Vol.42,No.15,
2003
Figure10.Overallconversionofthecombinationofprereactorandreactivedistillationcolumn.Conversionisgivenasafunctionofthemethanolfractionfedintotheprereactor.Remainingmethanolisfedintothecolumndirectly.(Columnconditions:P)3bar,r)0.01,D:F)0.62,fivenonreactivestagesaboveandbelowthereactivesection,F˙MeOH)2 F˙DecH)34mol h-1).(Katapak-S,;;Katapak-SP,---).
andamountofcatalystperstageareimportant.The
separationefficiencyiscrucialforthesuccessoftheprocesssincewaterhastoberemovedfromthereactivesectionnotonlytoshiftthechemicalequilibriumtohigherconversionsbutalsotoavoiditsdetrimentalsorptioneffectonreactionkinetics.
Prereactor.Theapplicationofaprereactormightbeadvantageousinreactivedistillationprocesses.3Intheprereactorequilibriumconversionisachievedandthereactivedistillationcolumnisusedforshiftingreactiontohigherconversions.Forthecalculations,aprereactorworkingat323Kisused(KtheDDBsoftware8).Thereactivex)1.8calculatedusingsectionwassetto4m;aboveandbelowthereactivesectionanonre-activesectionof1meachwasapplied.Fortheevalu-ationofthisprocess,analternativecasestudywasperformed.Acertainfractionoftheoverallmethanolwasfedintotheprereactorandtheremainingmethanolwasfedintothecolumnbelowthereactivesection.Thestreamleavingtheprereactorenteredthecolumndirectlyabovethereactivesection.Figure10showstheconversionasafunctionofthemethanolfractionenteringthecolumndirectly.Itcanbeseenthathighconversionscanbeexpectedwhennomethanolisfedintotheprereactor.Anoptimalcountercurrentflowofthereactantsinthereactivesectionofthecolumnisobviouslymoreimportantfortheprocessthantheconversionsobtainedintheprereactor.Thisindicatesthattheapplicationofaprereactorisnotanadvanta-geousprocessalternative.
TechnicallyOptimizedProcess.Thepreviousevaluationpermitsproposalofapromisingprocessforfurtherscale-upandoptimizationwithregardstoeconomicissues.Additionalsimulationstudiesindicatedthatthenonreactivesectionsaboveandbelowthereactivesectiondonothaveanybeneficialeffect.Therefore,theprocessconsistsofacolumnconsistingof6-mKatapak-Spackings.Boilingmethanolisfedintothecolumndirectlyabovethereboiler;decanoicacidentersthecolumndirectlybelowthecondenserwithatemperatureof323K.Thecolumnheadpressureissetto3bar,therefluxratiois0.01,andtheD:Fratioissetto0.62.Areactantratioofdecanoicacid:methanolof1:2ischosen.Figure11showstheconversionasafunctionofamodifiedspacevelocity(SV*)asgivenbyeq6.Here,V˙meansthesumofthevolumeflowsofthe
SV*)
V˙˙
V)
VReactiveSection
π (rColumn)2 h(6)
ReactiveSection
Figure11.Conversionasafunctionofspacevelocityfortheoptimizedprocess(P)3bar,r)0.01,D:F)0.62,nononreactivestages,F˙MeOH)2 F˙DecH)(Katapak-S,;;Katapak-SP,---).
feedstreams,VReactiveSectionthetotalvolumeofthe
reactivesection,rhColumntheradiusofthecolumn,andReactiveSectionthelengthofthereactivesection.Forcomparisontheresultsobtainedforacolumnconsistingof6mofKatapak-SParealsogiven.Itcanbeseenthathighconversionscanbeexpectedevenwhenhighspacevelocitiesareapplied.AgainitcanbeseenthatKata-pak-Sshowsabetterperformanceduetoitshigherseparationefficiency.Conclusion
Amethodforthedevelopmentofreactivedistillationprocessesisappliedfortheesterificationofdecanoicacidwithmethanol.Thethermodynamicaspectshavebeendiscussed.Thereactionkineticshavebeeninvestigated.AkineticapproachbasedupontheLHHWmodelisderived.Ithasbeenshownthatthewateruptakebythepolymericcatalysthastobetakenintoaccountandthatthemodelproposediscapableofdescribingthereactionrateasafunctionofthewatercontent.Fur-thermore,kineticconstantsforthepseudohomogeneousmodelbasedonactivitieshavebeenfitted.TheresultshavebeenincorporatedintotheprocesssimulatorAspen-Plus(AspenRADFRAC).Severalreactivedistil-lationexperimentsatapilot-plantcolumnhavebeenperformedwherebytwodifferentcatalyticpackings(Katapak-SandKatapak-SP)havebeenemployed.Acomparisonoftheexperimentaldatawithsimulationresultsindicatethatanequilibriumstagemodeliscapableofdescribingthecolumnprofilesquantitativelywhenanappropriatekineticmodelisused.Apseudo-homogeneouskineticmodelisnotabletodescribetheexperimentalresults.Withthehelpofreliablesimula-tiontheinfluenceofseveralimportantdesignfactorshasbeeninvestigated.Ithasbeenshownthatbothseparationefficiencyofthepackingandamountofcatalystofferedbythepackingsareimportantforthesuccessoftheprocess.Duetoabetterseparationefficiency,Katapak-Sshowedabetterperformance.Thenumberofreactivestagesnecessarytoachieveconver-sionscloseto100%hasbeendeterminedandtheinfluenceofthetotalmolarfeedonthenumberofthereactivestageshasbeenstudied.Thenumberofnon-reactivestagesaboveandbelowthereactivesectionisofminorimportancefortheperformanceoftheoverallprocess.Furthermore,ithasbeenshownthatapre-reactorisnotadvantageoussincetherequiredcounter-currentflowofthereactantsinthereactivesectioncannotberealized.Finally,atechnicallyoptimizedprocesshasbeenproposed,whichisthebasisforthescale-upoftheprocess.
反应精馏
Acknowledgment
Wethankthe“FondsderChemischenIndustrie”forprovidingascholarshiptoS.St.andCognisDeutschlandforprovidingthedecanoicacidrequiredforthemea-surements.Also,weexpressourthankstoSulzerChemtechforthepackings.Furthermore,wewouldliketothankM.Steinmannforperformingapartofthekineticmeasurements.LiteratureCited
(1)Po¨pken,T.;Steinigeweg,S.;Gmehling,J.SynthesisandHydrolysisofMethylAcetatebyReactiveDistillationUsingStructuredCatalyticPackings:ExperimentsandSimulation.Ind.Eng.Chem.Res.2001,40,1566.
(2)Krafczyk,J.;Gmehling,J.EinsatzvonKatalysatorpackun-genfu¨rdieHerstellungvonMethylacetatdurchreaktiveRekti-fikation.Chem.Ing.Tech.1994,66,1372.
(3)Steinigeweg,S.;Gmehling,J.n-ButylAcetateSynthesisviaReactiveDistillation:ThermodynamicAspects,ReactionKinetics,PilotPlantExperiments,andSimulationStudies.Ind.Eng.Chem.Res.2002,41,5483.
(4)Bock,H.;Wozny,G.;Gutsche,B.DesignandControlofaReactionDistillationColumnIncludingtheRecoverySystem.Chem.Eng.Process.1997,36,101.
(5)Jeromin,L.;Bremus,N.;Peukert,E.KontinuierlicheVer-esterunginReaktionskolonnen.Fette,Seifen,Anstrichmittel1981,83,493.
(6)Schleper,B.;Gutsche,B.;Wnuck,J.;JerominL.EinsatzeineseinfachenSimulationsmodellszurVersuchsplanungfu¨reineGegenstrom-Veresterungskolonne.Chem.Ing.Tech.1990,62,226.(7)Go¨tze,L.;Bailer,O.;Moritz,P.;vonScala,C.ReactiveDistillationwithKatapak.Catal.Today2001,69,201.
Ind.Eng.Chem.Res.,Vol.42,No.15,20033619
(8)DortmundDataBank;DDBSTGmbH(www.ddbst.de),Oldenburg,Germany,2002.
(9)Gmehling,J.;Wittig,R.;Lohmann,J.;Joh,R.AModifiedUNIFAC(Dortmund)Model.4.RevisionandExtension.Ind.Eng.Chem.Res.2002,41,1678.
(10)Gmehling,J.;Kolbe,B.Thermodynamik,2nded.;VCH:Weinheim,1992.(11)Po¨pken,T.;Go¨tze,L.;Gmehling,J.ReactionKineticsandChemicalEquilibriumofHomogeneouslyandHeterogeneouslyCatalyzedAceticAcidEsterificationwithMethanolandMethylAcetateHydrolysis.Ind.Eng.Chem.Res.2000,39,2601.
(12)Xu,Z.P.;Chuang,K.T.EffectofInternalDiffusiononHeterogeneousCatalyticEsterificationofAceticAcid.Ind.Eng.Chem.Res.1997,52,3011.
(13)Pitochelli,A.R.IonExchangeCatalysisandMatrixEffects;RohmandHaasCo.:Philadelphia,PA,1980.
(14)Schimizu,S.;Hirai,C.KineticStudyofLiquid-PhaseEsterificationwithSulfonicAcidCation-ExchangeResinoftheMacroreticularType.I.Heterogeneous-PseudohomogeneousResinCatalysts.Bull.Chem.Soc.Jpn.1986,59,7.
(15)Song,W.;Venimadhavan,G.;Manning,J.M.;Malone,M.F.;Doherty,M.F.MeasurementofResidueCurveMapsandHeterogeneousKineticsinMethylAcetateSynthesis.Ind.Eng.Chem.Res.1998,37,1917.
(16)Rehfinger,A.;Hoffmann,U.KineticsofMethylTertiaryButylEtherLiquid-PhaseSynthesisCatalyzedbyIonExchangeResin.I.IntrinsicRateExpressioninLiquid-PhaseActivities.Chem.Eng.Sci.1990,45,1605.
(17)AspenPlus,version11.PhysicalPropertyMethodsandModels;AspenTechnologiesInc.:Cambridge,MA2001.
ReceivedforreviewNovember18,2002RevisedmanuscriptreceivedMay11,2003
AcceptedMay16,2003
IE020925I
正在阅读:
Esterification of a Fatty Acid by Reactive Distillation05-22
秋天的叶子作文600字06-30
各国商人信誉度03-26
中科院有机化学波谱题 - 图文03-02
肾嫌色细胞癌13例临床病理分析并文献复习08-14
北京市丰台区2012届高三上学期期末练习(数学文)07-03
赞美竹的作文,竹02-05
2018-2024年中国有机硅市场调查与市场年度调研报告(目录) - 图04-30
山东某集团公司年度集团职能部长绩效考核KPI目标责任书(DOC 19页)01-23
写给未来儿子的一封信_优秀作文04-11
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Esterification
- Distillation
- Reactive
- Fatty
- Acid
- 曲线上一点处的切线
- 高校教师资格证考试之《高等教育心理学》知识点
- 机械工程专业英语第二版必考翻译(完整版)
- 钳工、机修钳工、工具钳工、模具钳工等钳工类职业技能鉴定所(考场)设置标准(试行)
- 《演讲与口才》形考作业一至五答案
- 医疗机构卫生监督管理档案
- 农夫山泉股份有限公司考试试题
- 组合数学鸽巢原理例题
- 人教版第五册第六单元《富饶的西沙群岛》
- 寝室卫生检查标准
- 借款与报销管理制度
- 建设和发展学校课程 陈大伟
- 三角形的三条边的关系
- DS1820及其高精度温度测量的实现
- “十三五”重点项目-煤层气利用建设项目节能评估报告(节能专篇)
- 电影字幕翻译技巧
- 2016高考数学理科二轮复习习题:专题综合检测卷(三)
- BackTrack5完全配置攻略1
- 初中数学知识点总结与公式
- 2016年执业药师继续教育试题答案三